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Modulation-based superradiant phase transition in the strong-coupling regime
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The Dicke model can exhibit quantum phase transition between the normal and the superradiant phases when
the strength of the light-matter coupling exceeds the ultrastrong-coupling regime. However, it is challenging
to observe this phase transition in practical systems due to limited coupling strength or finite two-photon
A2 terms. Here we show that by applying a periodic modulation to the frequency of the two-level systems
in a standard Dicke model in the strong-coupling regime, an anisotropic Dicke model with tunable rotating
and counter-rotating terms in the ultrastrong-coupling regime can be achieved. We calculate the ground state
and the excitation spectrum of this model in terms of the modulation parameters. Our result shows that
the superradiant phases can be observed in cavity- or circuit-quantum electrodynamics systems with strong
coupling.

DOI: 10.1103/PhysRevA.107.063713

I. INTRODUCTION

The Dicke model [1] describes a cavity mode coupled to
multiple quantum two-level systems (or qubits) in cavity- or
circuit-quantum electrodynamics (QED) systems [2–7]. It has
been widely studied to exhibit the superradiant phase transi-
tion at a critical temperature or a critical light-matter coupling
strength [8–15], where the superradiant phase is characterized
by macroscopic excitations of the cavity and the qubits. At
zero temperature, a quantum phase transition (QPT) between
the normal and the superradiant phases can occur when the
coupling strength exceeds the ultrastrong-coupling regime.
Dynamical phase transition has been studied both theoreti-
cally and experimentally in dissipative Dicke models [16–22].
Recently, it was shown that the Dicke model can be simulated
with four-level atoms via cavity-assisted Raman transitions,
and nonequilibrium phase transition has been demonstrated
experimentally in this system [23,24].

Despite intensive efforts with both atomic systems and
solid-state devices, it is still challenging to observe the
ground-state superradiant phase transition in the Dicke model
due to limited coupling strength or the two-photon A2 term
in some systems. For atomic systems in the ultrastrong-
coupling regime, the A2 terms resulted from second-order
effects of the light-matter interaction can prevent the occur-
rence of the superradiant phase transition [25,26]. Note that
the Dicke phase transition and the symmetry-breaking phases
can be demonstrated with motional degrees of freedom of
Bose-Einstein condensates coupled to a cavity mode [3,5].
In the superconducting circuit-QED systems, although the
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ultrastrong-coupling regime can now be reached [27–31], im-
perfection of the quantum circuits could affect the behavior
of this phase transition, as was studied in Ref. [32] using a
mean-field approach.

In this work, we present an approach that enables the
observation of the quantum superradiant phase transition in a
standard Dicke model in the strong-coupling regime with the
strength of the collective light-matter coupling much smaller
than qubit and cavity frequencies. In our approach, by apply-
ing a periodic modulation to the frequency of the qubits in
the standard Dicke model, a tunable anisotropic Dicke model
with ultrastrong rotating and counter-rotating couplings can
be generated. The qubit frequency modulation generates side-
bands in the energy spectrum of the qubits. By adjusting the
frequency and magnitude of the modulation in the anisotropic
Dicke model, it is possible to tune the ratio of coupling
strengths between the dominant rotating and counter-rotating
sidebands relative to the effective frequencies of the qubits
and the cavity over a broad range. Both the rotating and
the counter-rotating terms can reach the ultrastrong-coupling
regime. With the collective qubit-cavity couplings in the
strong-coupling regime compared to the original qubit and
cavity frequencies, the strength of the two-photon A2 terms
is also much smaller than these frequencies. The A2 terms can
hence be safely neglected as they are far off resonance in our
scheme. This makes it possible to observe the superradiant
phase in the cavity-QED setup, which was considered impos-
sible in previous works [25,26]. We calculate the ground-state
phases and excitation spectra vs the modulation parameters.
Our result shows that ground state superradiant phases can be
observed in the cavity- or circuit-QED systems in the strong-
coupling regime. Given the tunability of the effective model
in this approach, it can be utilized to study phase transitions
in related models such as the Tavis-Cummings model [33] and
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the Lipkin-Meshkov-Glick model [34]. Our work can inspire
future studies on implementing quantum phase transitions in
engineered quantum systems.

II. MODEL

Consider a standard Dicke model, where a cavity mode
is coupled to N qubits with the frequency of the qubits pe-
riodically modulated. The total Hamiltonian has the form
Ht = HSD + HA2 + HM(t ), which includes the Hamiltonian of
the standard Dicke model (h̄ ≡ 1)

HSD = ω0Jz + ωca†a + g0N−1/2(J+ + J−)(a + a†), (1)

a two-photon A2 term HA2 = gA2 (a + a†)2 with amplitude gA2 ,
and a periodic modulation of the qubit frequency HM(t ) =
ξν cos(νt )Jz with dimensionless driving magnitude ξ and
modulation frequency ν. Here Jz = ∑N

i=1 σ (i)
z /2 and J± =∑N

i=1 σ
(i)
± are collective spin operators defined as the sum

of the Pauli operators σ
(i)
z,± of the qubits, ω0 is the energy

splitting of the qubits, a (a†) is the annihilation (creation)
operator and ωc the frequency of the cavity mode, and g0/

√
N

is the coupling strength between an individual qubit and the
cavity mode. The collective spin operators obey the usual
angular momentum commutation relations [Jz, J±] = ±J±
and [J+, J−] = 2Jz, and have the angular momentum eigen-
states | j, m〉 with maximum eigenvalue jmax = N/2 and m ∈
[− j, j].

The standard Dicke model can exhibit quantum phase
transition from a normal phase to a superradiant phase with
macroscopic cavity displacement and qubit excitations. This
phase transition occurs when the collective coupling strength
reaches the ultrastrong-coupling regime with g0 � √

ω0ωc/2
[1,13]. The amplitude of the two-photon Hamiltonian HA2 can
be written as gA2 = χg2

0/ω0, with χ being a dimensionless
coefficient. In cavity QED, governed by the Thomas-Reiche-
Kuhn sum rule, χ � 1, which prevents the occurrence of the
superradiant phase transition [26]. Even though we can have
χ � 1 in circuit QED, other factors such as the parameter
spread of the qubits in the ultrastrong-coupling regime could
prevent the observation of this phase transition.

Below we derive the effective Hamiltonian of the standard
Dicke model under periodic modulation using the approach in
Ref. [35]. Let H (1)

0 = ω0Jz + ω′
ca†a + HM(t ) with ω′

c = ωc +
2gA2 , which includes the modulation of the qubit frequency.
In the rotating frame of H (1)

0 , the effective Hamiltonian of
the modulated Dicke model is H (1)

rot = V †
1 (t )(Ht − H (1)

0 )V1(t )
with V1(t ) = exp[−i

∫ t
0 H (1)

0 (τ )dτ ]. After omitting the con-
stant term in HA2 , we find that

H (1)
rot = g0√

N

∞∑
n=−∞

Jn(ξ )[J+(aeiδnt + a†ei	nt ) + H.c.]

+ gA2 (a2e−2iω′
ct + a†2e2iω′

ct ), (2)

where δn = ω0 − ω′
c + nν, 	n = ω0 + ω′

c + nν, and Jn is
the nth Bessel function of the first kind with integer
number n. Here we have used the Jacobi-Anger identity:
exp[iξ sin(νt )] = ∑∞

n=−∞ Jn(ξ ) exp(inνt ) for Bessel func-
tions. As shown in Eq. (2), the modulation of the qubit
frequency generates spectral sidebands in the rotating

(counter-rotating) terms with detuning δn (	n) and coupling
amplitude (g0/

√
N )Jn(ξ ). The sidebands are separated by the

modulation frequency ν. The amplitudes of the sidebands can
be adjusted by varying the dimensionless modulation ampli-
tude ξ .

We introduce a second rotating frame defined by the
Hamiltonian H (2)

0 = −ω̃0Jz − ω̃ca†a with the effective qubit
and cavity frequencies ω̃0 = (δn0 + 	m0 )/2 and ω̃c = (	m0 −
δn0 )/2, respectively. Here by choosing appropriate qubit fre-
quency and modulation frequency, we can select a rotating
sideband n0 and a counter-rotating sideband m0, where the
effective coupling λr = g0Jn0 (ξ ) [λcr = g0Jm0 (ξ )] for the side-
band can reach the ultrastrong-coupling regime with respect
to its rotating frequency |δn0 | (|	m0 |). Meanwhile, under the
condition ω0, ωc, ν 	 g0, all other sidebands are fast rotating,
i.e.,

g0|Jn 
=n0 (ξ )|, g0|Jm 
=m0 (ξ )| � ν, |δn 
=n0 |, |	m 
=m0 |. (3)

With g0 � ω0, gA2 � g0 and gA2 � 2ω′
c. The a2 and a†2 terms

with oscillating frequencies ±2ω′
c from the two-photon A2

Hamiltonian are hence also fast rotating (see Appendix A).
In the rotating frame of H (2)

0 , the effective Hamiltonian
is H (2)

rot = V †
2 (t )(H (1)

rot − H (2)
0 )V2(t ) with the unitary trans-

formation V2(t ) = exp[−iH (2)
0 t]. Under the rotating-wave

approximation with all fast-rotating sidebands of n 
= n0 and
m 
= m0 and the two-photon A2 terms neglected, the Hamilto-
nian becomes

H (2)
rot = ω̃0Jz + ω̃ca†a + N−1/2[J+(λra + λcra†) + H.c.].

(4)

This Hamiltonian describes an anisotropic Dicke Hamiltonian
with tunable frequencies ω̃0(ν) and ω̃c(ν) that depend on the
modulation frequency ν and with effective couplings λr (ξ )
and λcr (ξ ) for the rotating and the counter-rotating terms,
respectively, that depend on the dimensionless modulation
amplitude ξ .

III. ULTRASTRONG COUPLING

The parameters in Eq. (4) can be adjusted to reach the
ultrastrong-coupling regime by varying the frequency ν and
the amplitude ξ of the periodic modulation. We define λC =√

ω̃0ω̃c as the critical coupling, which is crucial for our discus-
sion of the superradiant phase transition and only depends on
the driving frequency ν. In Fig. 1(a), we plot λC/ω0 vs ν/ω0.
At ω0 = ω′

c, the index for the rotating sideband is n0 = 0
with δn0 = 0, whereas the index m0 for the counter-rotating
sideband varies with ν/ω0 and reaches m0 = 0 when ν >

2(ω0 + ω′
c). It can be shown that λC = 0 at ν = −2ω0/m0

or ν = −2ω′
c/m0, for a given value of m0. For ω0 = ω′

c,
the curve of λC/ω0 is hence composed of V-shaped valleys
when ν < 2(ω0 + ω′

c). Each valley shares the same value of
m0 with the minima of the valleys being at ν = −2ω0/m0,
respectively. Thus, the minima of the V-shaped valleys of
the critical coupling strength λC form an harmonic sequence
towards ν = 0.

The effective coupling strengths depend on the driving am-
plitude ξ in the form of the Bessel functions. In Figs. 1(b) and
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FIG. 1. (a) The ratio λC/ω0 between the critical coupling and
the qubit frequency vs the relative modulation frequency ν/ω0. (b
and c) The ratios λr/λ

C and λcr/λ
C vs the driving amplitude ξ for

g0/ω0 = 0.06 at ν/ω0 = 0.49 and 0.66, respectively. Here we choose
ω0 = ω′

c = 1 as the energy unit, and ξ is the dimensionless driving
amplitude.

1(c), we plot λr (ξ )/λC and λcr (ξ )/λC vs ξ at g0 = 0.06ω0,
ω0 = ω′

c for two values of the driving frequency ν. For
ν/ω0 = 0.49, n0 = 0 and m0 = −4. As ξ increases, λr (ξ )/λC

oscillates smoothly between 3 and −1.208 with reducing am-
plitude, and λcr (ξ )/λC oscillates between 1.199 and −0.823.
Both couplings can be tuned to zero when the corresponding
Bessel function becomes zero. For ν/ω0 = 0.66, n0 = 0 and
m0 = −3, and λr (ξ ) and λcr (ξ ) exhibit similar behavior. This
result shows that both λr (ξ ) and λcr (ξ ) can be tuned in a
broad range and can enter the ultrastrong-coupling regime. In
particular, in the neighborhood of the valley dips in Fig. 1(a),
these couplings can exceed the magnitude of the critical cou-
pling λC . Our system can hence demonstrate rich quantum
phenomena as discussed below.

IV. QUANTUM PHASE TRANSITION

In the Holstein-Primakoff representation, the collec-
tive angular momentum operators can be written as J+ =
b†

√
N − b†b, J− = √

N − b†b b, and Jz = b†b − N/2 [36] in
terms of a bosonic mode with annihilation (creation) operator
b (b†) and [b, b†] = 1. The anisotropic Dicke model in (4)
then becomes

H (2)
rot = ω̃0b†b + ω̃ca†a − Nω̃0/2

+ [b†
√

1 − b†b/N (λra + λcra†) + H.c.]. (5)

The ground state of the anisotropic Dicke model can be either
in a normal phase with 〈a〉 = 〈b〉 = 0 or in a superradiant
phase with finite 〈a〉 and 〈b〉, depending on the coupling
strengths λr and λcr . To derive the ground state, we use a
mean-field approach [8–10,13] and write the bosonic oper-
ators as a → c + α and b → d + β, where α = 〈a〉 (β =
〈b〉) is the semiclassical displacement of the cavity (collec-
tive qubit mode), and operator c (d) represents the quantum

FIG. 2. The dimensionless displacements (a) α/
√

N (or iα/
√

N)
and (b) β/

√
N (or iβ/

√
N) vs the couplings λr/λ

C and λcr/λ
C . In

the SEMa and SEMb phases, we choose θ = 0. Other parameters are
ν/ω0 = 0.49, g0/ω0 = 0.06, and ω0 = ω′

c = 1.

fluctuation of the displaced cavity (qubit) mode with 〈c〉 = 0
(〈d〉 = 0). Denote 
vS = (c, d, c†, d†)T . In the thermodynamic
limit N → ∞, using a Taylor expansion of the Hamiltonian
H (2)

rot in terms of the fluctuation operators c and d and keeping
to the second-order terms, we have H (2)

rot = HII + HI + EG,
where HII = 
v†

SG
vS with G being a 4 × 4 Hermitian matrix,
HI = 
�T 
vS with 
� being a 4 × 1 vector, and EG is a con-
stant. Here the matrix G, vector 
�, and EG all depend on
the displacements α and β, details of which can be found in
Appendix B. When α and β correspond to the ground-state
displacements, the linear term disappears with HI = 0. Hence,
by solving the equation 
� = 0, we can find the solution to the
semiclassical displacements α and β and derive the ground-
state energy EG and the matrix G.

The displacements of the cavity and qubit modes in the
anisotropic Dicke model are plotted in Figs. 2(a) and 2(b).
When |λcr ± λr | < λC , α = β = 0, which corresponds to
the normal phase as labeled by N in Fig. 2. Outside the
normal phase, when λrλcr > 0, the ground state is in the
superradiant electric (SE) phase with two sets of solutions
(α, β ) = ±(α0, β0) and α0, β0 being real numbers. When
λrλcr < 0, the ground state is in the superradiant magnetic
(SM) phase with two sets of imaginary number displacements
±(iα0, iβ0). Along the y axis when |λcr| > λC , the system is
in the superradiant electromagnetic a (SEMa) phase, where
the semiclassical displacements are (α0e−iθ , β0eiθ ) with an
arbitrary but opposite phase factor θ . Similarly, along the x
axis when |λr | > λC , the system is in the superradiant electro-
magnetic b (SEMb) phase with displacements (α0eiθ , β0eiθ ).
Details of these solutions can be found in Appendix B. The
solutions in the SE and SM phases break the Z2 symmetry
of the model when λrλcr 
= 0, whereas the solutions in the
SEMa and SEMb phases break the U(1) symmetry of the
model when λrλcr = 0. Note that for λr = λcr , the condition
for the normal phase becomes |λr | < λC/2, which agrees with
the result for a standard Dicke model [9]. The solid and the
dashed lines in Fig. 2 indicate the phase boundaries separating
these phases. Using the Hopfield-Bogoliubov transformation
on HII [37], the system Hamiltonian can be diagonalized
as H (2)

rot = ∑
i=± ω

p
i γ

p†
i γ

p
i + E p

G. Here γ
p

i (γ p†
i ) is the anni-

hilation (creation) operator of one of the quasiparticles in
the ground state phase p with frequency ω

p
i , and E p

G is the
ground-state energy in phase p. The operator γ

p
i is a linear

combination of the operators c, c†, d, d† for the superradiant
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FIG. 3. (a)–(c) The relative quasiparticle spectrum ω±/ω0 vs
the relative coupling λcr/λ

C at λr/λ
C = 0.5, 1.5, 0, respectively.

(d) ω±/ω0 vs the relative coupling λr/λ
C at λcr/λ

C = 0. Other pa-
rameters are the same as those in Fig. 2.

phases and a, a†, b, b† for the normal phase, with the com-
mutation relation [γ p

i , γ
p†
j ] = δi j . Details of the quasiparticle

spectrum for different phases are given in Appendix C. In
Fig. 3, we plot the quasiparticle spectrum as functions of
the coupling λcr or λr . The superscript “p” that refers to
the specific phase in the quasiparticle frequency is omitted.
For λr/λ

C = 0.5, the critical points occur at λcr/λ
C = ±0.5

when ω− = 0, as shown in Fig. 3(a). The system experiences
a second-order phase transition from the normal phase at
|λcr/λ

C | < 0.5 to the SE or SM phase at |λcr/λ
C | > 0.5, as

shown in Fig. 2. For λr/λ
C = 1.5 presented in Fig. 3(b), a

single critical point occurs at λcr/λ
C = 0, which corresponds

to a Goldstone mode in the SEMb phase [10]. For λr/λ
C = 0

along the y axis, the critical points are at λcr/λ
C = ±1, cor-

responding to a phase transition between the normal phase
and the SEMa phase, as shown in Fig. 3(c). Similarly, for
λcr/λ

C = 0 along the x axis, the normal-SEMb phase tran-
sition occurs at λr/λ

C = ±1, as shown in Fig. 3(d). In both
the SEMa and SEMb phases, ω− = 0, corresponding to Gold-
stone excitations resulted from the U(1) symmetry of the
model along the x and y axes.

V. MANIPULATION OF QUANTUM PHASES

By controlling the parameters of the qubit frequency mod-
ulation, the effective rotating and counter-rotating couplings
in the engineered anisotropic Dicke model can reach the
ultrastrong-coupling regime with superradiant ground states,
even if the physical coupling strength is only in the strong-
coupling regime. In particular, as shown in Fig. 1(a), the
critical coupling λC → 0 in the neighborhood of a V-shaped
minimum, which results in diminishing normal phase region.

In Figs. 4(a1) and 4(b1), we plot the parametrized curves of
the effective couplings [λr (ξ )/λC, λcr (ξ )/λC] vs the driving
amplitude ξ at ν/ω0 = 0.49 and 0.66, respectively. It can
be seen that the parametrized curves evolve through several

FIG. 4. (a1, b1) The parametrized curves of the relative cou-
plings [λr (ξ )/λC, λcr (ξ )/λC] when the dimensionless driving ampli-
tude ξ increases from 0 to 4 as indicated by the arrows. (a2, b2)
The displacement α/

√
N and (a3, b3) the displacement β/

√
N vs

the driving amplitude ξ . (a1)–(a3) are for ν/ω0 = 0.49 and m0 =
−4. (b1)–(b3) are for ν/ω0 = 0.66 and m0 = −3. For SEMa and
SEMb phases, we set θ = 0. Other parameters are the same as in
Figs. 1(b) and 1(c).

superradiant phases and the normal phase. In Figs. 4(a2),
4(a3), 4(b2), and 4(b3), we plot the ground-state displace-
ments α and β vs ξ for the corresponding values of ν/ω0.
As labeled in the plots, the solid curves are for the real
parts and the dashed curves are for the imaginary parts
of α and β. We also indicate the corresponding ground-
state phases in the plots. At ν/ω0 = 0.49 in Figs. 4(a2) and
4(a3), the ground state is in the SE phase when 0 < ξ <

1.856, where λr (ξ )λcr (ξ ) > 0 and |λr (ξ ) + λcr (ξ )| > λC . In
the region 2.880 < ξ < 4, the ground state is in the SM
phase with λr (ξ )λcr (ξ ) < 0 and |λr (ξ ) − λcr (ξ )| > λC . The
SEMb phase with λcr (ξ ) = 0 is located at ξ = 0. The normal
phase appears when 1.856 < ξ < 2.880. Here the depen-
dence of λr (ξ )/λC, λcr (ξ )/λC vs ξ can be seen in Fig. 1(b).
At ν/ω0 = 0.66 with the increase of ξ , the ground state
is in the SEMb, SM, SEMa, and SE phases sequentially,
as shown in Figs. 4(b2) and 4(b3). The dependence of
λr (ξ )/λC, λcr (ξ )/λC vs ξ can be found in Fig. 1(c). With these
two values of ν/ω0, all normal and superradiant phases can be
experienced.

The above result shows that the ground state of the en-
gineered anisotropic Dicke model can be in a superradiant
phase when the collective qubit-cavity coupling is only in the
strong-coupling regime with, e.g., g0/ω0 = 0.06. For super-
conducting qubits with ω0/2π = 10 GHz, this corresponds
to g0/2π = 600 MHz with a single qubit-cavity coupling
of g0/

√
N . With only N = 4 qubits, the single qubit-cavity

coupling is 300 MHz, well within reach of current technology
[38,39]. In comparison, the ground state of the standard Dicke
model can be in the superradiant phase only when g0/ω0 >
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0.5 in the ultrastrong-coupling regime. This requires a col-
lective coupling of g0/2π = 5 GHz. Even if the individual
qubit-cavity coupling can reach 1 GHz, it would require an
array of N = 25 qubits to achieve such collective coupling.
Qubit frequencies can be modulated with various approaches.
For superconducting qubits, frequency modulation can be
achieved with a tunable junction (or SQUID), where the ef-
fective Josephson energy (and hence qubit frequency) can be
tuned by applying oscillating magnetic field to the SQUID
loop. For atomic qubits formed by hyperfine states in atoms
or ions, qubit frequency can be modulated via Zeeman ef-
fect by applying oscillating magnetic field. For the parameter
ν/ω0 = 0.49 (0.66) used in our work, the modulation fre-
quency ν/2π = 4.9 (6.6) GHz, and the modulation amplitude
ξν/2π is in the range of (0, 19.6) [(0, 26.4)] GHz with 0 <

ξ < 4. These modulation parameters are achievable in exper-
iments. Note that the phase transition studied in this work is
for the ground states in a rotating frame under the frequency
modulation. The normal and the superradiant phases can be
prepared using an adiabatic approach. Without the frequency
modulation, the superconducting qubit-cavity system can be
prepared to their ground state, which is in a normal phase with
no excitation, by cooling down the system under cryogenic
temperature (e.g., 20 mK in a dilution fridge). Then by slowly
turning on the modulation amplitude ξ to the desired value,
the system can reach the superradiant phase adiabatically
with high probability [5,40,41]. Our result hence shows that
the normal-superradiant phase transition can be implemented
with practical physical systems in the strong-coupling regime.
Meanwhile, various superradiant phases such as SE, SM,
SEMa, and SEMb phases can all be reached by varying the
modulation parameters. By manipulating these parameters,
one can demonstrate rich physics in different superradiant
phases, such as the Goldstone modes in the SEMa and SEMb
phases.

The phase transition studied above focuses on the regime
of negligible cavity dissipation with κ/ω0, κ/ω′

c < 10−4,
where κ is the cavity dissipation rate. The parameter ranges
discussed above satisfy the requirement of negligible dis-
sipation. Meanwhile, when the cavity dissipation becomes
non-negligible, the effective anisotropic Dicke Hamiltonian
generated with our approach can also be used to study
steady-state phase transition. As shown in Refs. [2,11], the
critical coupling strength for the superradiant phase transi-
tion in the presence of a finite cavity dissipation becomes
λC

dis = 1
2

√
ω̃0(κ2 + ω̃2

c )/ω̃c. Consider a dissipation rate of
κ = 0.02ω0. At ν/ω0 = 0.49 (0.66), κ ∼ ω̃0, ω̃c, and λC

dis =
0.707λC (1.118λC), which is comparable to λC . The effective
coupling strengths in the engineered anisotropic Dicke model
can hence be stronger than λC

dis under our parameters, and the
steady-state superradiant phase can be reached.

VI. CONCLUSIONS

We studied a scheme that can generate an anisotropic
Dicke model with ultrastrong coupling via classical con-
trol of engineered quantum systems. By applying properly
designed qubit frequency modulation to a standard Dicke
model in the strong-coupling regime, the effective rotating and
counter-rotating couplings can be tuned in a broad range and

FIG. 5. (a) The ratio gA2/2ω′
c vs the relative qubit-cavity cou-

pling g0/ω0 and the dimensionless factor χ . (b) 103gA2/2ω′
c vs g0/ω0

at selected values of χ . (c) 102gA2/2ω′
c vs χ at selected values of

g0/ω0. Here ω0 = ωc.

reach the ultrastrong-coupling regime. We show that various
superradiant phases and the normal phase can be achieved in
the ground state of this anisotropic Dicke model. Our result
demonstrates that superradiant phases can be implemented
in practical physical systems with a collective light-matter
coupling in the strong-coupling regime, and the normal-
superradiant phase transition can be observed. With our
parameters, the two-photon A2 terms that could prevent the
implementation of the superradiant phases only have negligi-
ble effect on the engineered Hamiltonian.
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APPENDIX A: TWO-PHOTON A2 TERM

The two-photon (A2) terms are given by the Hamiltonian
HA2 = gA2 (a + a†)2 with amplitude gA2 = χg2

0/ω0 and χ be-
ing a dimensionless coefficient. In our discussion, the a†a term
in HA2 has been absorbed into the Hamiltonian of the standard
Dicke model by replacing the cavity frequency ωc with the
modified frequency ω′

c = ωc + 2gA2 . The remaining terms can
be written as gA2 (a2 + a†2). Here we will show that in the
strong-coupling limit with g0 � ω0, ω

′
c, these two terms can

be omitted. To justify the validity of this omission and esti-
mate the influence of the omitted terms, we consider the ratio
gA2/2ω′

c. In Fig. 5(a), we plot the ratio gA2/2ω′
c vs the collec-

tive coupling strength g0 and the dimensionless factor χ . Our
result shows that gA2/2ω′

c increases quadratically with g0 and
linearly with χ , which is clearly demonstrated by Figs. 5(b)
and 5(c), respectively. However, to reach gA2/2ω′

c = 0.01,
we need to have (g0/ω0 ∼ 0.065, χ ∼ 5) or (g0/ω0 ∼ 0.1,

χ ∼ 2), as indicated by the dashed curve in Fig. 5(a). For the
parameters of interest in our discussions with g0/ω0 ∼ 0.06
and χ < 0.1, this ratio is very small with gA2/2ω′

c � 0.001.
Hence, it is appropriate to omit these terms from the subse-
quent discussions.
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APPENDIX B: SEMICLASSICAL DISPLACEMENTS
α AND β

The Hamiltonian of the anisotropic Dicke model in the
Holstein-Primakoff representation is

H (2)
rot = ω̃0b†b + ω̃ca†a+

[
b†

√
1 − b†b

N
(λra + λcra†) + H.c.

]

− N

2
ω̃0, (B1)

i.e., Eq. (5) in the main paper. To solve the ground-state
phases, we use a mean-field approach and write the bosonic
operators as

a → c + α, b → d + β, (B2)

with semiclassical displacement α of the cavity mode and
semiclassical displacement β of the collective qubit mode.
Define the operator vector 
vS = (c, d, c†, d†)T . In the ther-
modynamic limit N → ∞, using a Taylor expansion of the
Hamiltonian H (2)

rot in terms of the fluctuation operators c and
d and keeping to the second-order terms, the Hamiltonian
then becomes H (2)

rot = HII + HI + EG with HII = 
v†
SG
vS , HI =


�T 
vS , and constant EG. The matrix G, vector 
�, and EG

all depend on the semiclassical displacements α and β. The
constant EG is the energy of the system at the displacements
α and β. By minimizing EG, which is equivalent to letting

�T = 0 (i.e., HI = 0), we can find the solutions of α and β for
the ground state at given system parameters. Then using the
Hopfield-Bogoliubov transformation on HII , we can obtain
the quasiparticle modes for the corresponding ground state.
Below we give the solution to the semiclassical displacements
in the ground states of all possible phases.

1. Normal phase

In the normal phase, the semiclassical displacements are
α = β = 0 without macroscopic excitations in the system.
Hence, the fluctuation operators c = a and d = b. The second-
order Hamiltonian is simply

H (2)
rot = ω̃0b†b + ω̃ca†a + [b†(λra + λcra†) + H.c.] − N

2
ω̃0,

(B3)

which includes second-order contributions in terms of the
operators a, a†, b, b† and the constant term −Nω̃0/2.

2. Superradiant phases

In the superradiant phases, the semiclassical displacements
are macroscopic with α, β ∼ O(

√
N ). The ground-state en-

ergy can be written as

EG = ω̃0|β|2 + ω̃c|α|2 +
√

k

N
[β∗(λrα + λcrα

∗) + H.c.]

− N

2
ω̃0. (B4)

The 4 × 4 matrix G is given by

G = 1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω̃c

√
k
N u∗

4 0
√

k
N u5√

k
N u4 ω̃′

d

√
k
N u5 − 1

k

√
k
N u6

0
√

k
N u∗

5 ω̃c

√
k
N u4√

k
N u∗

5 − 1
k

√
k
N u∗

6

√
k
N u∗

4 ω̃′
d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B5)

where k ≡ N − |β|2,

u1 = λrα + λcrα
∗, (B6a)

u2 = βλr + β∗λcr, (B6b)

u3 = β∗u1 + βu∗
1

4k
, (B6c)

u4 = λr − 1

2k
βu∗

2, (B6d)

u5 = λcr − 1

2k
βu2, (B6e)

u6 = β(u1 + u3β ), (B6f)

and ω̃′
d ≡ ω̃0 − 1

k

√
k
N u3(4k + |β|2). Here, to write HII in ma-

trix form, the constant term −(ω̃0 + ω̃c)/2 + 2u3
√

k/N is
neglected from HII . The components of the vector 
� are

�c = ω̃cα
∗ +

√
k

N
(β∗λr + βλcr ), (B7a)

�d = ω̃0β
∗ +

√
k

N
(λrα

∗ + λcrα)

− 1

2k

√
k

N

[|β|2(λrα
∗ + λcrα) + β∗2(λrα + λcrα

∗)
]
.

(B7b)

a. SE phase

The ground state of the anisotropic Dicke model is the SE
phase when |λr + λcr | > λC and λrλcr > 0. The SE phase has
two sets of real-number solutions (α, β ) = ±(α0, β0) with

α0 = −(λr + λcr )
√

N
(
1 − μ2

E

)
/2ω̃c, (B8a)

β0 =
√

N (1 − μE )/2, (B8b)

where μE = [λC/(λr + λcr )]2. The corresponding second-
order Hamiltonian can be obtained as

H (2)
rot = ω̃0

1 + μE

2μE
d†d + ω̃cc†c

+
√

(1 + μE )

2
[d†(λrc + λcrc†) + d (λrc† + λcrc)]

− (1 − μE )(λr + λcr )

2
√

2(1 + μE )
(d† + d )(c + c†)

+ ω̃0
(1 − μE )

(1 + μE )

(3 + μE )

8μE
(d† + d )2 + EG, (B9)

which will be used to derive the quasiparticle modes in Ap-
pendix C.
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b. SM phase

The ground state is the SM phase when |λr − λcr | > λC

and λrλcr < 0. The SM phase has two sets of imaginary-
number displacements (α, β ) = ±(iα0, iβ0) with

α0 = −(λr − λcr )
√

N
(
1 − μ2

M

)
/2ω̃c, (B10a)

β0 =
√

N (1 − μM )/2, (B10b)

where μM = [λC/(λr − λcr )]2. The corresponding second-
order Hamiltonian can be obtained as

H (2)
rot = ω̃0

1 + μM

2μM
d†d + ω̃cc†c

+ λr + λcr

2

√
1 + μM

2
(c + c†)(d† + d )

+ μM (λr − λcr )√
2(1 + μM )

(c − c†)(d† − d )

− ω̃0
(3 + μM )(1 − μM )

8μM (1 + μM )
(d† − d )2 + EG. (B11)

c. SEMa phase

For λr = 0 (i.e., only with nonzero counter-rotating terms)
and when |λcr | > λC , the system is in the SEMa phase with the
semiclassical displacements (α, β ) = (α0e−iθ , β0eiθ ), where

α0 = −λcr

√
N (1 − μ2

E)/2ω̃c and β0 = √
N (1 − μE )/2. In

these solutions, the displacements of the operators a and b
carry an opposite phase factor ∓θ , which can be an arbitrary
angle. The corresponding second-order Hamiltonian can be
obtained as

H (2)
rot = ω̃0

1 + μ

2μ
d†d + ω̃cc†c

+ (λr + λcr )(1 + 3μ)

2
√

2(1 + μ)
(c†d† + cd )

− (λr + λcr )(1 − μ)

2
√

2(1 + μ)
(e2iθ cd† + e−2iθ c†d )

+ ω̃0
(1 − μ)

8μ

(3 + μ)

(1 + μ)
(eiθd† + e−iθ d )2 + EG.

(B12)

Note that in this case μM = μE = ω̃0ω̃c/λ
2
cr = μ.

d. SEMb phase

For λcr = 0 (i.e., only with nonzero rotating terms) and
when |λr | > λC , the system is in the superradiant electromag-
netic b (SEMb) phase with the semiclassical displacements

(α, β ) = (α0eiθ , β0eiθ ), where α0 = −λr

√
N (1 − μ2

E )/2ω̃c

and β0 is the same as defined above in the SEMa phase. In
these solutions, the displacements of the operators a and b
carry an arbitrary but equal phase factor θ . The corresponding
second-order Hamiltonian can be obtained as

H (2)
rot = ω̃0

1 + μ′

2μ′ d†d + ω̃cc†c

+ (λr + λcr )(1 + 3μ′)
2
√

2(1 + μ′)
(cd† + c†d )

− (λr + λcr )(1 − μ′)
2
√

2(1 + μ′)
(e−2iθ cd + e2iθ c†d†)

+ ω̃0
(1 − μ′)(3 + μ′)

8μ′(1 + μ′)
(eiθ d† + e−iθ d )2 + EG.

(B13)

Here μM = μE = ω̃0ω̃c/λ
2
r = μ′.

e. Symmetry

The SE and SM phases have two sets of solutions
(±α,±β ). In the SE and SM regions of the phase diagram
with λrλcr 
= 0, the Hamiltonian has Z2 symmetry. The so-
lutions are Z2 symmetry-breaking states of the Hamiltonian.
Meanwhile, in the SEMa and SEMb regions with λrλcr =
0, the Hamiltonian has U(1) symmetry. The solutions are
U(1) symmetry-breaking states with an arbitrary phase θ . The
U(1) symmetry of the Hamiltonian results in a Goldstone
quasiparticle mode with zero frequency, as will be shown in
Appendix C.

APPENDIX C: QUASIPARTICLE MODES

In this section, we diagonalize the Hamiltonian H (2)
rot using

the Hopfield-Bogoliubov transformation [37] and derive the
quasiparticle modes in the normal and superradiant phases,
respectively. The Hamiltonian H (2)

rot can be diagonalized as

H (2)
rot =

∑
i=±

ω
p
i γ

p†
i γ

p
i + E p

G, (C1)

where p =N, SE, SM, SEMa, and SEMb refers to the phase
of the ground state, γ

p
i (γ p†

i ) is the annihilation (creation)
operator of the quasiparticle mode with frequency ω

p
i , and

[γ p
i , γ

p†
j ] = δi, j . There are two quasiparticle modes ± in each

phase. The operators of the quasiparticle modes can be ex-
pressed as

γ
p

i = 
hT
ip
vS, (C2)

where 
vS = (a, b, a†, b†)T for the normal phase with α = β =
0 and 
vS = (c, d, c†, d†)T for the superradiant phase, and 
hip

is a 4 × 1 vector that gives the coefficient for the operator
component of the corresponding mode.

The coefficient vectors 
hip = (hp
i,1, hp

i,2, hp
i,3, hp

i,4)T for the
quasiparticle mode γ

p
i in phase p can be solved from the

eigenvectors of the Bogoliubov matrix

MT
p =

⎛⎜⎜⎜⎜⎝
ω̃c �̃∗

c 0 �̃d

�̃c ω̃′
0 �̃d D

0 −�̃∗
d −ω̃c −�̃c

−�̃∗
d −D∗ −�̃∗

c −ω̃′
0

⎞⎟⎟⎟⎟⎠. (C3)

Here the superscript “T ” in the expression MT
p denotes

the transpose operation on the matrix Mp. The matrix Mp is
obtained by deriving the Heisenberg equations for the opera-
tors in 
vS using the Hamiltonian H (2)

rot . In Table I, we give the
expressions for ω̃′

0, �̃c, �̃d , and D in the matrix MT
p for all

phases p.
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TABLE I. The parameters ω̃′
0, �̃c, �̃d , and D for all phases.

N SE SM SEMa SEMb

ω̃′
0 ω̃0 ω̃0

1+μE
2μE

+ w3 ω̃0
1+μM
2µM

− v3 ω̃0
1+μ

2μ
+ s0(μ) ω̃0

1+μ′
2μ′ + s0(μ′)

�̃c λr w1 v1 s1(μ) −s2(μ′)
�̃d −λcr w2 v2 s2(μ) −s1(μ′)
D 0 −w3 −v3 −s0(μ)e−2iθ −s0(μ′)e−2iθ

The expressions of w j , v j , s j ( j = 1, 2, 3) in Table I are
given by

w1 = �M

√
1 + μE

2
+ �EμE

√
2

1 + μE
, (C4a)

w2 = �M

√
1 + μE

2
− �EμE

√
2

1 + μE
, (C4b)

w3 = ω̃0
(1 − μE )

(1 + μE )

(3 + μE )

4μE
, (C4c)

v1 = �MμM

√
2

1 + μM
+ �E

√
1 + μM

2
, (C5a)

v2 = �MμM

√
2

1 + μM
− �E

√
1 + μM

2
, (C5b)

v3 = −ω̃0
(3 + μM )(1 − μM )

4μM (1 + μM )
, (C5c)

and

s0(μ) = ω̃0
(1 − μ)

4μ

(3 + μ)

(1 + μ)
, (C6a)

s1(μ) = −�E
(1 − μ)√
2(1 + μ)

e−2iθ , (C6b)

s2(μ) = −�E
(1 + 3μ)√
2(1 + μ)

, (C6c)

where

�E = λr + λcr

2
, (C7a)

�M = λr − λcr

2
. (C7b)

The Bogoliubov matrix MT
p has four eigenvalues:

±ω
p
+, ±ω

p
−, among which ω

p
+, ω

p
− � 0 are the two quasipar-

ticle frequencies. We derive that

ω
p
± =

√
Y ± √

X√
2

, (C8)

where

Y = ζ 2 + 8υχ + ω̃2
c , (C9)

X = 16(ζχ + υω̃c)(ζυ + χω̃c) + (
ζ 2 − ω̃2

c

)2
, (C10)

and the expressions of υ, χ , and ζ for all phases are given in
Table II.

TABLE II. The parameters (υ, χ, ζ ) for all phases.

N SE SM SEMa SEMb

υ �E μE�E �E μ�E μ′�E

χ �M �M μM�M −�E �E

ζ ω̃0
ω̃0
μE

ω̃0
μM

ω̃0
μ

ω̃0
μ′

With the above result, the quasiparticle frequencies in the
normal phase can be derived as

ωN
± = 1√

2

{
− 2λ2

cr + 2λ2
r + ω̃2

0 + ω̃2
c

±
√[

4λ2
r + (ω̃0 − ω̃c )2

]
(ω̃0 + ω̃c )2 − 4λ2

cr (ω̃0 − ω̃c )2

}1/2

.

(C11)

Within the parameter region of the normal phase as labeled
in Fig. 2 of the main paper, both ω+ and ω− are real numbers,
which is consistent with our discussion of the phase diagram.
For the SEMa and SEMb phases, we find that

ωSEMa
− = ωSEMb

− = 0, (C12)

which describes a Goldstone mode due to the U(1) symmetry
of the Hamiltonian when either λr or λcr equals to zero. We
also find that in the SEMa phase,

ωSEMa
+ =

√
λ4

cr

ω̃2
c

+ ω̃c(−2ω̃0 + ω̃c), (C13)

and in the SEMb phase,

ωSEMb
+ =

√
λ4

r

ω̃2
c

+ ω̃c(2ω̃0 + ω̃c). (C14)

We plot the excitation spectrum ω± for all parameter re-
gions in Fig. 6 vs the effective couplings λr and λcr at ν/ω0 =
0.49 for g0/ω0 = 0.06 and ω0 = ω′

c. The superscript “p” that
refers to the specific phase in the quasiparticle frequency is
omitted. The phase boundaries are indicated by the white
lines.

rr

FIG. 6. The relative quasiparticle spectrum (a) 10ω−/ω0 and
(b) ω+/ω0 given by Eq. (C8) vs λr/λ

C and λcr/λ
C for ν/ω0 = 0.49.

The superscript “p” for a specific phase in the quasiparticle frequency
is omitted. Other parameters are g0/ω0 = 0.06, and we choose ω0 =
ω′

c = 1 as the energy unit.
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