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Recent experimental breakthroughs in non-Hermitian ultracold atomic lattices have dangled tantalizing
prospects in realizing exotic, hitherto unreported, many-body non-Hermitian quantum phenomena. In this work,
we propose and study an experimental platform for a radically different non-Hermitian phenomenon dubbed
polaron squeezing. We find that it is marked by a dipolelike accumulation of fermions arising from an interacting
impurity in a background of non-Hermitian reciprocity-breaking hoppings. We computed their spatial density
and found that, unlike Hermitian polarons which are symmetrically localized around impurities, non-Hermitian
squeezed polarons localize asymmetrically in the direction opposite to conventional non-Hermitian pumping
and nonperturbatively modify the entire spectrum, despite having a manifestly local profile. We investigated
their time evolution and found that, saliently, they appear almost universally in the long-time steady state, unlike
Hermitian polarons which only exist in the ground state. In our numerics, we also found that, unlike well-known
topological or skin localized states, squeezed polarons exist in the bulk, independently of boundary conditions.
Our findings could inspire the realization of many-body states in ultracold atomic setups, where a squeezed
polaron can be readily detected and characterized by imaging the spatial fermionic density.
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Introduction. Rapid recent experimental progress in meta-
material [1–8], circuit [9–16], photonic [17–23], and ultracold
atomic [24–29] realizations of non-Hermitian models have
made unconventional features such as exceptional branch
points [30–38] and non-Hermitian topological windings
[39–46] experimental realities. However, to date, their ex-
plorations have mostly been confined to the single-body
paradigm, with associated phenomena such as gapped topo-
logical transitions [47,48], unconventional criticality [49],
negative entanglement entropy [50–52], and the breakdown
of bulk-boundary correspondences [53–65]. But even more
intriguing, many-body phenomena have come within the hori-
zon ever since the very recent experimental breakthroughs in
non-Hermitian ultracold atomic setups [24–29]. The interplay
of non-Hermiticity with many-body effects has now become
a possibility, as captured by emerging directions such as
non-Hermitian many-body localization [66–69], superfluids
[70–75], and Fermi liquids [76–84].

In this work, through exact diagonalization computations
[85,86], we discover a non-Hermitian many-body phe-
nomenon dubbed “polaron squeezing,” which is a directional
dipolelike accumulation effect arising from the triple inter-
play of impurity interactions, fermionic statistics, and non-
Hermitian flux. In conventional Hermitian settings, polarons
are many-body states dressed by the environment-impurity
interaction, as observed in ultracold-atom experiments involv-
ing both fermions [87–95] and bosons [96–98]. By providing
a unique angle for understanding strong interactions in solid-
state and cold-atom systems, they are valuable probes for
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detecting quantum phase transitions in interacting topological
settings [99–105].

Going beyond well-understood Hermitian polarons
[105–128], we found that, with non-Hermiticity and flux,
polarons can acquire interesting aggregate behavior, with
chiral delocalizing tendencies competing with impurity
localization, in a way distinct from noninteracting impurities
under the non-Hermitian skin effect (NHSE) [129]. Fermion
degeneracy pressure introduces another level of intrigue
by enforcing a special type of equilibrium among these
competing influences. The result is a unique real-space
“squeezed” fermionic density profile that, as we show, can be
feasibly imaged in a realistic ultracold atomic demonstration.

Arising from predominantly many-body mechanisms,
squeezed polaron states are distinct from other existing
well-known types of robust states in related physical set-
tings. Chiral topological states [130,131] [Fig. 1(a)], for
instance, are edge localized and asymmetrically propagating,
but they originate from nontrivial Chern topology, which is
already completely well-defined in the single-particle con-
text. Non-Hermitian boundary-localized skin states [53–59]
[Fig. 1(b)] are also essentially single-particle phenomena,
with their robustness stemming from the directed non-
Hermitian “pumping” in nonreciprocal lattices. In contrast,
squeezed polarons [Fig. 1(c)] are bona fide many-body states
localized beside an impurity interacting with the fermions,
and they can exist without nontrivial topology or physical
boundaries. Due to their many-body nature, squeezed po-
larons also exhibit spatial profiles that are very different from
those of topological or skin states.

Squeezed polarons from interactions and nonreciprocal
gain and loss. To understand the primary mechanism behind
polaron squeezing, we first examine a minimal toy model Ĥmin
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FIG. 1. Non-Hermitian polaron squeezing is distinct from other
mechanisms for localized states, such as (a) topological localization
and (b) the non-Hermitian skin effect, both single-body mechanisms
requiring open boundaries. By contrast, squeezed polarons (c) are
special asymmetric dipolelike accumulations across either side of an
interacting impurity. They are many-body dressed states in the bulk,
with charge density “squeezed” in the opposite direction from non-
Hermitian pumping. Illustrative numerics are from Ĥmin of Eq. (1).

where fermions interact with a single impurity with strength
g and hop asymmetrically with amplitudes e±α around a ring
with circumference L that gives periodic boundary conditions
(PBCs):

Ĥmin =gb̂†
x0

b̂x0 ĉ†
x0

ĉx0 +
∑

x

(eα ĉ†
x ĉx+1+e−α ĉ†

x+1ĉx ). (1)

Here ĉ and b̂ are respectively the second-quantized opera-
tors for the fermions and the impurity, which is fixed at an
arbitrary site x0. They experience a density-density interac-
tion of strength g. The fermions also experience asymmetric
hoppings e±α , which are the simplest possible terms that
represent the simultaneous breaking of Hermiticity and reci-
procity [132]. Importantly, due to the PBCs, these asymmetric
hoppings cannot be “gauged away” as in conventional liter-
ature on the boundary accumulation of non-Hermitian skin
states [53,55]. This independence from boundary accumula-
tion is the first hint of the fundamental distinction between
squeezed polarons and topological as well as skin states.

Squeezed polarons arise when the two parameters g and α

of Ĥmin are both nonzero and sufficiently large. To elucidate
their behavior, we turn on g and α under PBCs and observe
how that affects the energy spectrum and long-time steady-
state spatial density

ρ(x) ≡ lim
t→∞〈ψR(t )|ĉ†

x ĉx|ψR(t )〉. (2)

Here |ψR(t )〉 = e−iĤt |ψR(0)〉/‖e−iĤt |ψR(0)〉‖ is the normal-
ized N-fermion right eigenstate that has time evolved from
a specified initial state |ψR(0)〉. This evolution is taken over
a sufficiently long time t , such that the spatial density ap-
proaches a steady spatial configuration.

When α = g = 0 [Figs. 2(a1) and 2(a2)], we trivially have
Hermitian nearest-neighbor hoppings with a real gapless spec-
trum. Due to translation invariance from PBCs, ρ(x) = 0.5
everywhere. Turning on the impurity interaction such that
α = 0 and g = −100 [Figs. 2(b1) and 2(b2)], we realize a
minimal Hermitian polaron bound state, with ρ(x) peaking
at the impurity x0. It is the polaron bound by the gap which

FIG. 2. PBC spectrum E [panels (a1)–(d1)] and spatial density
ρ(x) [panels (a2)–(d2)] for Ĥmin [Eq. (1)] with different nonreciproc-
ities α and impurity interaction strengths g: (a1, a2) α = g = 0; (b1,
b2) α = 0, g = −100; (c1, c2) α = 1, g = 0; and (d1, d2) α = 1,
g = −100. Energy eigenstates |ψ〉 are colored by their squeezing
asymmetric parameter �, which captures polaron squeezing: � is
large only with both nonreciprocity and impurity interaction (d1).
While the spatial polaron density ρ(x) is symmetrically peaked
about the impurity at x0 = 6 when Hermitian (b2), it is asymmetri-
cally squeezed in the non-Hermitian case (d2). (e1, e2) Dynamics
of the spatial density for (e1) α = 1, g = 0 and for (e2) α = 1,
g = −100, with the dipolelike asymmetric profile as circled. All
computations are with N = 6 fermions in L = 12 sites. The initial
state |ψR(0)〉 is the ground state for α = 0 and is (|101010101010〉 +
|010101010101〉)/

√
2 for α = 1 [133].

opens up. When we turn on the non-Hermiticity and nonre-
ciprocity instead of the interaction, such that α = 1 and g = 0
[Figs. 2(c1) and 2(c2)], ρ(x) is oscillating around 0.5, and the
spectrum becomes complex with L starlike spikes [133]. Note
that it is not a superposition of the energies of N Hatano-
Nelson chains [134–136], since Pauli exclusion constrains
certain asymmetric hoppings.

Finally, turning on both the interaction and non-
Hermiticity such that α = 1 and g = −100 [Figs. 2(d1) and
2(d2)], we observe a peculiar state with an asymmetric pro-
file ρ(x) around the impurity at x0 + 1, which we name a
“squeezed polaron.” The density to the left of x0 + 1 = 7
(sites 5 and 6) appears to be “squeezed” towards the right
(sites 8 and 9) by the impurity interaction, even though,
naively, we would have expected the asymmetric e±α ĉxĉx±1

couplings to pump the states from right to left instead. No-
tably, the ρ(x) peak is not exponentially high like topological
or non-Hermitian skin states, but instead resembles a finite
local dipole within the Fermi sea. The spectrum is complex,
and a gap separates two almost identical starlike “bands,” the
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FIG. 3. (a1) Our effective interacting Hamiltonian for squeezed
polarons [Eq. (5)] is based on a two-photon dissipative Raman pro-
cess [29,74] with impurity interactions g from Feshbach resonance.
The Rabi frequency is �0 between hyperfine ground states |A〉 and
|B〉 and the excited state |e〉 for 40K atoms; a phase difference φ0

introduces nonreciprocity. � is the single-photon detuning of the
excited state |e〉, whose non-Hermitian decay rate γ can be laser con-
trolled. (a2) The impurity interaction g is highly tunable through the
magnetic field, with parameters given by Refs. [139–141]. (b1, b2) g
nonperturbatively modifies the PBC spectrum E at half-filling N = 6
and 2L = 12, such that all states |ψ〉 become squeezed with elevated
squeezing asymmetry � when |g| 	= 0. Here, t2 = (2π ) × 1000 Hz
[142] sets the energy scale.

one with negative Re(E ) containing states bounded by the
attractive (g < 0) impurity interaction.

Interestingly, even though the impurity interaction acts lo-
cally, its presence affects the entire spectrum [Fig. 2(d1)], not
just states localized around the impurity. This is most saliently
revealed through the squeezing asymmetry parameter � of a
given N-fermion state |ψ〉, which we define as

� ≡
L∑

x=1

(x − x0 − 1)e−(x−x0−1)2 |〈ψ |n̂x|ψ〉|2/N. (3)

Containing the derivative of a Gaussian kernel, it measures
the extent of asymmetric state localization around the the
impurity neighbor x0 + 1, unlike the more commonly used
inverse participation ratio parameter [137], which is agnos-
tic to the localization asymmetry and position. In particular,
it distinguishes our squeezed polarons from ordinary po-
larons in Hermitian settings, which are symmetric about the
impurity. As a reference, a profile with a perfectly local-
ized surplus particle on each side has � = 2/(Ne) ≈ 0.74/N ,
which is just slightly higher than the � of the eigenstates
with polaron squeezing behavior [Figs. 2(d1) and 3(b2)]. This
also implies that the squeezed polaron is distributed across
all bound states, and not particular ground states as with
ordinary polarons. Physically, this is because the impurity
interaction has become effectively nonlocal in the background
of nonreciprocal gain and loss pumping; but contrary to a

simple pumping of states, what we observe is an interaction-
facilitated “squeezing” in the opposite direction that results in
a dipolelike density profile. Herein lies an important physical
distinction between Hermitian polarons and non-Hermitian
squeezed polarons—while squeezed polaron asymmetry can
be observed in the long-time steady state evolved from most
generic initial states [138] [Fig. 2(e2)], Hermitian (symmetric)
polaron localization only exists for the ground state (Fig. S8
of [133]).

Ultracold atomic model for observing squeezed polarons.
Having discussed the essential though simplified mechanism
behind squeezed polarons, we now turn to a more realistic
setup without asymmetric physical couplings and that can be
feasibly implemented in an ultracold atomic setup.

The key ingredients for squeezed polarons are (i) impurity
interaction, (ii) nonreciprocity, and (iii) loss. To incorporate
them all, we consider a one-dimensional fermionic array of N
fermionic 40K atoms, with the majority being spin ↑ and the
minority being spin ↓ impurities.

To implement the impurity interaction (i), we apply an
external magnetic field B that causes the atoms to experience
a strong Feshbach resonance [140,141,143–149] that corre-
sponds to a density-density S-wave interaction,

Ĥint = gn̂(b)
x0,sn̂x0,s, (4)

between unlike (majority and impurity) spins, where n̂(b)
x0,s =

b̂†
x0,sb̂x0,s is the number density operator of the spin-↓ impu-

rity atom, which is situated at site s of the x0th unit cell,
and n̂x0,s = ĉ†

x0,sĉx0,s is the corresponding density operator of
spin-↑ majority atoms at the same position. The interaction
strength g ∼ g0(B − Bc)−1 becomes very strong and saturates
at a large value near a resonant magnetic field [150] B =
Bc, as numerically computed [141,143–146] and plotted in
Fig. 3(a2), and can be tuned to any desired strength between
−1000t2 and ≈1500t2 by appropriately adjusting the field
strength [133].

A nonreciprocal lattice with loss [(ii) and (iii)] can be
achieved by coupling a two-photon dissipative Raman pro-
cess to the discrete hyperfine ground states |A〉 and |B〉
[27,29,74,151–157] of each degenerate 40K atom and sub-
jecting the atoms to a strong periodic optical potential
[29,142,158], as schematically illustrated in Fig. 3(a1). Non-
reciprocity is introduced through the phase difference φ0

between the optical fields exciting each hyperfine state; for
maximum time-reversal breaking, we set φ0 = π/2. By adia-
batically eliminating [133] the excited state |e〉, one obtains an
effective spin-orbit coupling in the pseudospin basis of |A〉 and
|B〉. If the excited state additionally experiences laser-induced
decay of rate γ , the coupling becomes effectively complex
[133], leading to an effective tight-binding Hamiltonian (h̄ =
1),

Ĥ =
L∑

x

[(t1 + γ̃ )ĉ†
x,Aĉx,B + (t1 − γ̃ )ĉ†

x,Bĉx,A

+ t2(ĉ†
x+1,Aĉx,B + H.c.)] + gn̂(b)

x0,sn̂x0,s − iγ̃
L∑

x,s

n̂x,s, (5)
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where t1 and t2 depend on the optical potential [133] and

γ̃ = �2
0

γ + i�
(6)

is the effective decay rate, where �0 and � are the
single-photon Rabi frequency and detuning respectively. The
effective intracell hoppings t1 ± γ̃ have become asymmetric
and complex due to the combination of the reciprocity break-
ing and dissipation, even though the physical optical lattice
couplings are all symmetric [133].

Before presenting the numerical results on this model,
we briefly outline the experimental specifications for the
parameters used. First, a tiny fraction of spin-↓ “impu-
rity” atoms can be created by exciting a spin-polarized
(spin-↑) cloud of 40K atoms in the two lowest hyperfine
states [87,90] via a two-photon Landau-Zener sweep and
subsequently cooling it down. The resultant Fermi gas is
then loaded onto a one-dimensional optical superlattice po-
tential V (x) [142,158], which is formed by superimposing
two standing optical lasers with wavelengths λ2 = 767 nm
(short lattice) and λ1 = 2λ2 (long lattice) [142,158], such
that V (x) = V1 sin2(k1x + φ0/2) + V2 sin2(k2x + π/2), where
k1 = 2π/λ1 and k2 = 2k1, corresponding to a unit cell of size
d = 767 nm [142]. By adjusting the laser amplitudes V1 and
V2, the effective lattice couplings t1 and t2 can be tuned within
(2π ) × [60, 1000] Hz [133,142]; in this work, we set t2 =
(2π ) × 1000 Hz [142] as the reference energy unit, and we fix
t1/t2 = 1. For the two-photon dissipative Raman process, we
use �0 = (2π ) × 0.03 MHz [159] and � = (2π ) × 1 MHz
for the single-photon Rabi frequency and detuning, and we
fix the adjustable decay rate from the excited state |e〉 as
γ = (2π ) × 6 MHz [159–161], such that the effective decay
rate takes the value γ̃ ∼ (0.92 − 0.15i)t2 = (2π ) × (0.92 −
0.15i) kHz [133]. We fix the impurity at site s = A of the x0th
cell. In all, lasers are employed for various distinct purposes:
defining the optical lattice potential, sweeping to produce the
impurities, and Raman transitions and laser-induced dissipa-
tion as shown in Fig. 3(a1).

As evident in Figs. 3(b1) and 3(b2), the effective ultracold-
atomic Hamiltonian Ĥ of Eq. (5) captures the essential
polaron behavior already present in the minimal single-
component model Ĥmin of Eq. (1), with qualitatively similar
many-body spectra. At a relatively modest interaction strength
of g = −10t2, corresponding to B ≈ 203.5 G, the spectrum
separates into two distinct “bands,” both of which corre-
spond to squeezed eigenstates. Their squeezed profile ρ(x)
(Figs. S6(a1)–S6(d1) [133]) also retains the characteristic
asymmetrically squeezed shape, although it also exhibits step-
like kinks due to the symmetry breaking from odd (even) |A〉
(|B〉) sites [133].

Attractive vs repulsive polaron squeezing. Figure 4(a)
shows the squeezing expectation |�| [162] in the parameter
space of g/t2, the normalized impurity interaction strength,
and |γ̃ |/t2, the normalized effects of reciprocity and dis-
sipation. For Hermitian scenarios with |γ̃ | = 0 and g 	= 0,
we indeed have vanishing �, as expected from ordinary po-
larons with symmetric impurity localizations. In general, the
squeezing expectation |�| increases with larger |γ̃ | or |g|,
consistent with the intuition that polaron squeezing requires

FIG. 4. (a) Squeezing expectation |�| in the g-|γ̃ | parameter
space; note the vanishing squeezing at zero impurity interaction g
and the enhanced polaron squeezing at large effective decay rate |γ̃ |
and very attractive (g < 0) or repulsive (g > 0) interactions. Here, �

is computed from the long-time steady state evolved from the initial
state |ψR(0)〉 = (|101010101010〉 + |010101010101〉)/

√
2. (b) Spa-

tial density ρ(x) as a function of x and g under PBCs. Note the very
pronounced asymmetric profile across the impurity position x0 = 6,
particularly in the repulsive (g > 0) case where ρ(x0) is strongly
localized. Data are plotted at γ̃ /t2 = 0.92 − 0.15i, as indicated by
the dashed red line in panel (a). (c1, c2) Simulated spatial den-
sity measurements. The density around the impurity (x0 + 1 = 7)
exhibits almost identical asymmetric profiles of squeezed polaron
states (red dashed box) regardless of OBCs or PBCs, as long as the
impurity interaction g is nonzero, with a slight shift from sublattice
effects. (d1, d2) Evolution of spatial densities from the initial state
|ψR(0)〉 under PBCs, with an asymmetric steady-state squeezed po-
laron profile for (d2) g 	= 0. We used γ̃ /t2 = 0.92 − 0.15i, t1/t2 = 1,
and N = 6 fermions in 2L = 12 sites for all subfigures, and we used
g = 0 for panels (c1) and (d1) and g/t2 = −20 for panels (c2) and
(d2).

the combined interplay of interactions, nonreciprocity and
non-Hermiticity.

However, Fig. 4(a) also shows a marked asymmetry
between attractive (g < 0) and repulsive (g > 0) squeezed
polarons. A stronger interaction is required to produce an
attractive squeezed polaron, relative to a comparably squeezed
repulsive polaron. The reason behind this is clear from the
plot of spatial density ρ(x) vs g/t2 [see Fig. 4(b)], evaluated
at the value of γ̃2 = 0.92 − 0.15i used in Fig. 3. For attractive
polarons with g < 0, ρ(x) is strongly localized at x0 + 1 = 7
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next to the impurity, leaving a “hole” at the impurity. However,
for repulsive polarons with g > 0, ρ(x) is strongly localized
at the impurity position x0 = 6. That said, for both attractive
and repulsive cases, the asymmetry in the ρ(x) profile is still
strongly contributed by the γ̃ asymmetry. In all, repulsive
polarons generally possess a stronger combined “dipole” mo-
ment and hence larger �.

Independence from boundary conditions. While we have
emphasized that squeezed polarons, unlike skin or topological
states, are interacting phenomena and not boundary phenom-
ena, actual experimental lattices are usually bounded [163].
Fortunately, that is not a practical obstacle, because squeezed
polarons are largely unaffected by boundary conditions, be
they OBCs or PBCs. Shown in Fig. 4(c), there are simu-
lated spatial density of states for ρ(x) measurements with
N = 6 fermions on 2L = 12 sites and the impurity at x0 =
6. Without interactions, i.e., g = 0 (left), we observe skin
boundary accumulation under OBCs but not PBCs. How-
ever, squeezed polaron physics dominates in the bulk when
the impurity interaction is turned on (right). For both PBCs
and OBCs, approximately equal Fermi polaron squeezing
(red highlighted) counteracts the background skin accumu-
lation, if any. Despite finite-size effects, polaron squeezing
is evidently a robust non-Hermitian interaction effect dis-
tinguishable from competing single-body effects away from
the boundaries.

Discussion. With very recent breakthroughs in non-
Hermitian cold-atom experiments [24–29], the physical real-
ization of interacting many-body effects is closer to becoming
a practical reality even in non-Hermitian settings. We are
hopeful that, through our proposal, squeezed polarons can be
measured in the near future, thereby realizing a many-body
form of emergent nonlocality distinct from non-Hermitian
skin sensitivity.

While a squeezed polaron manifests as a local dipolelike
density asymmetry, not colossal exponential state localiza-
tion, it nonperturbatively splits the entire spectrum into two
halves, a fascinating demonstration of how particle statis-
tics can help encode nonlocal effects despite seemingly local
density effects. While we have largely demonstrated polaron
squeezing with PBCs, it occurs independently of boundaries
and remains robust in realistic experimental setups subject to
OBCs.
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M. Greiter, T. Kiessling, D. Wolf, A. Vollhardt, A. Kabaši et
al., Reciprocal skin effect and its realization in a topolectrical
circuit, Phys. Rev. Res. 2, 023265 (2020).

[13] S. Liu, R. Shao, S. Ma, L. Zhang, O. You, H. Wu, Y. J. Xiang,
T. J. Cui, and S. Zhang, Non-Hermitian skin effect in a non-
Hermitian electrical circuit, Research 2021, 5608038 (2021).

[14] D. Zou, T. Chen, W. He, J. Bao, C. H. Lee, H. Sun, and X.
Zhang, Observation of hybrid higher-order skin-topological
effect in non-Hermitian topolectrical circuits, Nat. Commun.
12, 7201 (2021).

[15] A. Stegmaier, S. Imhof, T. Helbig, T. Hofmann, C. H. Lee,
M. Kremer, A. Fritzsche, T. Feichtner, S. Klembt, S. Höfling
et al., Topological Defect Engineering and PT symmetry
in Non-Hermitian Electrical Circuits, Phys. Rev. Lett. 126,
215302 (2021).

[16] C. Shang, S. Liu, R. Shao, P. Han, X. Zang, X. Zhang,
K. N. Salama, W. Gao, C. H. Lee, R. Thomale, A. Manchon,
S. Zhang, T. J. Cui, and U. Schwingenschlögl, Experimen-
tal identification of the second-order non-Hermitian skin

L010202-5

https://doi.org/10.1126/science.1206038
https://doi.org/10.1038/nphoton.2016.161
https://doi.org/10.1515/nanoph-2019-0489
https://doi.org/10.1038/nature21044
https://doi.org/10.1103/PhysRevLett.121.124501
https://doi.org/10.1073/pnas.2010580117
https://doi.org/10.1038/s41467-019-12599-3
https://doi.org/10.1038/s41467-021-22223-y
https://doi.org/10.1038/s41567-020-0922-9
https://doi.org/10.1103/PhysRevLett.122.247702
https://doi.org/10.1103/PhysRevApplied.13.014047
https://doi.org/10.1103/PhysRevResearch.2.023265
https://doi.org/10.34133/2021/5608038
https://doi.org/10.1038/s41467-021-26414-5
https://doi.org/10.1103/PhysRevLett.126.215302


FANG QIN, RUIZHE SHEN, AND CHING HUA LEE PHYSICAL REVIEW A 107, L010202 (2023)

effect with physics-graph-informed machine learning, Adv.
Sci. 9, 2202922 (2022).

[17] L. Xiao, T. Deng, K. Wang, G. Zhu, Z. Wang, W. Yi, and P.
Xue, Non-Hermitian bulk–boundary correspondence in quan-
tum dynamics, Nat. Phys. 16, 761 (2020).

[18] L. Feng, R. El-Ganainy, and L. Ge, Non-Hermitian photon-
ics based on parity–time symmetry, Nat. Photonics 11, 752
(2017).

[19] L. D. Tzuang, K. Fang, P. Nussenzveig, S. Fan, and M. Lipson,
Non-reciprocal phase shift induced by an effective magnetic
flux for light, Nat. Photonics 8, 701 (2014).

[20] H. Zhou, C. Peng, Y. Yoon, C. W. Hsu, K. A. Nelson, L. Fu,
J. D. Joannopoulos, M. Soljačić, and B. Zhen, Observation
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