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Cavity magnomechanics (CMM) has rapidly become a new research field of cavity quantum electrodynamics
for studying quantum information processing and sensing. Here, we theoretically study the magnomechanically
induced transparency effect in a cavity magnomechanical system, focusing on the role of magnon squeezing in
enhancing and controlling the group delay of the transmitted light. As a result, we find that the magnon number
can be strongly affected by magnon squeezing, accompanied by a steerable transmission rate and controllable
fast-to-slow light switching. In particular, in the photon-magnon strong-coupling scenario, the group delay of
the probe field can be enhanced by about three times by using magnon squeezing compared to the case without
magnon squeezing. Moreover, due to the presence of magnon squeezing, the efficiency of the second-order
sideband in the photon-magnon weak-coupling scenario can also be enhanced compared to the case without
magnon squeezing. These results provide tools to engineer CMM devices with magnon squeezing for, e.g., light
propagation and storage, and precision measurements of weak signals.
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I. INTRODUCTION

Hybrid quantum systems hold the potential to build quan-
tum networks with complementary properties in existing
quantum technologies, especially in quantum computing,
quantum communication, and quantum sensing [1]. A new
class of hybrid systems is hybrid magnonic devices based on
collective spin excitations of an yttrium iron garnet (YIG)
sphere with high spin density, strong spin-spin exchange
interactions, and a relatively low damping rate, that build
a platform to bridge an optical field with the magnetic
systems [2–8]. In such devices, by coupling the magnons
(the collective spin excitations in YIG) with microwave or
optical photons [9–19], promising applications are actively
explored, such as long-time memory [20,21], spin current
control [22,23], coherent optical-to-microwave conversion
[24–26], magnon and photon manipulating using exceptional
points [27–37], quantum entanglement of magnons [38,39],
magnon-induced nonreciprocity [40,41], precision measure-
ments [42–45], etc.

In parallel, the magnons can also couple to deformation
vibration phonons through magnetostrictive force [46–49],
known as cavity magnomechanics (CMM), to explore many
intriguing applications, i.e., magnon-phonon entanglement
and magnon-squeezing states [50–58], ultraslow light engi-
neering [59–61], magnon laser or chaos [62–64], a magne-
tometer or thermometer [65,66], ground-state cooling of the
mechanical vibration mode [67–70], photon-phonon inter-
face [71,72], and quantum state storage and retrieval [73], to
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mention a few examples. At the same time, we note that,
by utilizing the squeezing of the magnon mode, the ground-
state cooling [74] and entanglement [75] can be enhanced
in the CMM system. Squeezed states [76], an important
quantum state, play an important role in quantum precision
measurement and quantum information processing. For ex-
ample, squeezed light can be used to improve the sensitivity
of interferometers for gravitational-wave detection [77,78],
produce an entangled source for quantum teleportation [79],
and explore the quantum and classical borderline [80], among
many others. Inspired by these superior characteristics, var-
ious approaches have been proposed to generate squeezed
states of the photons and magnons based on the CMM system,
such as using the anisotropy of the ferromagnet [3], applying
the two-tone microwave fields to drive the magnon mode [58],
promising a wide range of applications on improving the sen-
sitivity of position measurement [81] and magnetic resonance
spectroscopy [82].

In this paper, we consider a CMM system with magnon
squeezing to study magnomechanically induced transparency
(MMIT) effects, including the signal transmission, group
delay, and its higher-order sidebands. We show that the
magnon-squeezing parameter and the phase lead to the en-
hancement and periodic variation of the magnon number,
endowing the MMIT with unconventional features. That is,
the transmission rate and the width of the transparency
window can be adjusted by tuning the squeezing parame-
ter and phase. Particularly, we find that the group delay of
the transmitted light has distinct characteristics for different
photon-magnon coupling cases, i.e., (i) in the photon-magnon
strong-coupling (PMSC) scenario, controllable slow-to-fast
light switching and about a threefold enhancement of the
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FIG. 1. (a) Schematic illustration of the CMM system composed
of a microwave cavity with a highly polished YIG sphere. The
YIG sphere, supporting a magnon mode m and a phonon mode b
[46,47], is placed in a cavity such that it is simultaneously near the
maximum magnetic field of the cavity mode a and in a uniform bias
magnetic field along the z axis, which is responsible for magnon-
photon coupling. Magnon-phonon coupling also can be realized via
the magnetostrictive interaction. (b) Schematic of the equivalent
mode-coupling model. gma or gmb is the photon-magnon coupling
strength or the magnon-phonon coupling strength, respectively. The
green ellipse represents the squeezing of the magnon mode with
the squeezing parameter �m and the phase θ , which can be used to
enhance slow light and high-order sidebands.

group delay of the probe field compared to the case without
the magnon squeezing can be achieved, which is not attain-
able in the photon-magnon weak-coupling (PMWC) scenario;
(ii) in contrast to the PMSC scenario, the group delay of
the second-order sideband experiences a transition from ad-
vance to delay and enhancement only in the case of PMWC;
(iii) in the PMWC scenario, the efficiency of the second-
order sideband can also be improved due to the presence of
magnon squeezing. These features show that CMM devices
with magnon squeezing can serve as powerful tools for ma-
nipulating photons and phonons, with potential applications in
optical signal storage and communications [59–61,83], even
in quantum metrology [65,66,78].

II. THEORETICAL MODEL

As shown in Fig. 1, we consider a single-mode mi-
crowave cavity of resonance frequency ωa and damping
rate κa, coupled with a highly polished YIG sphere. The
YIG sphere glued to the end of a silica fiber is plac-
ing in the cavity near the maximum magnetic field of
the cavity mode [9–19]. Simultaneously, an external mag-
netic field H is applied in the z direction, and a uniform
magnon mode with damping rate κm appears in the sphere
at the resonance frequency ωm = γ H , where γ = 2π ×
28 GHz/T is the gyromagnetic ratio. The magnon and photon
modes are strongly coupled to each other via a magnetic
dipole interaction, which has been demonstrated experi-
mentally [9–19]. According to Ref. [11], by scaling down
the cavity size and increasing the number of spins, the
obtained coupling strength and the damping rates of the
photon and the magnon are gma/2π = 10.8 MHz, κma/2π =
1.35 MHz, and κma/2π = 1.06 MHz, respectively, deep in
the strong-coupling regime with a cooperativity of C = 81
(C = g2

ma/κaκm � 1). In addition, the YIG sphere can also
support a mechanical vibration mode (phonon) with frequency

ωb and damping rate γb [46–49], and magnon-phonon cou-
pling can be realized by a magnetostrictive interaction. Here,
the radiation pressure optomechanical interaction can be
fully neglected due to the smaller size of the YIG sphere
(102 µm–1 mm) compared to the wavelength of the mi-
crowave field.

In a frame rotating at the pump frequency ωl , with a weak
probe field of the frequency ωp and the amplitudes εp, the total
Hamiltonian of this system can be written as (h̄ = 1)

H = H0 +Hint +Hdr,

H0 = 	aa†a + 	mm†m + ωbb†b,

Hint = gma(a†m + m†a) + gmbm†m(b + b†),

Hdr = iεlm
† + iεpe−iξ t a† + i

2
�mm†2eiθ − H.c., (1)

where 	a = ωa − ωl , 	m = ωm − ωl , and ξ = ωp − ωl . a
(a†), m (m†), and b (b†) are the annihilation (creation) opera-
tors of the cavity, magnon, and the phonon mode, respectively.
gma or gmb denotes the magnon-photon or magnon-phonon
coupling coefficient. εl = γ

√
5NB0/4 is the drive strength

with the field amplitude B0, the frequency ω0, and the total
number of spins N = ρV , with ρ = 4.22 × 1027 m−3 (ρ is
the spin density and V is the volume of the sphere) [50–52].
Here, this term �mm†2eiθ /2 − H.c. in the Hamiltonian repre-
sents the squeezing of the magnon mode with the squeezing
parameter �m and the phase θ , which can be realized by,
e.g., transferring squeezing from the cavity with a squeezed
vacuum field [57], or applying the two-tone microwave fields
to drive the magnon mode [58], or using the anisotropy of the
ferromagnet [3,84], or the intrinsic nonlinearity of the magne-
tostriction [85], or driving the qubit with two microwave fields
in cavity-magnon-qubit systems [86]. For instance, Li et al.
theoretically demonstrated the existence of magnon squeezed
states and that squeezing of magnons by about 5.40 dB can
be achieved for gma/2π = 20 MHz [57]. In the following, we
focus on the features of MMIT by exploiting the squeezing
of the magnon mode, including the signal transmission, group
delay, and its higher-order sidebands.

Similarly to previous optomechanically induced trans-
parency works in cavity optomechanical systems [87–89],
MMIT only deals with the mean response of the system to
the probe field without including quantum fluctuation [46].
Therefore, in order to explore the nonlinear dynamics of the
system, we employ the Heisenberg-Langevin equations and
reduce operators to their expectation values [i.e., o(t ) = 〈 ˆo(t )〉
(o = a, m, b)]. Then the Heisenberg-Langevin equations of
this system are

ṁ = −[i	m + κm + igmb(b + b†)]m

− igmaa + εl + �mm†eiθ ,

ȧ = −(i	a + κa)a − igmam + εpe−iξ t ,

ḃ = −(iωb + γb)b − igmbm†m. (2)

For the case where the probe field in MMIT typically is much
weaker than the pump field [46,87], we can expand every
operator as the sum of its steady-state value and a small
fluctuation (perturbation method) [90] to deal with Eqs. (2),
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FIG. 2. (a) Numerical solutions of Eq. (4). (a) For θ = 0, mean
magnon number |ms|2 is plotted as a function of the drive power pl

for different � = �m/κa. (b) For pl = 0.5 W, corresponding to the
drive strength εl � 2 × 1017 Hz, |ms|2 is plotted as a function of the
phase θ for different �. We choose gma = 0.9κa in (a) and (b) and
the other parameters can be found in the main text.

i.e., o = os + δo. The pump field provides a steady-state
solution of the system, while the probe field is treated as
the perturbation of the steady state. Then we have the steady-
state values

ms = (�mm∗
s eiθ + εl )(i	a + κa)

(i	s + κm)(i	a + κa) + g2
ma

,

as = −igmams

i	a + κa
, bs = −igmb|ms|2

iωb + γb
. (3)

where 	s = 	m + 2gmb Re(bs) including the magnomechani-
cally induced frequency shift. Compared to the detuning term
	m, the term 2gmb Re(bs) is small due to the fact that gmb is
typically small (3–60 mHz) [46–49]. i.e., |	s − 	m| � 	m.
In order to study more clearly the effect of magnon squeezing
on the mean magnon number, for simplicity, we take 	s �
	m in Eqs. (3). Then it is straightforward to show that ms

satisfies

ms =
(
	2

a + κ2
a

)
�meiθ + (i	a + κa)L

|L|2 − (
	2

a + κ2
a

)
�2

m

εl , (4)

where L = (−i	m + κm)(−i	a + κa) + g2
ma. The mean

magnon number |ms|2, being related to both the squeezing
parameter � and the phase θ , is shown in Fig. 2 for
the PMWC scenario (gma = 0.9κa). For θ = 0, |ms|2 can
be enhanced by increasing the squeezing parameter � [see
Fig. 2(a)]. For a fixed �, the phase θ changes can increase
or decrease the magnon number [see Fig. 2(b)], which in
turn can significantly modify the linear and nonlinear MMIT
process. By solving Eq. (4) analytically, for θ � 0.6π , we
have the smallest mean magnon number, while for θ � 1.6π ,
we have the largest mean magnon number at a fixed �.
In the PMSC scenario (gma = 2κa), the mean magnon
number |ms|2 with respect to the squeezing parameter and
phase has a similar variation curve as in Fig. 2 and is not
shown.

Now we consider the perturbation induced by the input
probe field. After eliminating the steady-state values, Eqs. (2)

become

δṁ = −(i	s + κm)δm − igmbms(δb + δb†)

− igmb(δb + δb†)δm − igmaδa + �meiθ δm†,

δȧ = −(i	a + κa)δa − igmaδm + εpe−iξ t ,

δḃ = −(iωb + γb)δb − igmb(m∗
s δm + msδm† + δm†δm).

(5)

To calculate the amplitudes of the first- and second-order
sidebands of inputting a probe field, we using the following
ansatz [46,87]:

δm =M−
1 e−iξ t +M+

1 eiξ t +M−
2 e−2iξ t +M+

2 e2iξ t + · · · ,

δa = A−
1 e−iξ t +A+

1 eiξ t +A−
2 e−2iξ t +A+

2 e2iξ t + · · · ,

δb = B−
1 e−iξ t + B+

1 eiξ t + B−
2 e−2iξ t + B+

2 e2iξ t + · · · . (6)

The physical picture of such an ansatz is that there are
output fields with frequencies ωl ± nξ generated in such a
CMM system [59,91], due to the nonlinear terms −igmb(δb +
δb†)δm and −igmbδm†δm in Eq. (5), where n is an in-
teger. In the present work, we only consider the first-
and second-order sidebands, and the higher-order sidebands
are ignored. Therefore, substituting Eq. (6) into Eq. (5)
leads to 12 algebraic equations, which can be simpli-
fied into two groups because the second-order sideband is
a second-order process whose amplitude is much smaller
than the probe field [91]: One group describes the linear
response,

α+
1 A

−
1 = −igmaM−

1 + εP, α−
1 A

+∗
1 = igmaM+∗

1 ,

β+
1 M

−
1 = −igmaA−

1 − iG(B+∗
1 + B−

1 ) + �meiθM+∗
1 ,

β−
1 M

+∗
1 = igmaA+∗

1 + iG∗(B+∗
1 + B−

1 ) + �me−iθM−
1 ,

γ +
1 B

−
1 = −iG∗M−

1 − iGM+∗
1 ,

γ −
1 B

+∗
1 = iGM+∗

1 + iG∗M−
1 , (7)

and the other group describes the second-order sideband,

α+
2 A

−
2 = −igmaM−

2 , α−
2 A

+∗
2 = igmaM+∗

2 ,

γ +
2 B

−
2 = −iG∗M−

2 − iGM+∗
2 − igmbM−

1M
+∗
1 ,

γ −
2 B

+∗
2 = iGM+∗

2 + iG∗M−
2 + igmbM+∗

1 M
−
1 ,

β+
2 M

−
2 = −igmaA−

2 − iG(B−
2 + B+∗

2 ) + �meiθM+∗
2

− igmbM−
1 (B−

1 + B+∗
1 ),

β−
2 M

+∗
2 = igmaA+∗

2 + iG∗(B+∗
2 + B−

2 ) + �me−iθM−
2

+ igmbM+∗
1 (B+∗

1 + B−
1 ), (8)

where G = gmbms, and

α±
1 = −iξ ± i	a + κa, α±

2 = −2iξ ± i	a + κa,

β±
1 = −iξ ± i	s + κm, β±

2 = −2iξ ± i	s + κm,

γ ±
1 = −iξ ± iωb + γb, γ ±

2 = −2iξ ± iωb + γb.
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Solving Eqs. (7) and (8) leads to

A−
1 = (K +V1 +D1)εp

α+
1 (V1 +D1) + Q1 + 4ωb	a|G|2g2

ma

,

M+∗
1 = −igmaα

−
1 εP(γ +

1 γ −
1 �me−iθ − 2iG∗2ωb)

α+
1 (V1 +D1) + Q1 + 4ωb	a|G|2g2

ma

,

M−
1 = −igmaεP

[
γ +

1 γ −
1

(
α−

1 β−
1 + g2

ma

) + 2i|G|2ωbα
−
1

]

α+
1 (V1 +D1) + Q1 + 4ωb	a|G|2g2

ma

,

A−
2 = 2gmagmbωb(P1 − P2 + P3)

γ +
1 γ −

1

[
α+

2 (V2 +D2) + Q2 + 4ωb	a|G|2g2
ma

] , (9)

where K = g2
ma(β+

1 γ +
1 γ −

1 − 2iωb|G|2), and

V j = α−
j β+

j β−
j γ +

j γ −
j − 4α−

j ωb	s|G|2,
Q j = γ +

j γ −
j

(
α+

j β+
j g2

ma + α−
j β−

j g2
ma + g4

ma

)
,

D j = 2iωbα
−
j �m(G∗2eiθ − G2e−iθ ) − �2

mα−
j γ +

j γ −
j ,

P1 = 2iωbα
−
2

(|G|2G∗M−2
1 − G3M+∗2

1

)
,

P2 = α−
2 �meiθ

(
γ +

2 γ −
2 GM+∗2

1 + G∗IM−
1M

+∗
1

)
,

P3 = (
α−

2 β−
2 + g2

ma

)(
γ +

2 γ −
2 G∗M−2

1 + GIM−
1M

+∗
1

)
,

where j = 1, 2 and I = γ +
1 γ −

1 + γ +
2 γ −

2 .A−
1 and A−

2 are the
coefficients of the first- and second-order upper sidebands,
respectively. By using the standard input-output relations [92],
i.e., aout = ain − √

2κaa(t ), where ain (aout) is the input (out-
put) probe operators, we can obtain the expectation value

〈aout〉 = s0e−iωl t + s1e−iωpt −
√

2κaA−
2 e−i(2ωp−ωl )t

−
√

2κaA+
1 e−i(2ωl −ωp)t −

√
2κaA+

2 e−i(3ωl −2ωp)t ,

(10)

with s0 = εl/
√

2κa − √
2κaas and s1 = εp/

√
2κa −√

2κaA−
1 , where s0e−iωl t or s1e−iωpt denote the output

fields with a pump frequency ωl or ωp, respectively, while
the term −√

2κaA+
1 e−i(2ωl −ωp)t describes the Stokes process,

respectively. Moreover, the terms
√

2κaA+
2 e−i(3ωl −2ωp)t and

−√
2κaA−

2 e−i(2ωp−ωl )t , describing the output with frequencies
ωl ± 2ξ , are related to the second-order upper and lower
sideband process [59,91]. Hence, the transmission rate of
the probe field or the efficiency of the second-order upper
sideband can be written as [91]

T = |tp|2 =
∣∣∣∣1 − 2κa

εp
A−

1

∣∣∣∣

2

, η =
∣∣∣∣−

2κa

εp
A−

2

∣∣∣∣. (11)

It is obvious that η is proportional to A−
2 , and we note that

A−
2 consists of three parts: The second-order sideband terms

based on nonlinear magnetostrictive interaction, the upcon-
verted first-order sideband terms, and the magnon-squeezing
terms. This implies that, besides the nonlinear magnetostric-
tive interaction and the upconverted process of the first-order
sideband [91], the second-order sideband can also be steered
by tuning the squeezing parameter. With this at hand, we can
discuss the effect of magnon squeezing on MMIT.

III. RESULTS AND DISCUSSION

A. Linear MMIT spectrum and group delay

In numerical simulations, to demonstrate that the obser-
vation of the MMIT process is within current experimental
reach, we have selected experimentally feasible parame-
ters [46–49], i.e., ωa/2π = ωm/2π = 13.205 GHz, κa/2π =
15 MHz, κm/2π = 15 MHz, ωb/2π = 50 MHz, γb/2π =
200 kHz, and gmb/π = 9.9 mHz, εP/εl = 0.05, 	a = 	m =
ωb, respectively.

In Fig. 3, the transmission rate T is shown as a function
of the probe detuning 	p/ωb = (ξ − ωb)/ωb and the phase θ .
For comparisons, we first consider the case without magnon
squeezing. In the PMWC coupling scenario, we chose gma =
0.9κa, such that an asymmetric Lorentzian-shaped trans-
parency window of MMIT appears around the resonance
point 	p = 0 [see the blue dashed curve in Fig. 3(a)], as a
result of the phonon-induced resonances effect [46]. In the
PMSC scenario, we take gma = 2κa, for example. Double
transparency windows appear in the transmission spectra [see
the blue dashed curve in Fig. 3(d)], due to the presence of the
phonon mode which splits the original magnetically induced
transparency peak into two [11,70].

If magnon squeezing is present, i.e., � = 1.5 and θ = 0, a
wider transparency window and a higher transmission rate at
the resonance point can be obtained for the PMWC scenario
[see the red solid curve in Fig. 3(a)]. The reason is that the
increase in magnon number caused by magnon squeezing
[see Fig. 2(a)] leads to a wide MMIT window [87], i.e., the
linewidth of the MMIT window is related to the magnon
number,

� = γb + g2
mb|ms|2

κm
. (12)

We also obtain a similar performance in the PMSC scenario
[see the red solid curve in Fig. 3(d)]. The slight difference
is that in the PMSC scenario, the transmission spectrum near
the resonance point changes from absorption to transparency
rather than simple amplification. In addition, more interesting
phenomena can be observed by tuning the phase. Figures 3(b)
and 3(e) show the transmission rate with different phases
θ at a fixed � = 1.5. The phase of the magnon squeezing
affects the magnon number on a regular basis [see Fig. 2(b)],
Â so that the linewidth of the transparency window and the
transmission rate are also regularly affected. For θ = 0.6π ,
strong absorption of the probe light can be achieved, while
for θ = 1.6π , we can obtain the maximum transmission rate
[see Figs. 3(c) and 3(f)]. This provides a way to control
the light propagation by tuning the phase of the magnon
squeezing.

Accompanying the MMIT process, the slowing or advanc-
ing of light can emerge in this CMM system due to the
abnormal dispersion [59–61]. This feature can be character-
ized by the group delay of the probe light

τ1 = d arg(tp)

dξ

∣∣∣∣
ξ=ωb

. (13)

To see this, the corresponding group delay τ1 is shown
in Fig. 4. First, we consider the PMWC case. We have con-
firmed that MMIT in this CMM system leads only to the
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probe light τ1 (in the unit of µs) as a function of the drive power pl

with different values (a) � and (b) θ . For the PMSC case (gma = 2κa),
group delay of the probe light τ1 (in the unit of µs) as a function of
the drive power pl with different values (c) � and (d) θ . We choose
θ = 0 in (a), (c) and � = 1.5 in (b), (d).

slowing of the transmitted light [59–61]. If magnon squeez-
ing is present (� = 1.5 and θ = 0), the group velocity τ1

tends to decrease compared to the case without the magnon
squeezing [see Fig. 3(a)], which is not conducive to storage.
Furthermore, we find that the group delay of the probe field
τ1 can be adjusted by controlling the phase θ . For exam-
ple, the group delay of the probe field τ1 can be marginally
enhanced by tuning the phase θ from 0 or 1.6π to 0.6π

[see Fig. 3(b)].
In contrast, for the PMSC case, in the absence of magnon

squeezing, the group delay of the probe field τ1 can be tuned
to positive (τ1 � 3 µs) or negative (τ1 � −3 µs) by controlling
pl [see the blue dashed curve in Fig. 4(c)]. In particular, if
magnon squeezing is present (� = 1.5 and θ = 0), the group
delay of the probe field τ1 can be enhanced by about three
times compared to the case without magnon squeezing. In
addition, when pl is kept fixed, one can also drive the system
from slow-to-fast or fast-to-slow light regimes by tuning the
phase θ [see Fig. 3(d)]. The fact that, in the case of PMSC,
the presence of magnon squeezing can strongly modify the
dispersion of the CMM system provides a powerful way to
enhance slow or fast light by tuning �, θ , or pl , which are
not possible in the PMWC scenario. It is well known that
slow and fast light effects have been realized in various op-
tomechanical devices [93–96], and slow (fast) light with delay
(advance) times up to tens of nanoseconds has been observed
and measured. Hence, we confirmed that this effect of magnon
squeezing in enhancing slow or fast light and switching from
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FIG. 5. The efficiency of second-order sideband η as a function of the optical detuning 	p with or without (� = 0) magnon squeezing,
for (a) PMWC or (b) PMSC. Group delay of second-order sideband τ2 (in the unit of µs) as a function of the drive power pl with different �,
for (c) PMWC or (e) PMSC. Group delay τ2 (in the unit of µs) as a function of pl and θ , for (d) PMWC or (f) PMSC. We choose 	p = 0 in
(c)–(f).

advance to delay of the signal light would be experimentally
noticeable.

B. Nonlinear MMIT spectrum and group delay

Now we theoretically study the role of magnon squeez-
ing in further enhancing second-order sidebands in such a
CMM system. Figures 5(a) and 4(b) show the efficiency η

as a function of 	p. For � = 0, the second-order sideband
is subdued when the MMIT emerges [59,91], which results
in a local minimum between the two sideband peaks around
	p = 0 [see the blue dashed curve in Fig. 4(a)]. The ef-
ficiency η, which depends on the driving power and the
magnon-phonon coupling strength, is extremely small (i.e.,
0.2%–0.5%) in the standard CMM system [59]. The reason
is that the second-order sideband, which mainly comes from
the upconverted first-order sideband, is suppressed due to
the enhanced resonance of the anti-Stokes field under the
resonance condition [91]. In the PMWC scenario, if magnon
squeezing is present (i.e., � = 1.5, θ = 0.6π ), we find that
around the resonance point 	p = 0, the second-order side-
band is enhanced compared to the standard CMM system
(without magnon squeezing) [see Fig. 5(a)], which is helpful
for the precise measurement of weak signals [97–99]. For
example, the efficiency η is about 0.8% for � = 1.5 and
θ = 0.6π at 	p = 0, i.e., 2.67 times that for � = 0. This can
be explained as follows: Adjusting the squeezing parameter
and phase changes the value of |ms|2, hence the anti-Stokes
field is no longer resonantly enhanced when θ = 0.6π , and the

upconverted process of the first-order sideband is strength-
ened. In contrast, for the PMSC case, if magnon squeezing
is present (i.e., � = 1.5, θ = 0.6π ), we find that around the
resonance point 	p = 0, the efficiency η is only marginally
enhanced compared to the standard CMM system (without
magnon squeezing) [see Fig. 5(b)]. We note that although
the magnon squeezing can increase the efficiency of the
second-order sideband, this enhancement still only provides
an efficiency of 0.8% zero optical detuning, and even less
away from zero detuning, and is not observable for the PMSC
case. Thus, this effect is not experimentally noticeable. How-
ever, we find that the group velocity of the second-order
sideband can be adjusted flexibly by utilizing the squeezing of
the magnon mode, and this effect can be observed and mea-
sured experimentally [93–96]. In the following, we explore
the role of magnon squeezing in enhancing the group velocity
and switching from advance to delay of the second-order
sideband.

The associated group delay of the second-order upper side-
band is given by [59–61]

τ2 = d arg(A−
2 )

2dξ

∣∣∣∣
ξ=ωb

, (14)

Figures 5(c)–5(f) show the group delay of the second-order
sideband τ2 as a function of the drive power pl and the phase
θ . First, we consider the PMWC case. For � = 0 (without
magnon squeezing), with increasing power, slow light always
exists [see the blue dotted line in Fig. 5(c)]. However, in the
presence of the magnon squeezing, one can tune the group
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delay of the second-order sideband τ2 to switch from positive
to negative by controlling pl [see the green dashed line and
red solid line in Fig. 5(c)]. Moreover, as � increases, the drive
power required to convert slow light into fast light decreases.
In particular, by controlling the phase θ , the group delay of the
second-order sideband is revealed to be capable of switching
from fast light to slow light, as shown in Fig. 5(d). Simulta-
neously, for a fixed pl , by adjusting the phase to θ = 0.6π ,
the delay time of the second-order sideband can reach the
maximum value, which is useful for the storage.

For the PMSC scenario, by tuning �, θ , or pl , the group de-
lay of the second-order signal τ2 cannot achieve performance
similar to the PMWC case, that is, the group velocity cannot
be adjusted to be positive or negative [see Figs. 5(e) and 5(f)].

IV. CONCLUSION

In conclusion, we have theoretically studied the features
of MMIT in a CMM system with squeezing of the magnon
mode. We find that magnon squeezing can strongly affect
the magnon number, both in the case of weak or strong
photon-magnon coupling. As a result, the transmission rate
and the width of the transparency window can be adjusted
flexibly by utilizing the squeezing of the magnon mode, and
controllable fast-to-slow light switching and and enhancement

can be realized. In particular, in the PMSC scenario, the group
delay of the probe field can be enhanced by a factor of about
3 due to the presence of magnon squeezing as compared to
the case without magnon squeezing, which is not possible
in the PMWC scenario. Moreover, in the PMWC scenario,
we find that the MMIT second-order sideband can be en-
hanced, and the group delay of the second-order sideband is
revealed to be capable of switching from fast light to slow
light by tuning the squeezing parameter and phase, which
are not possible in the PMSC scenario. These results indicate
that magnon-squeezing-assisted CMM devices can provide a
versatile platform to control coherent interactions of photons,
phonons, and magnons, for a wide range of potential appli-
cations such as microwave-to-optical conversion [24,25], and
the sensing of weak forces or magnetic signals [42–44].
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