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Dissipative time crystals originating from parity-time symmetry
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This study aims to provide evidence regarding the emergence of a class of dissipative time crystals when
PT symmetry of the systems is restored in collective spin systems with Lindblad dynamics. First, we show
that a standard model of boundary time crystals (BTCs) satisfies the Liouvillian PT symmetry, and prove that
BTC exists only when the stationary state is PT symmetric in the large-spin limit. Also, a similar statement
is confirmed numerically for another BTC model. In addition, the mechanism of the appearance of BTCs is
discussed through the development of a perturbation theory for a class of the one-spin models under weak
dissipations. Consequently, we show that BTCs appear in the first-order correction when the total gain and loss
are balanced. These results strongly suggest that BTCs are time crystals originating from PT symmetry.
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Introduction. Crystals are ubiquitous many-body systems
wherein continuous space-translation symmetry is sponta-
neously broken. Similarly, dynamic many-body states that
spontaneously break continuous time-translation symmetry,
namely (continuous) time crystals, were proposed by Wilczek
in 2012 [1]. However, it has been proven that time crys-
tals do not exist in ground and equilibrium states, at least
for long-range interacting systems [2,3]. In nonequilibrium
systems such as Floquet systems [4–9] and dissipative sys-
tems [10–24], (discrete or dissipative) time crystals have been
observed theoretically and experimentally.

Dissipative time crystals are nontrivial states characterized
by persistent periodic oscillations at late times induced by
coupling with the external environment [20]. In particular,
a kind of dissipative time crystal, called a boundary time
crystal (BTC), has been often studied recently [12–18]. BTCs
were first introduced using a collective spin model with Lind-
blad dynamics [12], which describes a collection of spin 1/2
with all-to-all couplings interacting collectively with external
Markovian baths. This model could be derived by tracing out
the bulk (environment) degrees of freedom while leaving the
boundary (system) degrees of freedom. Further, it has been
confirmed that persistent oscillatory phenomena at late times
emerge only in the thermodynamic limit. Even though such
phenomena were already noted 40 years earlier as cooperative
resonance fluorescence [25], it should be emphasized that
there are various novel aspects in recent studies of BTCs.
In particular, the importance of Liouvillian eigenvalues has
been realized [12,13,18] because the dynamics can be fully
understood in terms of their eigenvalues and eigenmodes. In
addition, recent developments of the spectral theory of dis-
sipative phase transitions [26,27] and exact solutions of the
Liouvillian spectrum [28–34] have also increased the interest
in investigating Liouvillian eigenvalues.
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The dynamical properties of BTCs are often investigated
via numerical calculations of Liouvillian eigenvalues [12,13],
the mean-field approximation method [12–14,25], and the
quantum trajectory method [35]. In particular, BTCs must
satisfy two conditions for the Liouvillian spectrum, which
characterize nonstationary periodic oscillations at late times:
(i) there exist pure imaginary eigenvalues iλ j and (ii) the quo-
tient of each pure imaginary eigenvalue is a rational number
λ j/λk ∈ Q for all j, k. Moreover, BTCs are characterized by
static properties such as the existence of a highly mixed and
low-entangled eigenmode with a zero eigenvalue [13,17,36–
38]. Also, the necessity of Hamiltonians’ Z2 symmetry has
been argued recently [13]. However, the physical origin of
the emergence of BTCs has not yet been elucidated, and
most studies on Liouvillian eigenvalues for BTCs have been
numerical.

Phase transitions accompanied by parity-time (PT ) sym-
metry breaking, namely PT phase transitions [39,40], are
also phenomena wherein persistent oscillations emerge at
late times in nonequilibrium systems. These are well-known
phenomena in the context of non-Hermitian Hamiltonians
(NHHs) [41] with exactly balanced gain and loss, and have
been widely investigated in a variety of physical experimental
systems, such as mechanics [42], photonics [43], plasmon-
ics [44], electronics [45], and open quantum systems without
quantum jumps [46]. Mathematically, the Hamiltonian H is
considered to be PT symmetric if it holds that [H, PT ] = 0,
where P is a parity operator and T is a time reversal op-
erator [39,40]. In addition, PT phase transitions in systems
with Lindblad dynamics, hereafter referred to as Liouvillian
PT phase transitions, have been recently discussed, and their
understanding has been progressing [47–53].

This study attempts to demonstrate the emergence of a
class of dissipative time crystals when PT symmetry is re-
alized. We focus on a specific class of systems, collective spin
systems with Lindblad dynamics, and provide results about
the Liouvillian eigenvalues and stationary state for some spe-
cific examples. First, we show that the PT symmetric phase
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of an open two-spin model with Liouvillian PT symme-
try [47–49] is a BTC. Here, an n-spin model is a system with
n collective spin operators in the interaction term. Second,
we show that an open collective spin model with interaction
owing to a transverse magnetic field and excitation decay
(hereafter referred to as the one-spin BTC model) satisfies the
proposed definition of the LiouvillianPT symmetry [48,49] if
the parity transformation is appropriately chosen. In addition,
we prove that the PT symmetry breaking of the stationary
state occurs at the BTC phase transition point in the large-spin
limit. Next, we confirm that the generalized one-spin BTC
model studied in Ref. [13] also has Liouvillian PT symmetry.
Further, we numerically show that the stationary state exhibits
PT symmetry in the BTC phase. Finally, we perform a per-
turbative analysis of a class of one-spin models, including the
one-spin BTC model under weak dissipation. Consequently,
we show that BTCs appear in the first-order correction owing
to the balanced total gain and loss. These results strongly
suggest that BTCs in collective spin systems are time crystals
originating from PT symmetry.

Liouvillian spectrum and Liouvillian PT symmetry. In
open quantum systems where the evolution of states is com-
pletely positive and trace-preserving (CPTP) Markovian, the
time evolution of the density matrix ρ(t ) is described by
the Lindblad master equation (GKSL equation) [54–57] as
follows:

dρ

dt
= −i[H, ρ(t )] +

∑
i

D[Li]ρ, (1)

where H is a Hamiltonian, Li is the Lindblad operator, and
the dissipation superoperators D[Li] are defined as D[Li]ρ =
2LiρL†

i − L†
i Liρ − ρL†

i Li. Here, index i labels the Lindblad
operators.

The Lindblad master equation (1) is linear in ρ, thus it can
be rewritten with a superoperator, which is a linear operator
acting on a vector space of linear operators, as follows:

dρ(t )

dt
= L̂ρ(t ). (2)

Here, L̂ is referred to as the Liouvillian superoperator.
The eigenvalues λi and eigenmodes ρi of the Liouvillian

can be obtained by solving the following equation:

L̂ρi = λiρi. (3)

It is generally known that Re[λi] � 0,∀i; if L̂ρi = λiρi, then
L̂ρ

†
i = λ∗

i ρ
†
i . [56,57] Here, we assume the existence of a

unique steady state and set the eigenvalues as 0 = |Re[λ0]| <

|Re[λ1]| � |Re[λ2]| � · · · . The steady state is then written as
ρss = ρ0/Tr[ρ0]. In addition, the absolute value of the real
part of the second maximal eigenvalue is referred to as the
Liouvillian gap [26,27] and determines the slowest relaxation
rate. Closing the Liouvillian gap is necessary for dissipative
phase transitions in steady state [26,27].

It should be noted that imaginary eigenvalues emerge only
in the thermodynamic limit for Liouvillian PT phases and
BTCs. Therefore, the thermodynamic limit and the long-time
limit are not commutative, that is, limS→∞ limt→∞ ρ(t ) �=
limt→∞ limS→∞ ρ(t ) [58]. In the former case, the steady state
is static without oscillation. We refer to the state limt→∞ ρ(t )

FIG. 1. Illustration of dissipative spin-S models: (a) one-spin
PT model, (b) one-spin BTC model, and (c) one-spin PT model.
These models satisfy Liouvillian PT symmetry (1) when the parity
operator is (a) the exchange of two spins, (b) the reflection of the
basis of Sz, (c) the identity operator or the reflection of the basis of
Sz.

as the “stationary state,” whereas, in the latter case, the state
at late times includes oscillating nondecay modes.

Many studies on Liouvillian PT symmetry have been con-
ducted recently [47–53]; however, the definition of Liouvillian
PT symmetry has not been uniquely determined yet. In our
arguments, we adopted (a slightly modified version of) the
definition proposed in Ref. [49] because similar properties
to those of NHH PT phase transitions have been confirmed
in a specific two-spin model that satisfies this definition, as
mentioned below. A Liouvillian associated with the Lindblad
equation (1) is considered to be PT symmetric if the follow-
ing relation holds:

L̂[PT (H );PT ′(Lμ), μ = 1, 2, . . . ]

= L̂[H ; Lμ, μ = 1, 2, . . . ], (4)

where PT (H ) = PT H (PT )−1 = PH̄P−1, PT ′(Lμ) =
PL†

μP−1. Here, P and T are parity and time reversal operators,
and H̄ means the complex conjugation of H . Further, PT (H )
denotes the conventional PT transformation of Hamiltonian.
However, in the PT ′ transformation, the time reversal
transformation of dissipations represents an exchange of
creation and annihilation operators.

Two-spin Liouvillian PT symmetric model is BTC. To
investigate the usefulness of the definition (4), an open two-
spin-S model with exactly balanced gain and loss [Fig. 1(a)
was actively investigated [47–49]. Here, S denotes the total
spin. Denoting the subsystems as A and B, the Lindblad equa-
tion is expressed as

∂

∂t
ρ = −ig[H, ρ] + �

2S
D[S+,A]ρ + �

2S
D[S−,B]ρ, (5)

where H = (S+,AS−,B + H.c.)/2S, S± = Sx ± iSy, and g and
� are the strengths of the interaction and dissipation, respec-
tively. Note that it decays to a unique steady state for a finite
S as spin ladder operators S± exist as one of the dissipation
operators [59].

This model satisfies the definition (4) when the parity
transformation is the exchange of two spins, and a dissipative
phase transition occurs at � = g when S = ∞. Moreover, the
symmetry parameter of a stationary state [60], which provides
a measure of the parity symmetry of the density operator,
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changes from 0 to a finite value at the transition point when
S = ∞ (see Eq. (A.1) in the Supplemental Material [61]).
This suggests the occurrence of the PT symmetry breaking
of the stationary state [49].

In addition, the eigenvalue structure and dynamics were
obtained when S = ∞ [47]. In particular, in the PT phase,
when S = ∞, the eigenvalues are expressed as

λ = in
√

g2 − �2 + r, (6)

where n ∈ N and r ∈ R−
0 , and information on degeneracy is

omitted. Here, R−
0 is a set comprising real negative numbers

including zero. Equation (6) shows that commensurable pure
imaginary eigenvalues exist. Therefore, some physical quanti-
ties such as magnetization oscillate periodically at late times.
However, in the PT broken phase, all eigenvalues are real
(see Eq. (A.3) in the Supplemental Material [61]); thus, the
state decays toward a steady state without oscillation, which
is the same as the stationary state. This behavior corresponds
to one of the NHH PT phase transitions.

Moreover, it can be easily confirmed that the PT phase is
a boundary time crystal because the eigenvalue structure sat-
isfies the two conditions of nonstationary periodic dynamics
only in the thermodynamic limit. (Detailed explanation of this
model is provided in the Supplemental Material [61].) In ad-
dition, if a model satisfies the definition (4), it has been shown
that there exists a stationary state that approaches the identity
eigenmode ρ ∝ 1l in the limit of zero dissipation rate [48].

Boundary time crystals. Among various BTC models, we
first focused on the one-spin BTC model investigated in
Refs. [12,25,36–38]. The Lindblad equation is expressed as

d

dt
ρ = −2ig[Sx, ρ] + κ

S
D[S−]ρ, (7)

where g and κ are the strengths of interaction and dissipation,
respectively [Fig. 1(b)]. In this model, the stationary state is
solved exactly for finite S [36,37] as

ρss = 1

D

2S∑
n,n′=0

(
i
κ

g

S−
S

)n′(
−i

κ

g

S+
S

)n

, (8)

where D is the normalization constant.
In this model, it was found that various physical quantities,

such as magnetization and purity, clearly change; namely,
the dissipative phase transition occurs at κ/g = 1 when S →
∞ [36–38].

Moreover, the eigenvalue structure and dynamics were
numerically investigated above and below the transition
point [12]. For the BTC phase (κ/g < 1), the real parts of
many eigenvalues approach zero for an enormous S, and the
imaginary parts are plotted at regular intervals for any S.
This suggests that pure imaginary eigenvalues exist when
S → ∞ and that these eigenvalues are commensurable. In
other words, the imaginary part of the eigenvalues can be
written as Im[λ] = −icq when S → ∞, where q ∈ N is the
sector and c is a real number dependent on κ/g. Here, the
imaginary part is invariant within the same sector. However,
for the BTC broken phase (κ/g > 1), there are no eigenvalues
with a nonzero imaginary part that approaches the imaginary
axis as S increases.

BTCs are PT symmetric phases. Here, we first show that
the one-spin BTC model (7) has Liouvillian PT symmetry
(4). We choose the parity operator to reflect the basis of Sz,
which acts on each spin operator as follows:

PSzP
−1 = −Sz, PS±P−1 = S∓. (9)

We can verify that PT (Sx ) = PSxP−1 = Sx and PT ′(S−) =
P(S−)†P−1 = S− hold, that is, the model has Liouvillian PT
symmetry (4).

Then, we analytically show that PT symmetry breaking
of the stationary state (8) occurs at the BTC phase transition
point. Using (9), the conventional PT transformation of the
stationary state can be written as

PT ρssPT = 1

D

2S∑
n,n′=0

(
−i

κ

g

S+
S

)n(
i
κ

g

S−
S

)n′

. (10)

In the limit S → ∞, we show that (−i κ
g

S+
S )n and (i κ

g
S−
S )n′

are
commutative only when κ/g < 1.

This implies that the stationary state (8) of the one-spin
BTC model is PT symmetric in the BTC phase but not in the
BTC broken phase. The details of the proof are provided in
Sec. I.A of the Supplemental Material [61].

Next, we consider the open one-spin model studied in
Ref. [13] whose Lindblad equation is given by

d

dt
ρ = −i[H, ρ] + κ−

S
D[S−]ρ + κ+

S
D[S+]ρ, (11)

where H = S(gzs
pz
z + gxspx

x ), and pz, px ∈ N. and sz, sx are
normalized spin operators Sz/S, Sx/S. This model has not
been solved analytically; however, it has been numerically
observed that BTCs appear when pz is even [13]. By choosing
the parity operator as a reflection of the basis of Sz as before,
the model can have LiouvillianPT symmetry (4) if pz is even.

To investigate the PT symmetry breaking of a stationary
state, we introduced the PT symmetry parameter QPT ,

QPT (ρ) := 1

Z

∑
i, j

|(ρ − PT ρPT )i j |, (12)

where Z := ∑
i, j |(ρ)i, j | + |(PT ρPT )i j | is a normalization

constant, and thus 0 � QPT � 1. Further, (ρ)i, j is the (i, j)
element of matrix ρ. If QPT is zero, ρ has PT symmetry.

Figures 2(a) and 2(b) show the purity and PT symmetry
parameter QPT of the stationary state for pz = 2, px = 1. In
the BTC phase (i.e., the phase with almost zero purity), QPT is
close to 0. Further, Fig. 2(c) shows that QPT decreases in the
BTC phase with increase in S. Therefore, these results suggest
that the PT symmetry of the stationary state is unbroken in
the thermodynamic limit, whereas it is broken in the BTC
broken phase. In addition, all elements of |ρss − PT ρssPT | are
close to 0 in the BTC phase [Fig. 2(c)], whereas certain ele-
ments have finite values in the broken BTC phase [Fig. 2(d)].
Here, |ρ| denotes the matrix that accepts the absolute value
of each matrix element ρ. These results indicate that the
stationary state exhibitsPT symmetry only in the BTC phase.
In Fig. C.2 in the Supplemental Material [61], we numerically
investigated the time evolution and quantum trajectory of the
normalized magnetization and normalized magnetization of
the stationary state.
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FIG. 2. Numerical analysis of the model (11) for pz = 2, px =
1, κ+/gz = 0, S = 23. These are (a) purity, (b) PT symmetry pa-
rameter QPT , (c) S dependence of QPT for κ−/gz = 0.5, gx/gz = 3
(orange circle), (d) |ρss − PT ρssPT | for κ−/gz = 0.5, gx/gz = 3 (or-
ange circle), (e) |ρss − PT ρssPT | for κ−/gz = 2, gx/gz = 3 (black
triangle), where |ρ| implies the matrix taking the absolute value for
each element of the matrix ρ. Here, elements are computed on the
basis of the z magnetization. These results indicate that the stationary
state has PT symmetry only in the BTC phase. Here, we have used
QUTIP [62] to obtain the stationary state numerically.

We also consider the one-spin model studied in
Refs. [31,63,64] whose Liouvillian is expressed as

L̂ρ = −ig[Sx, ρ] + κ (1 + p)

S
D[S+

x ]ρ + κ (1 − p)

S
D[S−

x ]ρ,

(13)

where −1 � p � 1 and S±
x := Sy ± iSz. The model is BTC

only when p = 0. When p = 0 the model is solvable for any
S [31], the eigenvalues λl,q are expressed as

λl,q = igq − 2κ

S
[|q| + l (1 + l + 2|q|)], (14)

where q = {−S,−S + 1, . . . , S} is the sector and l =
{0, 1, . . . , 2S − |q|}, which satisfies the two conditions for the
emergence of nonstationary oscillating dynamics only in the
thermodynamic limit.

We can also discuss the relationship between the BTCs
and PT symmetry for this model. Upon choosing the parity
operator as the identity operator or reflection of the basis of
Sz, this model (13) satisfies Liouvillian PT symmetry only
when p = 0. This implies that this model is BTC only when
it has Liouvillian PT symmetry. In addition, the stationary
state ρss ∝ 1l has PT symmetry for p = 0. In the following,
we refer to this model with p = 0 as the one-spin PT model
[Fig. 1(c)].

Understanding the mechanism of appearance of BTCs. Let
us focus the eigenvalues with the smallest real part for the one-
spin PT model, namely λl=0,q in Eq. (14). The corresponding
eigenmodes ρ0,q are proportional to (S+

x )|q| for q < 0 and
(S−

x )q for q > 0 [63]. These exact specific eigenmodes facili-
tate an understanding of the BTC’s mechanism. For example,
for q = 1 we calculated −ig[Sx, S−

x ] = igS−
x in the coherent

part, and
κ

S
(D[S+

x ] +D[S−
x ])S−

x = κ

S
([S+

x , S−
x ]S−

x + S−
x [S−

x , S+
x ])

= 2κ

S
(SxS−

x − S−
x Sx ) = 2κ

S
[Sx, S−

x ]

= −2κ

S
S−

x (15)

in dissipative parts. [The calculation for any q is provided in
the Supplemental Material [61], Eqs. (A.6) and (A.7).] More-
over, it has a 1/S dependence in dissipative parts owing to
the cancellation of several terms and the use of commutation
relations. Thus, purely imaginary eigenvalues emerge when
p = 0 and S → ∞, implying that they are BTC. However,
when p �= 0, such cancellations of terms are generally un-
expected. Indeed, the Liouvillian gap is not closed, even for
S → ∞ [31] and no time crystals emerge.

Next, we investigated a class of the one-spin models using
perturbation theory [65,66] under weak dissipations, whose
Liouvillian is expressed as

L̂ρ = −ig[Sx, ρ] + κ

S

∑
μ

D[Lμ]ρ, (16)

Lμ = αμS+
x + βμS−

x + γμSx, (17)

where αμ, βμ, γμ ∈ C. This class includes the one-spin BTC
model and the model (13). We can show that BTCs appear in
first-order perturbation under a weak dissipation rate κ if and
only if it holds that ∑

μ

|αμ|2 =
∑

μ

|βμ|2. (18)

Here, this condition can be regarded as exactly balanced total
gain and loss on the x basis. Note that BTCs basically appear
under weak dissipations. Therefore, if it is not BTC in the
first-order correction under weak dissipations, it may not be
BTC for all dissipation regimes.

First, we apply the degenerated perturbation theory to the
model (13). For the prescription of the n-degenerate case,
the first-order eigenvalue correction λ̃

(1)
n,i can be obtained by

solving the following equation:

L(n)ψn,i = λ̃
(1)
n,i ψn,i (i = 1, 2, . . . , n), (19)

where L(n) and ψn,i are the nsquare matrix and n coefficient
vector, respectively. (see Eq. (D.10) in the Supplemental Ma-
terial [61]).

Choosing the nonperturbative Liouvillian L̂0 as a coherent
part of the model (13), namely L̂0· = −ig[Sx, ·], the non-
perturbative eigenvalues are (2S + 1 − |q|) degenerated for
each sector q. Then, L(2S+1−|q|) is a tridiagonal matrix with
real-number elements. In particular, for p = 0, it becomes a
symmetric matrix because of the balanced gain and loss (see
Eq. (D.20) in the Supplemental Material [61]). In addition, all
high-order corrections are zero because sector q is invariant
for the model (13). Thus, perturbative analysis up to the first-
order correction yields exact solutions.

Considering these aspects, we also performed perturbation
theory on a class of the one-spin models (16). The nonpertur-
bative Liouvillian L̂0 was again chosen to be a coherent part,
and, consequently, the same tridiagonal real matrix L(2S+1−|q|)
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FIG. 3. Numerical analysis of the time evolution of the nor-
malized magnetization and Liouvillian spectrum in the model with
H = Sx , L = Sz. (a) Time evolution of the normalized magneti-
zation 〈Sz〉 /S for S = 20 (dashed light blue), 40 (dashed-dotted
orange), and 80 (solid green), and the initial state is set as ρ(0) =
|S/2〉z 〈S/2|z. (b) Liouvillian spectrum, (c) 15-minimum absolute
values of real parts of the eigenvalues, (d) imaginary parts of the
eigenvalues for κ/g = 1 and S = 20. Here, we have used QUTIP [62]
to obtain the Lindblad dynamics.

was obtained except for a constant multiplication and a sum
of scalar multiplications. Therefore, its eigenvalues have the
same properties, and the BTCs emerge for the symmetric
case, but not for the nonsymmetric case within the first-order
perturbation scheme. In the Supplemental Material [61], we
provide details of our proof and numerically indicate that cer-
tain properties of the BTC phase transition can be caught up
to the second-order corrections for the one-spin BTC model.

Choosing the parity operator as a reflection of the basis
of Sz, the Liouvillian PT symmetry (4) guarantees the con-
dition (18). Therefore, model (16) is BTC when it exhibits
Liouvillian PT symmetry within the first-order perturbation

scheme. Note that conservation is not always true, that is,
the condition (18) does not necessarily imply Liouvillian PT
symmetry. This suggests that the definition of Liouvillian PT
symmetry leaves room for further improvements.

Finally, we provide an example. When L1 = −i(S+
x −

S−
x )/2 = Sz in the model (16) that satisfies the condi-

tion (18), the normalized magnetization 〈Sz〉 /S oscillates and
the relaxation time increases with increase in S [Fig. 3(a)].
Furthermore, Figs. 3(c) and 3(d) show that the real parts of
the eigenvalues decrease to zero with an increase in S and that
the imaginary parts are invariant even as S increases. These
results imply that BTC emerges in the thermodynamic limit.

Summary and discussion. In this study, we provided ev-
idence that dissipative time crystals originating from PT
symmetry exist in collective spin systems. In particular, we
showed that BTCs are only such examples. In addition, we
performed perturbation analysis for a class of one-spin models
and showed that BTCs appear in the first-order correction
because of the exactly balanced total gain and loss.

Finally, we discuss the robustness of our results. For a
class of the one-spin models (16), the BTCs were stable for
perturbations of the dissipations satisfying Eq. (18). It was
also stable in case of perturbations of Hamiltonian terms that
do not break the Liouvillian PT symmetry (4), such as S2n

z
or Sn

x (n ∈ N) [12,13]. However, the rigidity of the periodic
time, which is a property of discrete time crystals, did not
appear because the periodic time is generally the variant for
the dissipation and interaction strength.

As a natural extension, investigation of the relationship be-
tween the Liouvillian PT symmetry and other time crystals,
such as discrete time crystals, dissipative time crystals origi-
nating from dynamical symmetry, and boundary time crystals
in bosonic systems are expected to yield interesting results.
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