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Optimal focusing conditions for bright spontaneous parametric down-conversion sources
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Optimizing the brightness of a spontaneous parametric down-conversion (SPDC) source is an important task
for many quantum information applications. We investigate the optimal focusing conditions to maximize the
number of photons produced in an SPDC process and coupled with single-mode fibers. We provide a general
expression for the two-photon wave function, generalizing previous known results, by considering collinear
and noncollinear emission. We present analytical expressions for our results in the thin-crystal limit and clarify
the relation between different focusing conditions already existing in the literature. Differently from what was
previously reported, we show that the optimal ratio between the pump waist and the generated photons waist
depends on the emission angle: It is 1/+/2 for collinear degenerate emission and approaches 1/2 for larger
collection angles. The role of spectral filters is also analyzed. We support and enrich our discussion with
numerical simulations, performed for type-I SPDC in a g barium borate crystal. For this type of emission,
we also investigate the role of the transverse walk-off outside the thin-crystal regime.
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I. INTRODUCTION

Spontaneous parametric down-conversion (SPDC) is one
of the most commonly exploited physical mechanisms to
generate quantum states of light and it has been used for
fundamental tests of quantum mechanics as well as for the
realization of many protocols of quantum cryptography [1,2],
teleportation [3], and optical computing [4,5]. The photons in
this process are typically produced by the interaction of a laser
pump with a nonlinear optical medium that must have a rather
strong second-order nonlinear optical susceptibility x? to real-
ize a bright source. However, many other factors determine the
properties and the number of emitted photons, such as phase-
matching and energy-conservation relations and the medium
length and shape of the pump laser beam. The importance of
these and other elements has been considered in many works
with different types and degrees of approximation and we
will not attempt to refer to them exhaustively. Instead, we are
interested in a common experimental setup in which the pho-
tons involved in the SPDC process are emitted and collected
by single-mode fibers. Mathematically, this configuration can
be schematized by assuming spatial Gaussian modes for
the photons, as has been done in several papers [6—17].
In these works, different spectral properties of the emitted
photons have been studied, using various perspectives or by
invoking suitable approximations, such as the thin-crystal
limit.
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In this paper we will focus on the brightness of the emis-
sion process, evaluated as

Rt = f [W(wi, ws)Pdwidws, (1)

where W(w;, wy) is the (unnormalized) wave function, whose
explicit expression will be given in Eq. (7), which describes
the frequency spectrum for the spatial Gaussian component of
the SPDC photons, commonly denoted signal (s) and idler (i).
The wave function W(w;, wy) is not normalized since it repre-
sents only the two-photon component of the full SPDC state
(which includes also the vacuum and multipair components).
Experimentally, the integral in (1) gives the probability of de-
tecting a pair of coincident photons when using single-mode
fibers to collect them. The choice of the domain of integration
is related to the presence of filters, as we will discuss later.

It is well known that the brightness (1) depends on the
waists of the photons in the process. According to the different
assumptions made, however, different optimal values for the
ratio between the pump waist and the signal or idler waists
have been reported in order to maximize (1) (see, e.g., [6,8,9]).
A clear relation between the different optimal values proposed
is lacking.

Our article is part of this discussion, aiming to under-
stand the conditions that lead to the optimal brightness in
different regimes. Assuming Gaussian beams, we will tackle
the problem from the momentum space perspective. We will
first discuss how to make a known paraxial approximation
[8] more accurate, providing an explicit formula, given in
Eq. (26), to perform numerical simulations of the biphoton
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wave function. Then we will clarify the relation between
values of the optimal ratio already found in the literature,
relating them to different experimental situations: Collinear or
noncollinear emission, with or without spectral filters. More-
over, we will study the role of the transverse walk-off and find
interesting optimal conditions.

To investigate different regimes and different geometri-
cal configurations, we will perform numerical computations,
choosing standard § barium borate (BBO) crystals to realize
type-I emission. A privileged role will be played by the SPDC
sources based on crystals which are thin with respect to the
focal depth of the pump field inside the crystal itself. In this
particular configuration, we will derive analytical expressions
to better understand the numerical results

The paper is organized as follows. In the next section we
introduce the assumptions of our work. In Sec. III we describe
the paraxial approximation and derive formulas for the bipho-
ton wave function. In Sec. IV we discuss the thin-crystal limit
and clarify the relation between the optimal focusing condi-
tions proposed in the literature. In Sec. V we study corrections
to the thin-crystal limit and report our numerical simulations.
We summarize in Sec. VI. Some technical details are gathered
in Appendixes A—C.

II. DEFINITIONS AND ASSUMPTIONS

The interaction Hamiltonian describing an SPDC process
can be written as

=2 /V d*FDSPDTDT + He., )

with V the volume of the nonlinear medium, which in the
rest of the paper will be a uniaxial crystal. The quantity
Zéfzf) is proportional to the inverse effective susceptibility and
characterizes the strength of the interaction; in our discussion
on the optimal focusing conditions it will be an irrelevant
overall factor, but its exact value would instead be needed
to obtain predictions about the absolute brightness D,, where
a =p,s, 1, are the displacement field operators of pump (p),
signal (s), and idler (i) and their superscripts denote annihi-
lation (+4) or creation (—) operators. The three photons have
a fixed but arbitrary polarization: If not stated otherwise, we
will restrict the discussion to a specific type of SPDC (type
I) only for numerical simulations. Note that we are writing
the Hamiltonian in terms of D, and not of the electric fields,
since the latter choice would lead to some contradictions in
the quantization procedure, as discussed in [18] (see also [19]
for a review).

We consider a pulsed laser which propagates in the z direc-
tion, impinging on a crystal of length L, centered at z = 0, and
oriented perpendicular to the z axis. As shown in Fig. 1, we
choose the y axis so that the optical axis lies on the (y, z) plane,
forming an angle 6 with the z axis. The x axis is defined so that
(x,y, z) is a right-handed coordinate system. We parametrize
the fields in the process, selecting as independent variables
the vacuum frequency  and the wave-vector components'

INote that we use an arrow for the three-dimensional vectors and
the bold font for the bidimensional vectors in the (x, y) plane.

Wy pump

SPDC photons
Eﬂ] fiber coupling

" optical axis

FIG. 1. Experimental setup described in the text. The nonlinear
crystal of thickness L is centered at z = 0. By z’ we denote the
direction defined by the optical axis and by y’ its orthogonal direction
in the (y, z) plane.

k = (ky, k,). The explicit expression of the longitudinal com-
ponent k,(w, k) can then be obtained using the dispersion
relations, as discussed in Appendix A. Parametrizations anal-
ogous to ours can be found in [8,20,21].

As is customary, we consider a strong pump field so that
we can ignore depletion and we can write it as a classical field

D
D;H(r, 1) = P

2 —iky T —iw,
(27{)3/2 /d kpdeAp(wp, kp)e p T ipl

3)

Here 7= (x,52), k= Ky ke(wp,ky)), and D,
parametrizes the amplitude of the field. We also assume
the factorable form between temporal and spatial components

Ap(wp, kp) = A;fmp (wp)up(Kp), “)

with a temporal normalized wave function given by .Ag:mp(wp)
and a spatial normalized wave function given by u, (k). For
the signal photon produced in the SPDC process we have

Pl p—
s ST (27 )3/2
and similarly for the idler, replacing s with i.
Keeping only the first order in the expansion of the evo-
lution operator, the (unnormalized) biphoton wave function,
describing the photons emitted in the process, is given by

/ dkdwe™ ™ol (kg w)  (5)

W) = —% /m dt H,(r)|initial). (6)

o0

Assuming that the photons are created in spatial modes de-
scribed by ug(K, o) and u;(Kki, i), we can easily find the
expression (see also [8])

W(w;, ws) = NAT™(w; + w5)P(w;, ws), ()
where, rescaling the z coordinate as z = LZ/2,
L 1
bl 0) =3 / d*kid’k, / 1 dZ up(K; + ko )us (Ks, ws)

% uf (k;, wi)efi(L/2)ZAkz(ka,w,;kﬁ,w,). (8)
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To derive this formula, we integrate over the time and the
transverse spatial coordinates, obtaining the conditions w, =
w; + ws and k, = k; + K, in the form of § functions. Note
that we also consider the possibility of spatial poling, so the
normalization constant A in (7) is written in terms of the am-
plitudes of the displacement fields as N = Ee(é)DpDiDsGm /ih,
with G, the Fourier coefficient of the spatial poling distribu-
tion of order m [22]. Calling A the spatial poling period, at
order m the phase mismatch Ak, is

2
Ak,(k;, i ks, ;) = ’”Tﬂ + ke (ki + kg, 5 + @3)

— kiz(Ki, w;) — kg (Ks, @), )

where k,, are the longitudinal components of the wave vectors
inside the crystal. Unpoled crystals correspond to m = 0.

For uniaxial crystals, the explicit form of k.. (k,, w,) de-
pends on the polarization of the corresponding wave. Writing
the ordinary and the extraordinary refraction indices as n, and
n., respectively, the refraction index at an angle 6 to the optical
axis is

sin’0  cos?6
= + . (10)

2 2
. U

1
2
ny

We can write

2 2
k.(k, ) = Bky + \/(?) - (Yko)? — (Vniky) . (1D

where 8 = (y? — Z—i) sin @ cos @ and the values of the param-
eters depend on the polarization as follows:

y = o (extraordinary), (12)

y =1
More details can be found in Appendix A. Note that the
dependence on w is also implicit in the indices of refraction
n,(w) and n.(w) and thus in B(w), n(w), and y (w). According
to the type of phase-matching considered, it is necessary to
express the longitudinal component of the wave vectors k,, by
using Egs. (11) and (12) or (13).

The above-derived two-photon wave function (7) is very
general. We will now focus on some experimentally relevant
cases, as done in [8]. First, we will assume the spectral pump
function to be a normalized Gaussian, namely,

2
AL () = | 2% pgtoren?, (14)
T

with 7, related to the pulse duration and 27, the inverse of the
standard deviation of the modulus square of (14). Then, in the
experimental setup we have in mind, the photons are emitted
and collected using single-mode fibers. We can therefore try
to approximate their spatial wave functions using Gaussians
(see Appendix B)

WaXWa — —
ol @0) = [ =52 [T ettt ars)

n=x,y

n=ng,

n=ne,

(ordinary). (13)

where a =p,1i,s, kop =0, and ko, and ko;, are the cen-
tral wave vectors corresponding to the directions where the

photons are collected. The parameters w,, are the beam
waists; we consider the possibility that the beams are elliptic,
meaning that the beam waists W, and W,, can be different.
Finally, we choose kg; and kg, such that the phase-matching
and energy-matching conditions are satisfied for the idler and
signal photons at frequencies €2; and €2, namely,
Ak, (kg;, ©2i; kg, 25) = 0 for phase matching ||,
Koi (€2;) + Kos(€2,) = 0 for phase matching L,
Qi+ Qs =wy for energy matching. (16)

To solve Eq. (16), the central wave vectors, whose direction is
defined by the fiber position, can be written as
W Sin o,

kog = —————m, a7

C C

where m is a unit vector in the (x,y) plane and ¢; > 0 and
o5 > 0 are the absolute values of the angles of collection di-
rection with respect to the z axis (see Fig. 1). These angles are
related by ;sina; = Qg sinay to satisfy the transverse (L)
phase-matching condition of (16). The description (15) holds
for small angles of collection (see Appendix B) so that in (17)
we will approximate the sine function with its argument.

III. PARAXTAL APPROXIMATION

The actual computation of the integrals in (8) is rather
difficult, due to the complicated dependence of Ak, on the
transverse components, as is clear from (11). However, we
can note that the absolute value of the integrand in (8) is given
by the product of the spatial wave functions u,, i.e., up to an
overall factor,

W12 W2 W2
1_[ eXp <_ Tﬂ (ki — Koiy. ) — % (ks — kosy. > — %k;}_) )

w=x,y
(18)

with kp,, = kiy, + k.. This quantity is strongly peaked around
its maximum if

Wy > Ag,  a=1,s,p, (19)

a condition that is satisfied in typical SPDC sources. We can
then apply the so-called paraxial approximation: A small error
can be made in the computation of (8) by expanding Ak,
at the second order around the maximum of (18). For each
component i = x, y, this maximum is at
_ W,
kiy (@i, ws) = kojp (i) — W—z[kom (1) + kogy (ws)],
in
W2
ksp. (wi, ws) = kOsu (ws) — W_zﬂ[kin,(wi) + kOsu (w5)], (20)
i
where we introduced the effective beam waist W,

1 1 1 1

= _ —.
) 2 2 2
W, o Woo Wi Wy

21

Note that, although similar in spirit, our approximation around
the vectors k; and kg is different from the one discussed
in [8], where the expansion is simply performed around the
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FIG. 2. Normalized absolute value of the integrand in (8) as a
function of k;, and kg, for w; = wy/2.1 and ws = wy/1.9. The dashed
lines denote the values of Eax and the dotted lines the values of k..
The simulation has been performed for a type-I1 SPDC realized via a
BBO crystal with Ay = 2w ¢/wy = 405 nm, perfect phase matching,
collection angle o &~ 2.8° in the (x, z) plane, w; = W, = 50 um, and
W, = 25 um.

center of the two Gaussians Ko; and Kq,. Since EiM(Qi, Q) =
koi, (€2;) and ESM(Qi, Q) = kos,, (£25), the two approximations
are equivalent for the central frequencies €2; and €2, but the
expansion around kg; and ko is not centered on the maximum
of the exponential (given by Eiu and %SM) for other values
of w; and ws. Therefore, our choice gives a more accurate
approximation of ®(w;, ws) with respect to the one performed
in [8] when w; # Q; and w, # ;. An example is given in
Fig. 2.

To expand Ak, to second order, we first expand each lon-
gitudinal component k,; as

kaz %Eaz + Z(ku - EM)K{Z
I
1 o _
+3 ;am — k)KL (k, — k), (22)

where %az = ko (Ky), Ky = (ks an), and we introduced the
derivatives

0ka;
kg,

ke
ook, 0 Okaudka

ny

K" = (23)

k=K,

In Eq. (22) we also defined

2

kp;l,(a)iv ws) = kip, + ks;t = (ﬁ) (kOiu + kOsu)' (24)
Whpi

With the substitution of (22), the resulting integral in (8)

becomes Gaussian in the transverse components and can be

solved. The result can be expressed in terms of some phys-

ical relevant quantities. Indeed, we can introduce the focal

parameter &,, and the deviation parameter vy, given by

L
Eau(wa) = _W_zKétzu’ v(m(wa) = _2W K{tl‘ (25)

anp ap

As discussed in Appendix B, the parameter v, is related to
the lateral deviation of the beam (in units of beam waist w,,
inside the crystal) since, at the output of the crystal, the beam
is shifted by W, v,,,. The parameter &,, instead is related to the
focusing condition of the beam in the p direction [6]: If &, >
1 (¢, < 1) the field is strongly (weakly) focused relative to
the length L of the crystal.

Leaving to Appendix C a more general expression of the
biphoton wave function, we report here the case in which
the photons are collected in the (x, z) or the (y, z) plane, a
very common choice in experiments. In this configuration, the
expression (8) in the paraxial approximation becomes

(i, 05) =232 LN AS™ (wp)

W, o~ (1/HW,, (Koiu+osy )2
I
p=x.y Wpp Wi Wy

20,2
x / ! 7 oLk 2 I exp (- 2°57)
-1 pimry VEuW(Z)
(26)
where AEZ = Akz(Es, ws; Ki, w;) and
Q.Z)=A,—1iB,Z, (27)
F.(2)=1+i£,Z +C,Z%. (28)
Introducing the combination of waists and deviation
parameters
2
— Vg Vp
R e A 29
abr . (Wlm Wap )
the terms in Q,, are given by
Ay =N, + A, + A (30)
— A2 2 g 2
BI/« - Aisu‘spﬂ - Apsuglﬂ - Apiugsﬂ' €2))

The expression of F},(Z) in (28) instead is written in terms of
an aggregate focal parameter

—2 —2 —2
w w w

%';L = é;'iy,(l - _;> +§su(1 - _M> _Epp,(l - _M)
WiM Wgﬂ W12>u

(32)

and the quantity

CM _ Wi(gsuépu + gill«é:pli _ éip,é:su)’ (33)

2 2 2
Wiu Wiu Wpu

which have already been introduced and discussed for the
collinear SPDC in [6] [Egs. (14) and (15)].

Equation (26) is the first main result of this work: It is
a generalization of the expression (16) of [6], taking into
account more general angles of emission, birefringence ef-
fects, and possible transverse walk-off of the beams (see
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Appendix B for a discussion on this point). We note that
the result obtained in Eq. (16) of [6] is recovered, up to
different conventions in the overall factor, by noting that in
the case of periodically poled crystals with collinear emission
we have Q,,(Z) = 0 and k¢; = ko; = 0. Equation (26) is also
an improvement and simplification with respect to the results
contained in [8]. The differences are in the improved choice
of expansion, as already discussed, and in the factorization of
the integrand in the x and y components, due to the particular
choice of the plane of emission.

IV. THIN-CRYSTAL APPROXIMATION

For the rest of the work, we will be interested in studying
the total brightness (1), starting from some analytical results
that can be obtained in the limit of thin crystals. To be con-
sidered a thin crystal, two conditions must be met. First, we
require the length L of the crystal to be short with respect
to the confocal parameter of the Gaussian beams correspond-
ing to pump, idler, and signal photons. Moreover, the lateral
deviation of the beams should be negligible with respect to
the beam waists. Mathematically, these conditions can be
expressed in terms of the parameters in (25) as

K1, v, K1Va,p. (34)

At order O in the expansion in v,, and &,,, the Z integral in
(26) is simplified into

LAk (w3, ws
W(wi, 0y) = 4/ 2ZTNLAS™ (@) + w,) sine (%)

— 5 1/2
W _
» 1—[ i o~ (/M koiuthos )
fi=rt,y WPMWWWSM

(35)

Actually, starting from the more general equation (C8), it can
be verified that the expression (35) holds regardless of the
choice of collection plane.

To focus on the main aspects of the problem, we can take
symmetric waists in the x and y axes and

W, =W, =W, W,=rw (36)
so that
W = ﬂ. (37)
1+2r2

This configuration is physically relevant since the signal and
idler are often collected in identical fibers, using symmetrical
optical apparatuses. Moreover, we are interested in degenerate
emission ; = Q4 = wy/2 that implies, according to Eq. (16),
equal angles of collection

o=y = . 38)
With this choice, by writing

w0 .
k()s = (k()sxa k()sy) = T(COS ¢’ sSin ¢),

Wi .
Koi = (koix, koiy) = —f@osqx sin @), (39)

we have

—2 9
W W o
> o Ko+ ko = (s — @) (40)
iy

Nonetheless, the following discussion can be generalized to
arbitrary parameters.

A. Longitudinal perfect phase matching

Our main goal is to find the optimal focusing conditions
in order to have a bright source; in the configuration (36)
this corresponds to finding the optimal values of w and r to
maximize (1). To begin with, we can consider this problem
when the longitudinal phase mismatch satisfies LAk, < 1
for all the values of w; and w; that do not suppress the two
Gaussian terms in (35). In this case, which we will call longi-
tudinal perfect phase matching, the sinc term is approximately
equal to 1 and the constraints to the spectral properties of W
are due to the coherence length 7, of the pump, the central
frequency wy of the pump, the collection angle ¢, and the
beam waists. This condition is clearly more reasonable in the
presence of short crystals (L small) and when there is a good
spatial overlap between the photons inside the crystal. Also, it
is better satisfied in the presence of spectral filters, but we will
consider this configuration in Sec. IV B.

In this section the only restriction to the collected frequen-
cies is given by the finite transmission range of the crystal
used in the SPDC process. In a first approximation, we can
model the transmission range with a step function: Calling wy,
and o, the minimum and the maximal frequencies transmitted
in a material, we impose the conditions

wp < 0, w5, Wy < Wy 41)

and we recall that w, = w; + ws. These constraints restrict the
integration domain in (1) and in longitudinal perfect phase
matching we obtain

Rior / dwidws
wp Sop,0s, 0] +os <op

—2
x exp | =273 (w; —wy) — 2
p Tp(wl + ws — wp) 2 S 2% (0)1 ws) |.

(42)

After performing the change of variables u = w; + wsand v =
w; — ws and solving the integral in v, we arrive at

T, CW 2 2
R =327 N2 L2 2 — W / du e 7% =)
ar

Wa

X erf(—(u — Za)b)>, 43)
ﬁc

where erf denotes the error function and we restored the

overall coefficients. We are interested in small angles «, so

it is useful to define x = u — 2w, and consider the Maclaurin

series

Wa 2 & (=1 W
erf<ﬁx> nzn'(2n+1)<fc> . (44

n=|
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Plugging this expansion in (43) and inverting the order of sum
and integral, we can write the total brightness as

227

R =32L°N?————
e (1 +2r2)2w2g,
S —1)" 2 n w 2n
xy D ( ’ 2) ("‘—) dy  (45)
s 2"(1 +2n)n! \ 1 4+ 2r TpC

where we introduced
T (W —2wp) )
d, = / dy e—2[y+rp(2wb—a)g)] y1+2n. (46)
0

The integral defining d,, can be solved for each n, but its ex-
pression is not particularly useful for our discussion. Instead,
we are more interested in understanding some limiting situa-
tions in which the series (44) [and consequently (45)] can be
truncated or simplified. The relevant quantity is the argument
of the erf in the central value wy, namely, the adimensional
parameter oW (wy — 2wp)/c.

1. Collinear case

When & = 0 or more generally the quantity oW (wy — 2wp)
is very small compared with c, the series (44) can be truncated
at order 0. In this case, the brightness becomes

22w
(1 +2r2)>w2t,
The maximum of (47) is clearly at

. 1
rf=—. (48)
V2

This optimal condition emerges in the discussions of various
previous works [6,9,17] studying collinear emission or as-
suming perfect transverse phase matching. Indeed, the latter
condition corresponds to not having the second term in the
exponential of (42), as in the collinear case. Note that the
brightness (47) increases by decreasing W, but the divergence
in W = 0 is not physical since we cannot apply the thin-crystal
approximation for small values of w and, before that, we
cannot apply the paraxial approximation for waists of the
same order of the wavelengths.

Ry = 32L°N? do. 47)

2. Large emission angle

Another interesting limit is the one in which oW (wy — 2wp)
is much larger than c. In this case the integral in (43) can be
solved by replacing the erf function with its asymptotic value
1. Note that this substitution introduces an error of less than
1% for arguments x > 2+/2c/Wa. The resulting brightness is

3/2

Rt = 8x/§L2N2cm{erf[«/§tp(wo — 2ap)]
— erf[v/25y(wo — @)1}, (49)
with a maximum at
=1 (50)

2
The expression (49) was also derived in [8] for the case of
large tpwo and integrating over the whole plane of the fre-
quencies (wj, ws). In fact, the integral in (42) is made of two

exponential terms which select, in the plane of integration
(wi, ws), a contribution from a strip around the line ws =
—w; + wp and another around the line w; = w. The width of
the strips depends on the values of 1, and aw, respectively.
The intersection of the two strips gives the domain which
is relevant for the integration. As aw and t, increase, this
domain becomes smaller and smaller and we can expand the
extrema of integration in the integral (42) to (—oo, 00), as
discussed in [7]. In this way, the integration can be performed
via standard techniques, recovering the result of [8]. We stress,
however, that (49) holds only when aw(wy — 2wjp) > c. For
this reason, the divergence at «w = 0 in (49) is unphysical.

a. Optimal angle in the (x,y) plane.. In the case of suf-
ficiently large emission angles, we can ask whether the rate
emission is constant in the plane (x, y). For equal waists w,, =
Wy, we just found that there is no dependence on the direction
in the (x,y) plane. However, we can try to generalize the
previous result as follows. Let us relax, only in this paragraph,
the conditions (36) and assume different waists on the x and
y directions and between the idler and signal. Integrating the
frequencies over the whole real axes, the brightness is

W,
Wi, Wi, Wy, Gh
> 2 —2 . o . )
\/Wx COS (i)—i—WV sSin ¢,u:x,y Pu TR TES I

1

Rior

where we used the definitions in (39). Assuming the waists
Wp, Wiy, and W, are fixed, we can find the best emission
angle by minimizing the square root in (51), which gives (n €
7)

ifw, > w,

6= {(Zn + D7 (52)

nw it w, <w,,

while if W, = W, there is not a privileged angle of emission, as
found before. Therefore, the optimal emission plane is related
to the direction of the maximal value of the effective beam
waist.

3. Intermediate values

For intermediate values of aw(wy — 2wy), it is natural to
expect a smooth transition between the values r* = 1/+/2 and
1/2. We checked this behavior numerically by maximizing the
expression in (43). The results are shown in Fig. 3, where the
simulations have been performed for three different values
of the waist W, 7, = 102 fs, and with a free-space central
pump wavelength 1y = 405 nm. The domain of integration
has been chosen between the frequencies corresponding to
A, = 0.2 nm and A; = 2.2 nm, i.e., in the clear transmission
range of a BBO crystal, discussed in [23].

In conclusion, we have shown how the waist ratio r =
W, /Wg = W, /W; can be chosen to optimize the source bright-
ness. The value r* = 1/+/2 is reported in the literature as
the optimal value in the thin-crystal approximation and for
collinear emission [9,17], without reference to different values
of the emission cone aperture. Here we have demonstrated
instead that the optimal r depends on the emission angle, as
shown in Fig. 3. For a large aperture, we obtained r* = 1/2, a
value already derived in [8] without the crucial observation
that it holds only in the limit of a large emission aperture
angle. Note that the right choice of the optimal ratio is quite
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0.0 0.5 1.0 1.5 2.0

o (deg)

w=10pum w=30um
— w=50um — w=T70um

FIG. 3. Value of the optimal r that maximizes (43) as a function
of a. The optimal r changes in the region r € [3, 1.

relevant. As shown in Fig. 4, by choosing » = 1/2 in the
collinear case, instead of the optimal value r = 1/+/2, there is
a loss of brightness of around 10%. A similar situation holds
in the noncollinear case, inverting the two values.

B. Spectral filters

In many experimental and technological implementations,
only the photons in a small wavelength range are desired and
spectral filters are inserted before collecting the signal and
idler. To reproduce this setup, we assume that the filters act as
step functions and impose on the idler and signal frequencies
the restrictions

wo wo

7_5<wi: ws<7+8, (53)

collinear

— large angle

FIG. 4. Variation of the (normalized to its maximum) bright-
ness as a function of the ratio r. The collinear plot was obtained
from Eq. (47). The large-angle curve was obtained in the aw(wy —
2wp) > ¢ limit [see Eq. (49)]. The dotted lines are at the values
r=1/2and 1/+2.

: : : : : d
0.0 0.5 1.0 1.5 2.0 2.5 o (deg)
w=10pum w=30pum
— w=50um — w=T70um

FIG. 5. Optimal r to maximize the thin-limit brightness includ-
ing the sinc contribution, as in (35). The crystal length L = 100 ym
and emission is in the (x, z) plane.

where 26 denotes the frequency width selected by the filters.
The corresponding brightness is

3 28 v

T,CW W

Rt = 32m N2 L 2 f duezfﬁuzerf<—“(25—|u|)>,
ar<we J_ss V2¢

(54)

where, starting from (43) with the constraints (53), we per-
formed the change of variables u = w; + ws — wp and v =
w; — wg and we solved the integral in v. For sufficiently nar-
row filters § < ¢/Wa, the argument of the erf function is
small (since the integration variable u is bounded by |24])
and we can expand the erf function around 0. Note that for
a collection angle of 2°, a waist W = 30 um, and a central
wavelength A = 810 nm, the condition of a narrow filter se-
lects wavelengths much smaller than about 100 nm, a very
common configuration. Performing the expansion to the third
order in § and solving the integral, we find

V2 L1, 8%r? (1 a?w26%r? ) (55)

Rt ~ 128N -
ot w2(1 + 2r2)2 3¢2(1 + 212)

Hence, in the presence of narrow filters, for which only the
first term in large parentheses in (55) can be considered,
the brightness does not depend on the angle «, at least in the
thin-crystal limit, and its maximum s at 7* = 1/ /2. Note also
that the perfect-phase-matching approximation is well satis-
fied, since we are only selecting a small range of frequencies
around (€2;, 25) for which Ak, (€2;, 25) = 0.

C. The sinc contribution

The last missing ingredient in our thin-limit discussion is
the sinc contribution in (35), which we will only introduce
numerically. Figure 5 shows a plot of the optimal value of
r, obtained using the thin-limit biphoton wave function (35)
which includes the sinc contribution. The simulations have
been performed for type-I SPDC e — o+ o with degenerate
emission and central pump wavelength at Ay = 405 nm. The
pump pulse duration has been fixed at 7, = 102 fs. In order to

063712-7



COCCIA, SANTAMATO, VALLONE, AND VILLORESI

PHYSICAL REVIEW A 107, 063712 (2023)

TABLE 1. Approximate values of £, and A, for our configura-
tions for L = 100 m.

TABLE II. Approximate values of &, and A, for our configura-
tions for L = 500 m.

W (um) o &x & Ay Ay W (um) a €x & As Ay
10 0° 0.07 0.07 0 0.11 10 0° 0.38 0.38 0 1.63
10 2.5° 0.07 0.07 0.03 0.12 10 2.5° 0.38 0.38 0.86 1.88
30 0° 0.008 0.008 0 0.01 30 0° 0.04 0.04 0 0.28
30 2.5° 0.008 0.008 0.004 0.02 30 2.5° 0.04 0.04 0.10 0.32
50 0° 0.003 0.003 0 0.005 50 0° 0.01 0.01 0 0.11
50 2.5° 0.003 0.003 0.001 0.006 50 2.5° 0.01 0.01 0.03 0.13
70 0° 0.001 0.001 0 0.002 70 0° 0.007 0.007 0 0.06
70 2.5° 0.001 0.001 7 x 1074 0.003 70 2.5° 0.007 0.007 0.02 0.08

satisfy the phase-matching conditions, we considered a BBO
crystal and used the Sellmeier equations in [23]. For each
value of o, we computed the optimal angle 6 between pump
and optical axis to satisfy Ak, = 0 at the central frequencies
wp, 25, and . By doing this we ensured that any variation
in the emission rate is due only to geometrical factors and
not to phase mismatch. The domain of integration has been
chosen to be equal to the transmission range discussed in [23].
With respect to the perfect-phase-matching case of Fig. 3, the
introduction of the sinc term produces curves with a smaller
slope, without changing the extreme values.

V. BEYOND THE THIN-CRYSTAL LIMIT

So far we have discussed the brightness optimal conditions
in the thin-crystal limit, trying to understand the role of dif-
ferent experimental setups and computational assumptions.
In this section we go beyond the thin limit and report some
numerical simulations obtained from the full expression of
the biphoton wave function, given in Eq. (26). Our aim is to
maximize the brightness in terms of the ratio r and the emitted
photons waist W for different values of collection angle o and
crystal length.

A. Setup

The simulations have been performed for degenerate type-I
SPDC e — o + oin the same setup described in Sec. IV C. We
assumed degenerate emission in the (x, z) plane with symmet-
ric angles of collection as in (38) and the waist configuration
of (36). Simulations in the (y, z) plane do not present signif-
icant differences. We considered two different values for the
length of the crystal, L = 100 and 500 um, and four different
values for the signal or idler waist w, from w = 10 to 70 um.

To understand the validity of the thin-crystal approxima-
tion in these cases, it is convenient to evaluate A, (30), which
is a combination of lateral deviations and waists, and the ag-
gregate confocal parameter &, (32). When these two quantities
are very small, we can use the thin-crystal approximation (34).
The approximate values of A, and &, for our configurations
are reported in Tables I and II. Each quantity has been evalu-
ated at the optimal ratio r*.

B. Optimal ratio r

The graphs in Fig. 6 represent the optimal ratios to
maximize the brightness, varying the angle of collection «.

Substantial deviations from the thin-limit discussion emerge
for all the configurations at L = 500 um and for the (rather
strong) focusing condition w = 10 um at L = 100 um. In all
these cases, the optimal points are subjected to a shift towards
larger values, compared to those found in the thin limit. At
the same time, looking at Tables I and II, we note that the
values of A, which are related to the transverse walk-off, are
significantly larger than the values of &,. It is then reason-
able to suppose that the shift is mainly due to the transverse

0.9f

0.8f

w=10pum
— w=50um — w=70um

w=30pum

FIG. 6. Transition between different optimal values moving from
the collinear case to larger collection angles, at different focusing
conditions. The dashed lines are at the optimal values r* = 1/4/2
and 1/2. Note the different scales between the two plots.
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walk-off of the beams, which becomes important for longer
crystals. To better justify this claim, consider the expression
of the biphoton wave function in Eq. (26). Performing an
expansion at the first order in &,,, we can write

1
NG

¢ F QI ¢ Z A 4 iZ3(B,, + £,A,)]. (56)

i
~1 - Eéuzv

Assuming the longitudinal perfect-phase-matching approxi-
mation LAk, < 1 and substituting the expansions (56), it is
easy to solve the Z integral in (26) to find

W(w;, w5) ~ 27 V2N LAS™ (w; + wg)e™ W /D koo

erf(\/A, +A) [ W &N

X .
VATA, \ wowiw

Note that in this expression there is no dependence on &, but

only on the deviation parameters v,,, which are implicit in

A,. We now focus on the collinear emission with @ = 0. In
this configuration, A, = 0 while

L 1,
T Ly 8
with
5 1 1Y\ .
Bp=n (n—g — —%> sin @ cos 6, 59)

where 0 is the angle between the optical axis of the crystal and
the propagation direction of the pump. The refraction indices
in the previous expression are frequency dependent and eval-
uated in wp = w; + w,. However, in the first approximation,
we can assume them to be constant and evaluate them in the
fixed central frequency w, = wo. With this assumption, the
collinear brightness can be derived as in (47):

16\/5773/2N2d0 r erf< L:Bp|wp=wo )2
Byt 1+ 2r2 V2wl + 2212 )

Rtot ~

(60)

The maximization of (60) with respect to r gives the pink
plot in Fig. 7, where instead the purple curve represents the
values obtained from the full biphoton wave function (26),
without the expansion for small &,. For sufficiently large
waists, the brightness (60) reproduces well the shifting behav-
ior of the optimal ratio. Since (60) depends on the deviation
parameter v,, and not on the confocal parameter £,, we
can deduce that the shifting is mostly due to the transverse
walk-off, at least in regimes far from strong focusing con-
ditions. From a physical point of view, this result can be
easily interpreted: The SPDC process can only occur if there
is good overlap between the three beams in the process. The
increase of the pump waist compensates for the loss of overlap
due to the walk-off. Finally, we note that the importance of
walk-off effects has been variously discussed in the literature
[7,9,11,15].

Other SPDC processes

The above simulations and analysis were performed for
type-I SPDC. Nevertheless, it is natural to expect a variation

0.9F

0.8F

—— —L w (um
0 10 20 30 40 50 60 70 (pum)

FIG. 7. Optimal ratio r varying the waist w, for collinear emis-
sion, with L = 500 um. The purple (darker) line has been obtained
starting from the wave function (26) and the pink (lighter) line by
maximizing (60).

of the optimal ratio, similar to that just discussed, in all pro-
cesses where transverse walk-off is present and the crystals
are sufficiently long.

An important and particularly bright setup is the one in
which the SPDC is that in which the SPDC is realized us-
ing periodically poled crystals with collinear emission and
extraordinary waves propagating along one of the principal
axes. In this case there is no transverse walk-off and, in light
of the previous discussion, the natural expectation for this
configuration is to have r* = 1/+/2 for degenerate emission.
This is in agreement with the results of [6].

C. Optimal waist w

All the expressions for the brightness derived so far have
their maximum when W — 0. As already discussed, however,
for very small w the thin-crystal limit or the expansion in
& of the preceding section are not justified. For this reason,
we need to maximize the brightness derived from the full
expression (26). Applying a standard numerical method we
get the two plots in Fig. 8, with maxima corresponding to
values of w of a few micrometers. Nonetheless, the exact
value of the optimal w cannot be satisfactorily obtained from
our discussion: At the very beginning of our treatment we used
the paraxial approximation (19), which is not true for extreme
focusing conditions. Thus, what we can actually learn is that,
at least for the lengths of the crystals considered in this work,
we expect to increment the brightness by decreasing the idler
or signal waist W to a value of a few micrometers.

D. Collinear versus noncollinear brightness

Finally, we can study the value of the absolute brightness
as a function of the emission angle, for a given idler or signal
waist. From the exponential terms in the expression (26), it is
natural to expect the brightness to decrease for larger collec-
tion angles and larger waists W. An example of this behavior,
obtained with the same numerical simulations of the previous
sections, is reported in Fig. 9 for the case L = 100 um.
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Rtot
1.0f
0.8; ‘
0.6;
0.4f

0.2}

00: L I L

1 5 10 5‘0 W('MWL)

L=100 pum — L=500um

FIG. 8. Total brightness normalized to its maximum as a function
of the waist W, with L = 500 um, in the collinear case. The curves
have been produced by interpolating a finite number of waist config-
urations. For each waist W we first found the optimal value of r and
then computed the brightness.

VI. CONCLUSION

In this work we studied degenerate SPDC emission, when
the photons in the process are emitted and collected by
single-mode fibers. We clarified the relation between different
optimal focusing conditions proposed in the literature to max-
imize the total brightness. In the thin-crystal limit, we gave an
analytical derivation of various results, considering the role of
collinear and noncollinear emission, together with the finite
transmission range of the crystal and the presence of spectral
filters. We found that the brightness can be increased by de-
creasing the signal and idler waists W, assumed to be equal,
whereas the optimal ratio r between the pump waist and W is
1/+/2 for collinear emission and tends to 1/2 for larger angles
of collection of the light. The presence of narrow spectral
filters keeps the optimal ratio constant to 1/+/2, independently
on the emission angle. Moving away from the thin-crystal

L =100um

0.0 0.5 1.0 1.5 2.0 2.5 o (deg)
w=10pum w=30pum
— w=b0pm — w=T70um

FIG. 9. Normalized total brightness as a function of the emission
angle, with L = 100 um. For each waist W and angle o we first found
the optimal value of r and then computed the brightness.

regime, walk-off effects must be taken into account, if present,
and generically the optimal ratio increases to maintain the
overlap between the beams in the process; we studied this as-
pect in Sec. V, where we also included numerical simulations
for type-I SPDC, in a BBO crystal. To perform our numerical
simulations, we used the formulas derived in Sec. III, which
can also be used to simulate more generic SPDC processes.

Our quantitative analysis of the brightness as a function
of emission angle and walk-off effects enriches discussions
of other previous work, such as [6], which is suitable for
collinear emission and periodically polarized crystals. How-
ever, our work is also a natural starting point for many other
analyses. A first obvious generalization would be to con-
sider nondegenerate emission or fiber collecting modes with
different waists between the signal and idler. Using both an-
alytical and numerical approaches, as in this paper, it should
be possible to derive the associated optimal focus conditions.
Moreover, it would be of great interest to extend the study to
other quantities such as the heralding ratio or the spectral pu-
rity, as discussed in [6,24]. A careful analysis of these physical
properties would lead to a much deeper control of a variety of
SPDC configurations and would allow the focusing conditions
to be adapted to different experimental requirements.
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APPENDIX A: EXPANSION OF THE LONGITUDINAL
COMPONENT OF THE WAVE VECTOR

In this Appendix we report the expansion of the longitudi-
nal component k, of the wave vector around a particular value
of the transverse components, inside a uniaxial crystal. We
will obtain our formulas in the approximation of linear optics.
We recall that we have chosen the y axis so that the optical axis
lies on the (y, z) plane. We also define 6 as the angle between
the optical axis of the crystal and the z axis; n, and n, are the
ordinary and extraordinary indices of refraction.

Let us call (x' = x, ¥, Z’) the frame of reference associated
with the principal axes of the crystal. For an ordinary wave,
i.e., polarization along the plane (x, y'), the relation between
the different components of the wave vector is [25]

2

2 2 2 W
(P + WP+ 1 =

(AD)
For an extraordinary wave instead the relation between k,
and the transverse components is found by solving the equa-
tion [25]

(k)? K +k o? "
n2 n2 T (A2)
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In our computation, we want to rewrite everything in terms of
the basis (x, y, z) associated with the pump beam. This can be
conveniently done by using the relations

k. = cos Ok, + sin Ok, (A3)
k; = —sin 6k, + cos Ok, (A4)
which, plugged into (A1), give
ko= 22 — k2 - k2 (AS)
c )
for the ordinary wave and plugged into (A2) give
k.(K, ) =n? ! — ! k, sin 6 cos 6
o=y Tt
2 2 2 \?
NCNCYREN R
c ne neng
for the extraordinary wave, where we defined
1 sin’6 N cos? A7)
noon o

Equations (AS5) and (A6) can be encoded in a single expres-
sion as in (11).

Let us suppose now that the wave function is peaked
around the transverse components k, = (%M, an), with a =
p.i,s. In the paraxial approximation discussed in Sec. III,

we want to expand k,, in powers of §k, = k, — Kk, up to the
second order, namely,

kaz = ka: + 0k, K1, + 18k, Koo8k, + O(5k)).  (A8)

Here Eaz(a)) = aZ(E, w), while K;, and K,, collect the con-
tributions of the first and second derivatives in the expansions,
having components

Okaz

akau k.=Kk,

9%ke,
0Ky |y

wyo_
’ 2a T

with u = x, y. The explicit forms of K, and K, are given by

K 1 ¥ Kkax AL0)
la — = — _ _ s
,Bkay - kaz (:32 + }/2%)](@ - ﬂkaz
nw\2 72 7 7
K2 — (yn/no)Z (OT) - yzkay yzkaxkay
(ﬁkay - kaz)3 szaxzay (%)2 — yzzjx
(A11)

with y, B8, and n defined as in Eq. (11).

APPENDIX B: GAUSSIAN BEAM IN DIELECTRIC MEDIA

In this Appendix we consider the Gaussian beam (15)
propagating in a dielectric medium in order to clarify the
physical meaning of certain quantities introduced in the main
text. We call z the direction of propagation and consider the
beam factorized in the x and y components so that, without
loss of generality, we can focus on a generic u component of

the field. In the momentum space we have a distribution

w 12 2 2
= () "

The corresponding field in real space is given by

12
— (e (AW (ko Vi +2ke)
u(p, z) = ((27_[)3/2) /dku e R =Koy n .
(B2)

(BI)

This integral expression is rather complicated due to the non-
trivial dependence of k, on k,, as shown in (11). However,
we can use a paraxial approximation, similar to that described
in Sec. III. The point is that the integrand in (B2) is peaked
around k,,, so we can expand the longitudinal component k;,
as (with 8k, = k,, — ko)

1/2
u(p z):#( Wi ) ! /dkﬂe*(l/“)wﬁ(ku*kou)z
V2w \ /27

ik, efi(koﬁak“l{lu(l /28K K5 )z
b

X e

where we introduced the first and second derivatives of k,
K}" and K5, respectively, evaluated on ko,. The resulting
Gaussian integral can be performed, obtaining

2\ /4 W,
u(p, z, 0) = | =

w2 4 2iK}" 7

2

. . (1 +Ki'2)

e\ “houtt = ok = i )
" 2

(B3)

In this way we have found a Gaussian beam with the direction
of propagation described by the two wave vectors kg, and ko, .
We stress that this interpretation holds for small values of the
1 component of the wave vector, when the Gaussian profile
of the absolute value of (B3) can be considered perpendicular
to the propagation direction. The beam is characterized by the
Siegman ¢ parameter in the dielectric media?

qu =W, + 2iK}"z (B4)
and the Rayleigh range z,, is given by
w2
"
op = — W . (BS)

Note also that when ko, = 0, Eq. (B2) differs from a Gaus-
sian beam propagating in the vacuum in the z direction for
the shifting term —K|'z in the exponential. In a birefringent
medium, this term could be nonzero for an extraordinary
wave.

It is convenient, for a generic field, to introduce the focal
parameter &, and the deviation parameter v, as in (25):

L
Sau(w) = _W_szlZM’ Vtm(w) = _2W Kllt, (B6)

ap ap

2The g parameter defined here differs from the standard g parame-
ter defined in [25] by a factor —iwi /Zou, With 2o, the Rayleigh range.
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The parameter &,, can also be thought of as the ratio between
the length L of the crystal and the Rayleigh range (B5); hence
it gives information about the focusing condition of the beam
in the p direction, compared with L. The quantity v,,, instead
parametrizes the transverse walk-off of the beam: As is clear
from (B3), at the output of the crystal, the beam is shifted
by Wy, vy, in the p direction. Finally note that, with these
definitions, we can write the g parameter as

Gan(Z) = Wy, (1 — iZ&y,), (B7)

where we also substituted Z = 2z/L.

APPENDIX C: BIPHOTON WAVE FUNCTION
IN THE PARAXIAL APPROXIMATION

The expression (A8) gives the expansion of kg, (kax, Kay)
around the values k,, and Ian. To obtain an approximation of
the wave function (8) we should also consider the expansion,
around k; and Kk, of the phase mismatch Ak.. Up to the second
order in k,, = (8k;,, 6k, ), we can write

_ 1
Ak, >~ Ak, + Y i, - Dff + 3 > Ky DYk, (CD)
I mv

where

A%z = AkZ(Esv ws;Eh w;),
i m Y Y Y
DM . (Klp - Kli) Dlw _ (K2p - KZi K2p )
1 — ] 2 - .
Ky~ KL L

In deriving the previous expression we noted that, using k,, =
kiu + ks;u

] ) )

Kt = &

P Bky, Ok Ok

(C2)

and similar relations hold for KZ”PV. Then, to apply the paraxial
approximation discussed in Sec. III, we recast the spatial
mode overlap contribution

S = up(ki + koug ks, o9)u; (ki, i) (C3)

as

WWyl/2 T H T (v

S:l—[( ax a)) l—[ o~ (1/2C; —] - Cl= (120 C
. 2 ity
(C4)

with

Cy = IWo (koip + ko ’s €Y =0, (C5)

2 2 2
CHt — l Wi + Wi Won (C6)
220w w2, +w2 )
pi i si

and C*¥ = 0 when u # v. If we now define, for j = 1, 2,
Mj(Z) = Cj + iZD_,‘, ((er))]

we obtain

L WaxWay : iL Ak,
cp(wi,ws)zzen)z(]"[ = ’) / dz e~ (LAR
a -1

GO M) @)\
x (C8)
det[M»(Z2)]

after solving the Gaussian integral in the transverse compo-
nents Kk; and K. This result was obtained in [8], with a different
choice of expansion, as explained in Sec. III. Introducing
for each beam a = p, i, s and for the x and y directions the
parameters ¢, and v, of (B7) and (B6), the explicit forms of
the matrices are

M; My | MY
M, = ], M= , (C9)
M, M, | M;

where
M = iz<w”*”“‘ NG ""“) (C10)
WsuVsu — Wpu Vpp
and
w  ZL L,
My =TIy A, (C11)
1 (9o0(Z) + 43, (2) qpu(Z)
M = w e . (C12)
2 qp//. (Z) qplt (Z) + qsp. (Z)

The previous expressions can be simplified by choosing a
particular plane of emission, namely, the (x, z) or the (v, z)
plane. In these cases, the integrand in (C8) is factorized in the
x and y components, since this happens for the matrices D,
and M,. The resulting expression is given in (26).
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