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Coherence buildup and laser thresholds from nanolasers to macroscopic lasers
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We detail the derivation of nanolaser models that include coherent and incoherent variables and predict the
existence of a laser threshold, irrespective of cavity size and emitter number, for both single- and multielectron
systems. The growth in photon number in the lasing mode is driven by an increase in correlation between
absorption and emission processes, leading to the onset of self-sustained stimulated emission (laser threshold),
followed in turn by a correlation decrease and ending with the dominance of coherent emission. The first-order
coherence g(1) steadily increases, as the pump grows towards the laser threshold value, and reaches unity at
or beyond threshold. The transition toward coherent emission becomes increasingly sharp as the numbers of
emitters and coupled electromagnetic cavity modes increase, continuously connecting, in the thermodynamic
limit, the physics of nano- and macroscopic lasers at threshold. Our predictions are in remarkable agreement with
experiments whose first-order coherence measurements have so far been explained only phenomenologically. A
consistent evaluation of different threshold indicators provides a tool for a correct interpretation of experimental
measurements at the onset of laser action.
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I. INTRODUCTION

The rapid advancement in the design and manufacturing
of laser resonators over the past few decades has allowed
the construction of lasing devices with mode volume V ∝ λ3,
where λ is the emission wavelength [1]. Such small devices
are far more compact and less energy hungry compared to
standard lasers, as lower input power is required to achieve
coherent emission. In addition to nanolasers, microlasers (e.g.,
V = aλ3, 2 � a � 40) hold promise for a number of uses
spanning multiple research disciplines and industrial appli-
cations such as integrated optical interconnects, sensing, and
biological probes, to name a few [2]. Photon-number squeez-
ing is also expected to naturally emerge before the transition to
coherent emission, leading to cw photon fluxes for nonclassi-
cal applications [3]. The complexity of the transition between
incoherent and coherent emission in micro- and nanolasers
is at the origin of interpretative problems and gives rise to
new opportunities. The difficulties in threshold identification
in nanolasers [4] come from the intrinsic physical properties
of the transition in small systems rather than from technical
measurement limitations.

As the mode volume of a device decreases, so does
the number of electromagnetic cavity modes available for a
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spontaneous transfer of the energy stored in the medium.
In the cavity quantum electrodynamics (CQED) regime this
number is significantly reduced. This number is characterized
by the spontaneous emission factor β, which quantifies the
ratio between the spontaneous emission rate into the lasing
mode and the total spontaneous emission rate. For macro-
scopic devices β � 10−6, while the ideal nanolaser limit
corresponds to the asymptote β = 1. In other words, β is
inversely proportional to the system size.

The laser threshold is typically identified in macroscopic
lasers by inspecting the output power as a function of the input
power. The input-output (IO) curves display a characteristic
S shape on a log-log plot with a steep growth. The laser
threshold is located at the inflection point of these curves [5].
As the cavity volume decreases, the steep growth is progres-
sively smoothed, leading, in the nanolaser limit of β = 1, to a
straight line. The extrapolation of this linear dependence down
to zero pump power has ushered in the questionable concept
of thresholdless lasers [5,6].

In spite of the equivalence of the intracavity light-matter
interaction in macroscopic and microscopic lasers, two differ-
ent approaches have emerged, each with its own limitations.
For macroscopic systems, the well-established semiclassi-
cal Maxwell-Bloch equations [7] describe coherent emission
above the laser threshold by considering the expectation val-
ues of the classical coherent field amplitude and the standard
medium polarization. The application of classical factor-
ization schemes to expectation values, which describe the
light-matter interaction, neglects quantum correlations [8],
thus limiting the theoretical description to above-threshold
coherent emission, with no access to the incoherent regimes
below it. Quantum models for nanolasers, on the other hand,
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neglect the classical variables associated with coherent emis-
sion [9–12] and apply factorization techniques, such as the
cluster expansion [13], keeping only the slowly varying quan-
tum correlations.

In recent papers [3,14] we combined these two approaches
by including the slowly varying quantum correlations as well
as the coherent variables into a single coherent-incoherent
(CI) model while neglecting quantum correlations between
electromagnetic field and those medium operators which os-
cillate on a fast timescale, as done in semiclassical theories
[7]. We then used the linear stability analysis of the CI
model’s incoherent solution to calculate analytically the laser
threshold for all two-level emitter nanolasers, including the
so-called thresholdless lasers (β = 1).

In this paper we examine in detail the derivation and
predictions of the CI model and extend it to multielectron
systems. We discover that, for both single- and multielec-
tron systems, the critical point identified by the bifurcation
analysis is the threshold beyond which stimulated emission
becomes self-sustained. This analysis is corroborated by ex-
perimental measurements [15]. It is important to stress that
our approach further contributes to solving the confusion, first
identified in [5], reigning around the concept of a threshold-
less laser by further dispelling the concept that an ideal CQED
laser would be a truly thresholdless device. We leave for
future work consideration of models that retain fast quantum
correlations between field and medium operators, including
aspects more quantum than those considered here at the price
of a significantly larger number of equations. These models
confirm the existence of lasing solutions in all nanolasers [16]
and predict laser thresholds associated with the establishment
of self-sustained stimulated emission that become increas-
ingly close to those calculated in this paper as the number of
emitters increases.

This paper is structured as follows. In Sec. II we outline
the structure of the system Hamiltonian. Section III covers
the cluster expansion technique needed to close the model
equations and presents the derivation of the CI model for
single- and multielectron systems. Section IV presents the
linear stability analysis, including a discussion of the condi-
tions required for the existence of instabilities in the system.
Sections V and VI detail the effects of emitter number N
and cavity β, respectively. Section VII introduces the char-
acterization of coherence and conclusively interprets existing
experimental results in the framework of the models intro-
duced here. Section VIII offers a brief overview of the work
and conclusions.

II. STRUCTURE OF THE SYSTEM HAMILTONIAN

We consider laser cavities containing two-level emitters
with either one or more confined electrons (see Fig. 1): The
first case is typical of atoms and the second of quantum dots,
but single-electron quantum dots have been developed for
quantum technologies [17]. In the following we will use a
quantum-dot terminology and call the upper and lower energy
levels of the emitters conduction and valence levels, respec-
tively. Our investigation starts with writing the fully quantized
Jaynes-Cummings Hamiltonian [18] generalized to describe
light-matter interaction between two interacting levels with

FIG. 1. Shown on top are the energy levels for single-electron
and multielectron emitters (left and right, respectively). For the
multielectron system, radiative decay can happen for the spin config-
uration shown in the figure, but it is forbidden by the Pauli exclusion
principle when the electrons have the same spin. This leads to differ-
ences in the terms associated with the spontaneous decay in the two
models [cf. Eqs. (9) and (10)]. Shown on the bottom is a schematic of
a nanolaser with intracavity emitters. Cavity photons (wavy arrows)
couple to the intracavity emitters (disks) with light-matter coupling
strength g signified by the black two-headed arrow.

lasing and nonlasing modes,

H = Hfree + Hint, (1)

where Hfree is the noninteracting part and Hint the interacting
part of the Hamiltonian, respectively. The noninteracting part
of the Hamiltonian is itself made up of contributions from
the free electromagnetic field HE and the free electrons in the
quantum dot HQD,

Hfree = HE + HQD. (2)

The photon operators of the system Hamiltonian obey the
bosonic commutation relations and the carrier operators obey
the Fermi anticommutation relations. The bosonic operators b
and b† correspond to single-particle operators. It can be shown
that 2N Fermi operators are formally equivalent to N bosonic
operators under the requirement that the compound Fermi
operators contain equal numbers of creation and annihilation
operators [8]. Examples are the population of the excited state
c†c and the standard material polarization v†c. Therefore, we
refer to the coherent field operator b and standard polarization
v†c as single-particle operators and to the photon-number
operator b†b and photon-assisted polarization bc†v as two-
particle operators.

The first term in Eq. (2) reads

HE = h̄
∑

q

νq

(
b†

qbq + 1

2

)
, (3)

where νq is the frequency of a photon in the qth mode and
the quantum-mechanical operators bq and b†

q annihilate and
create a photon in the qth mode, respectively. The sum over q
includes both lasing and nonlasing modes.
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The free-electron part of the Hamiltonian describes charge
carriers in the conduction- and valence-band states of the nth
quantum dot with respective energies εc,n and εv,n,

HQD =
∑

n

(εc,nc†
ncn + εv,nv

†
nvn), (4)

where cn, c†
n and vn, v

†
n are the annihilation and creation op-

erators, respectively, for conduction and valence electrons of
the nth quantum dot. The two-particle light-matter interaction
is described by

Hint = −ih̄
∑
n,q

[gnq(bqc†
nvn + bqv

†
ncn)

− g∗
nq(b†

qv
†
ncn + b†

qc†
nvn)], (5)

where gnq is the light-matter coupling strength between a
photon in the qth mode and the nth quantum dot.

In this paper we consider only quantum dots operat-
ing at cryogenic temperatures (around 4 K) and phonon
and Coulomb interactions between charge carriers are not
included in the Hamiltonian, but considered phenomenolog-
ically via dephasing coefficients [10].

One final remark on the structure of the system Hamil-
tonian concerns the two-particle operators coming from the
interaction part of the Hamiltonian: b†

qc†
nvn and bqv

†
ncn. Quan-

tum mechanically, operators b†
qc†

nvn describe a process where
a photon in mode q is created in conjunction with the ex-
citation of an electron from the valence to the conduction
band of the nth quantum dot. Operators bqv

†
ncn describe its

symmetric counterpart, where a photon in mode q is absorbed
in conjunction with the deexcitation of an electron from the
conduction to the valence band of the nth quantum dot. These
two processes do not individually conserve energy, even if
their sum is conservative, and oscillate at a frequency ap-
proximately double that of the laser; thus in the following
we eliminate them from the interaction Hamiltonian (rotating-
wave approximation).

III. CLUSTER EXPANSION
AND NONLINEAR QED MODELS

To derive the model equations we work in the interaction
picture to obtain Heisenberg’s equations of motion for the
operators appearing in the system Hamiltonian. The variables
that appear in the CI models are the quantum operator expec-
tation values and correlations. The dynamics of an M particle
expectation value is directly coupled to an M + 1 expectation
value through equations of the form

ih̄dt 〈M〉 = L[〈1〉, . . . , 〈M〉] + H[〈M + 1〉], (6)

where dt is the first-order derivative with respect to time,
〈1〉, . . . , 〈M + 1〉 indicate the sets of the 1, . . . , M + 1 parti-
cle operators, and L and H are matrices that describe coupling
to terms of order 1, . . . , M and M + 1, respectively. As a
result, there is an infinite hierarchy in which each order M
depends on the higher order M + 1. We must therefore find a
way of systematically breaking the infinite hierarchy to obtain
a closed set of solvable equations at any order M. This is
achieved through expressing the expectation values in terms of
all possible combinations of products of correlations of lower-
order operators and introducing approximation schemes for
the correlations to truncate the infinite hierarchy [8].

The expectation values of the photon number and photon-
assisted polarization, central to this work, are

〈b†b〉 = δ〈b†b〉 + 〈b†〉〈b〉, (7)

〈bc†v〉 = δ〈bc†v〉 + 〈b〉〈c†v〉, (8)

where δ〈b†b〉 is the two-particle correlation between emission
and absorption and δ〈bc†v〉 is the two-particle correlation
between the photon absorption and electron jump from the
lower to the upper energy level.

We find a closed set of equations by including in the model
the expectation values 〈b〉 and 〈c†v〉. These correspond to the
complex amplitudes of the coherent field and of the medium
polarization and have been neglected in previous microscopic
models [10–12]. They display fast oscillations with frequen-
cies of the order of that of the laser mode. In contrast, the
two-particle quantum correlations (7) and (8) that appear in
the cluster expansion of the Hamiltonian oscillate slowly. We
call the former variables coherent and the latter incoherent.
Coherent quantum correlations such as the correlation be-
tween the population and field 〈bc†c〉 are neglected in the
same way as they are in standard semiclassical models. As
quantum fluctuations are neglected, semiclassical theories can
be used to identify the laser threshold, but not to calculate the
laser linewidth. For systems where amplitude fluctuations are
negligible compared to phase fluctuations [19], the effect of
quantum fluctuations can be included in semiclassical theories
via the generalized Schalow-Townes formula, but this is not
appropriate for systems with a small number of emitters such
as those considered here. Models that include all possible two-
particle quantum correlations display laser thresholds [16] and
finite laser linewidth. We consider all quantum dots identical.
This is not a restrictive hypothesis: We have verified numer-
ically that variations in detuning and light-matter coupling
strength up to 10% have negligible effects on the system.
Thus, we drop the subscript for the Fermi operators and re-
place the sum over n with N . In the case of cavities containing
atoms or single-electron quantum dots, the resulting system of
equations is

dt 〈b〉 = −(γc + iν)〈b〉 + Ng∗〈v†c〉, (9a)

dt 〈c†v〉 = −(γ − iνε )〈c†v〉 + g∗〈b†〉(2〈c†c〉 − 1), (9b)

dt 〈c†c〉 = r(1 − 〈c†c〉) − (γnr + γnl)〈c†c〉 − 2 Re[g(δ〈bqc†v〉 + 〈bq〉〈v†c〉)], (9c)

dtδ〈bc†v〉 = −(γc + γ − i	ν)δ〈bc†v〉 + g∗[〈c†c〉 + δ〈b†b〉(2〈c†c〉 − 1) − |〈c†v〉|2], (9d)

dtδ〈b†b〉 = −2γcδ〈b†b〉 + 2N Re(gδ〈bc†v〉), (9e)
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where νε is the frequency of the interband energy, hνε = εc −
εv , 	ν ≡ νε − ν is the detuning, Re(·) stands for the real part
of its argument, and an asterisk superscript indicates the com-
plex conjugate. The equations for 〈b†〉, 〈v†c〉, and 〈b†v†c〉 can
be obtained from Eqs. (9) through complex conjugation. The
expectation value of the lower-level population has been elim-
inated using 〈c†c〉 + 〈v†v〉 = 1. The dissipative part of the
equations is obtained by considering Lindblad terms describ-
ing the coupling to a Markovian heat bath under the constraint
that random excitations into the excited state are neglected
[20,21], a condition which is fulfilled under the assumed
cryogenic temperatures. The cavity decay rate γc, the po-
larization dephasing rate γ , and the nonradiative losses γnr

describe the dissipative channels. We consider only incoherent
pumping processes such as electric pumping or nonresonant
optical pumping. Both inject electrons into the quantum dots
through the wetting layer. They are the most relevant pumping
processes from a practical point of view, with the electrical in-
jection dominating due to its versatility. Although possible in
a research environment, direct optical injection into the up-
per level requires resonant optical pumping, a cumbersome
process with extremely limited applicative interest. The co-
herent field amplitude 〈b〉 and standard polarization 〈v†c〉 are
analogous to their amplitudes in semiclassical theories. They
describe coherent interband processes and therefore need to
be externally driven to be sustained. In terms of operators,
the population density of the excited state 〈c†c〉 describes an
intraband process and does not require any externally driven
source to exist; it is the probability of an electron being in
the excited state. The photon-assisted polarization describes
a correlated event between the annihilation of a photon with
an interband transition or the opposite scenario for its Hermi-
tian conjugate. Finally, the intensity correlation describes the
correlation between photon absorption and emission.

We want to show that the existence of coherent laser so-
lutions is not specific to the single-electron nature of this
model; thus we include the coherent variables 〈b〉 and 〈v†c〉
in the model given in Ref. [11], where the authors relax the
single-electron assumption. To ensure that radiative decays
can take place only if the upper level is occupied and the lower
level empty, the radiative decay terms are now proportional
to the product of the probability that an electron is in the
excited level with the probability that the lower level is empty.
This gives rise to nonlinear terms in the equation for the
photon-assisted polarization (9c) and the population density
(9d), which in the multielectron model read

dt 〈c†c〉 = r(1 − 〈c†c〉) − (γnr + γnl〈c†c〉)〈c†c〉
− 2 Re[g(δ〈bqc†v〉 + 〈bq〉〈v†c〉)], (10a)

dtδ〈bc†v〉 = −(γc + γ − i	ν)δ〈bc†v〉 + g∗[〈c†c〉2

+ δ〈b†b〉(2〈c†c〉 − 1) − |〈c†v〉|2], (10b)

while all the other equations remain the same. Note that the
population of the lower level 〈v†v〉 can be eliminated because
〈c†c〉 + 〈v†v〉 → 1 exponentially in time [see the difference
between the electron and hole densities in Eq. (3) in Ref. [11]].

The two sets of equations (9) and (10) constitute the single-
electron and multielectron CI models, respectively. They both
contain coherent and incoherent variables and differ only in

the number of electrons in each emitter. With a quantum the-
ory containing variables that can describe both coherent and
incoherent processes, we can now investigate how coherence
emerges in nanolasers for single- and multielectron systems.

IV. LINEAR STABILITY ANALYSIS

In analogy with the semiclassical theory of macroscopic
lasers [7], we identify the laser threshold as the instabil-
ity threshold of a nonlasing solution where the incoherent
variables are different from zero but the amplitudes of the
coherent field are 〈b〉 = 〈v†c〉 = 0. If perturbations of 〈b〉
and 〈v†c〉 grow, the nonlasing solution is unstable. If in-
stead they decay asymptotically to zero, then the solution
is stable. The bifurcation point, where the solution with
zero values for coherent variables becomes unstable, is the
laser threshold. To study its existence as a function of the
parameter values, we perform a linear stability analysis of
Eqs. (9) and (10). We collect coherent and incoherent vari-
ables into two groups c = {〈b〉, 〈b†〉, 〈v†c〉, 〈c†v〉} and i =
{〈c†c〉, δ〈b†b〉, δ〈bc†v〉, δ〈b†v†c〉}, respectively, and write the
two CI models in a more compact form

dt i = F(i, c), (11)

dt c = G(i, c), (12)

where G(i, c) and F(i, c) are nonlinear vector functions of i
and c whose components are the right-hand side of the two
models. With this notation G〈b〉(i, c) and G〈v†c〉(i, c) are, for
example, the right-hand side of Eq. (9a) and of the complex
conjugate of Eq. (9b), respectively, evaluated at i and c. The
linearized dynamics of small perturbations (ηi, ηc) of a fixed-
point solution (i, c) is given by

dt

[
ηi
ηc

]
=

[∇i ⊗ F(i, c) ∇c ⊗ F(i, c)

∇i ⊗ G(i, c) ∇c ⊗ G(i, c)

][
ηi
ηc

]
. (13)

Each block in the matrix on the right-hand side of Eq. (13) is
of dimension 4 × 4 (both sets i and c contain four variables)
and corresponds to the Jacobian with respect to the i and c
variables. The ⊗ denotes the outer product. For any solution
with c = 0 one has ∇i ⊗ G(i, 0) = 0 and ∇c ⊗ F(i, 0) = 0,
so coherent and incoherent perturbations of the (i, 0) solutions
decouple.

This is a general feature of all models derived under the
rotating-wave approximation independently of the order of the
quantum correlations considered. Its origin is the separation
of the timescale between the coherent and the incoherent
variables. The (fast) coherent variables oscillate at the lasing
frequency ν, i.e., proportionally to approximately e−iνt . They
can therefore only appear in complex conjugate quadratic
pairs in the equations for the (slow) incoherent variables. As
the derivative of a quadratic term at zero is zero, we have that
∇c ⊗ F(i, 0) = 0. Conversely, the (slow) incoherent variables
can only appear in the equations for the (fast) coherent vari-
ables if they are multiplied by a coherent variable. Therefore,
∇i ⊗ G(i, 0) = 0.

While these results are generic, in the specific case of
the CI models the incoherent perturbations of the incoherent
solution always decay to zero. Therefore, the existence of a
laser threshold is determined solely by the dynamics of the
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coherent perturbations, given by

dtηc = ∇c ⊗ G(i, 0)ηc =
[

J 0
0 J∗

]
ηc, (14)

where

J =
[

∂〈b〉G〈b〉(i, 0) ∂〈v†c〉G〈b〉(i, 0)

∂〈b〉G〈v†c〉(i, 0) ∂〈v†c〉G〈v†c〉(i, 0)

]

=
[

−γc g∗N

g(2〈c†c〉 − 1) −(γ + i	ν)

]
(15)

and J∗ is the complex conjugate of J . For ease of notation
and without loss of generality, we have written J in a frame
rotating with 〈b〉. This matrix depends on the system parame-
ters and on the population of the excited state. It is important
to note that the structure of the stability matrix is the same
for both single- and multielectron CI models. However, since
J depends on the excited-state population, the eigenvalues of
these two models differ.

The lasing threshold condition is that there is at least one
eigenvalue λ of J such that Re(λ) > 0. Since 0 � 〈c†c〉 � 1,
this can be satisfied only if

N >
γγc

|g|2
[

1 +
(

	ν

γ + γc

)2
]
, (16)

i.e., if the number of quantum dots is greater than a critical
number given by the right-hand side of Eq. (16). This applies
to both the single- and multielectron models, is independent of
β, and increases with losses and detuning. We conclude this
section with two observations. The first is that the CI mod-
els have been derived assuming weak light-matter coupling.
Therefore, Eq. (16) does not apply to the strong-coupling
regime. The second is that the instability condition on the
number of emitters in Eq. (16) is only a necessary one; a
sufficiently large pump rate is also necessary to cross the laser
threshold, as discussed in the following.

V. LASER THRESHOLD: DEPENDENCE ON N

We now investigate photon emission processes in these
single- and multielectron lasers below and above the insta-
bility threshold. Since 〈b〉 = 0 when the device is not lasing,
we see from the cluster expansion in Eq. (7) that the photon
number is given exclusively by the correlation term, which
dominates the spontaneous emission regime. Figure 2(a) il-
lustrates the effect of including the fast variables for the
single-electron (solid lines) and the multielectron (dashed
lines with symbols) CI models (9) and (10). We compare three
devices containing N = {20, 21, 40} emitters (blue, red, and
green lines, respectively). For the parameter values of this
illustration (see the caption of Fig. 2), an instability exists
if N > 20. Below the critical number of quantum dots (blue
lines), as the pump increases the photon number saturates
and the coherent field amplitude remains zero, confirming
the absence of laser emission. For a number of quantum
dots just above the minimum number required for lasing,
i.e., N = 21 (red line), there is a clear jump in the photon
number accompanied by an emerging nonzero coherent field
amplitude via a pitchfork bifurcation [Fig. 2(a)]. We can see

0

600
(a)

S M - N=20
S M - N=21
S M - N=40

0

2000

(b)

102 103 104 105 106
10-2

106

(c)

FIG. 2. (a) Modulus of the coherent field amplitude |〈b〉|,
(b) correlation between photon absorption and emission δ〈b†b〉, and
(c) expectation value of the photon number 〈b†b〉 as a function of
the pump for the single- (solid line) and the multielectron (dashed
line with symbols) CI models, for N = {20, 21, 40} (blue, red, and
green lines, respectively). In this and all other figures time, decay,
and coupling parameters are scaled with γnr , which is equivalent to
setting γnr = 1 in Eqs. (9) or (10). The other parameter values are
g = 70, 	ν = 0, γ = 104, γc = 10, and γnl = 1400, equivalent to
β = 7 × 10−4.

from the graph of δ〈b†b〉 [Fig. 2(b)] that the initial growth in
photon number is due to spontaneous emission, positively and
increasingly correlated to absorption, while the coherent part
of the field is zero. Indeed, the growth of δ〈b†b〉 in Fig. 2(b)
precedes the bifurcation [Fig. 2(a)] and occurs at pump rates
toward the end of the steeper growth in the photon number
that is visible in Fig. 2(c). This is a characteristic feature
which distinguishes small from macroscopic lasers. For the
latter, it is known that the inflection point of the steeper
photon-number growth corresponds to the threshold [5] and,
by extension, this point has been taken as a reference also
for small lasers with the help of clever techniques [4]. Finite-
size effects, instead, profoundly modify not only the nature
of threshold (as explained below), but also the pump value
for which it occurs. The consequences are important since
the identification of coherent emission becomes problematic.
The difficulty is pragmatically circumvented, in commercial
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microdevices, by manufacturers whose laser characteristic
sheets give a threshold current which is placed well beyond
the actual threshold, identified here through linear stability
analysis. A discussion of the various kinds of threshold ex-
perimentally used is offered in [22].

From threshold onward, the increase of the coherent field
intensity |〈b†〉|2 coincides with a sharp decrease in the corre-
lation between absorption and emission, δ〈b†b〉, as expected
in the presence of stimulated emission. When the correla-
tion δ〈b†b〉 becomes negative, stimulated emission dominates
and 〈b†b〉 = |〈b†〉|2 + δ〈b†b〉 < |〈b†〉|2. In summary, Fig. 2(b)
clearly shows two features: (i) During the steep parts of the
emission growth the light is entirely incoherent and (ii) imme-
diately above threshold, the emitted field consists of a mixture
of coherent and incoherent photons and complete dominance
of the coherent component takes place only (well) beyond
threshold. These features are typical of nano- and microlasers.

The smoothness of the lasing transition imposed by the
finite size of the (small) devices paves the way towards new
applications [23,24]. In contrast, the sharpness of the transi-
tion in macrolasers (e.g., Fig. 3) squeezes the pump interval
over which the evolution from entirely incoherent to dom-
inantly coherent emission takes place, explaining why, in
macroscopic lasers, the threshold can be considered as an
on-off effect that corresponds to a single well-defined pump
value. It is a strength of the CI models that they provide
a description of the continuous transformation in the laser
emission features as its size increases.

A device with twice the minimum number of quantum
dots (e.g., N = 40, dashed lines in Fig. 2) crosses the laser
threshold at a pump rate lower than that for N = 21 and with
a sharper transition [see Fig. 2(c)]. As N increases, the differ-
ences between the single- and multielectron models become
apparent (compare the solid and dashed curves in Fig. 2). The
multielectron model reaches the threshold for lower values of
the pump rate and hence the fraction of incoherent emission
contributing to the initial growth in photon number is reduced.
This is due the lower losses of the upper level population 〈c†c〉
due to the term γnl〈c†c〉2 in Eq. (10a) compared to the losses
due to the term γnl〈c†c〉 in Eq. (9c). Both models have the
same critical number of emitters necessary for the instability
to exist (N = 21 for the chosen parameters). Only the pump
power at the laser threshold changes.

These results highlight the contributions of the fast vari-
ables and the necessity of their presence in the models to
obtain a consistent description of the emission processes in
a laser. The position of the laser bifurcation in the IO curve
shows that a simple visual inspection of the output character-
istics leads to an incorrect identification of the laser threshold
and fails to identify the true nature of the emission process,
e.g., the incoherent nature of the photon number in small
lasers in the phase of steep growth.

VI. LASER THRESHOLD: DEPENDENCE ON β

We now turn to the dependence of threshold on system size
β [14]. Figure 3(a) displays the value of pump at threshold as
a function of β for devices with different N . This has been
computed numerically by finding the pump value for which
the correlation δ〈b†b〉 is maximum [see Fig. 2(b)]. While the
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FIG. 3. (a) Numerical estimate of the pump threshold for the
single-electron (S) and multielectron (M) CI models as a function of
the spontaneous emission factor β for different numbers of emitters.
(b) Photon number 〈b†b〉 as a function of the pump r for the single-
and multielectron CI models for different values of β and N = 40
quantum dots. The black crosses identify the numerically established
laser thresholds for the two models. All other parameters are the same
as in Fig. 2.

threshold pump rate decreases monotonically as N increases
(for all values of β), the dependence on cavity size shows the
existence of two regimes: a rapid threshold decrease within
the realm of macroscopic lasers and the onset of near satura-
tion (in double logarithmic scale) for β � 10−3 (i.e., micro-
and nanolasers). This latter feature would appear to contradict
the common knowledge according to which the threshold
linearly decreases with slope 1

2 in double logarithmic scale
[see Eq. (20) in [5]] as β increases; this property is however
based exclusively on the (incorrect) assumption that thresh-
old is always placed at the inflection point of the IO curve.
Instead, the saturation which emerges from the CI models
results from the identification of the true laser threshold [self-
sustained stimulated emission (Sec. IV)] which progressively
and substantially moves away from the macroscopic definition
as the laser size is decreased. The loss in threshold reduction
is however well compensated by the emergence of a broader
and richer transition region between incoherent and coherent
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emission, whose features promise new applications (Secs. IV
and VII).

A clear visual illustration of the threshold displacement
is provided in Fig. 3(b), showing the IO curves in double
logarithmic scale for laser devices with N = 40 emitters and
three different values of β. The straight superposed IO curves
correspond, as expected, to β = 1, while those with a gentle
curvature correspond to a microlaser; the respective thresholds
are marked by black crosses and appear well on the upper
branch. It is only with a macroscopic laser that the threshold
appears at the inflection point of the steeply growing photon
number, matching the well-known properties of macroscopic
lasers [5].

VII. FIRST-ORDER CORRELATION FUNCTION g(1)(τ )

Surprisingly not included in the recommendations to iden-
tify laser threshold in experiments [25], the autocorrelation
functions remain the most sensitive and most reliable way of
obtaining pertinent threshold information, as long as a mean-
ingful model can be used for comparison. In this section we
tackle precisely this aspect and examine the first-order time-
delayed correlation function. Here we study its properties and
successfully compare them to the experimental measurements
in Ref. [15]. Its complex (interferometric) implementation
disfavors its use in experiments, which tend to concentrate
on the second-order correlation. The latter quantifies the
photon statistics and through it provides indirect spectral in-
formation which can be clearly interpreted only in the Poisson
limit [22,26]. The first-order coherence, instead, is directly
related to the field coherence [15] and thus provides a clearer
signature of the emitted radiation properties. Once the rela-
tionship between the two kinds of correlations is clarified,
comparison between the two indicators will facilitate their
individual use in the interpretation of experimental results.

In order to calculate the first-order correlation function

g(1)(τ ) = 〈b†(t )b(t + τ )〉
〈b†(t )b(t )〉 , (17)

where τ is a delay time, we write the differential equation

dτ g(1) = 1

〈b†(t )b(t )〉dτ 〈b†(t )b(t + τ )〉, (18)

which we solve with the initial condition g(1)(0) = 1. To
form a close set of equations, we use the quantum regression
formula [see Eqs. (1.105)–(1.107) of Ref. [27]]. In the Heisen-
berg picture, this reads dτ 〈A(t )B(t + τ )〉 = 〈A(t )dτ B(t + τ )〉,
where A and B are operators and dτ B is calculated by applying
the Hamiltonian and Lindblad formalism at time t + τ . We
expand the τ derivative on the right-hand side of Eq. (18) and
make use of Eqs. (9a) and (9d) to obtain

dτ 〈b̃†b〉 = −(γc + iν)〈b̃†b〉 + Ng∗〈b̃†v†c〉, (19a)

dτ 〈b̃†v†c〉 = −(γ + iνε )〈b̃†v†c〉 + g(2〈b̃†bc†c〉 − 〈b̃†b〉),

(19b)

where b̃† ≡ b†(t ) and all other operators are at time t + τ .
Here 〈b̃†bc†c〉 is the expectation value of a three-particle oper-
ator. To find a closed set of equations at the two-particle level
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FIG. 4. Coherence decay time τc as a function of the spontaneous
emission factor β for the single-electron (S) and multielectron (M) CI
models for a pump value equal to 15% of the threshold for N = 40
quantum dots. Here τc has been obtained by fitting with a straight
line ln[|g(1)(τ )|] as a function of τ . The inset is a logarithmic plot
|g(1)(τ )| as a function of the delay time τ for a sample of the values
of β used in the main plot. This confirms the exponential decay of
the correlation (21). All other parameters are the same as in Fig. 2.

we use Eq. (7) and the cluster expansion

〈b̃†bc†c〉 = δ〈b̃†bc†c〉 + 〈b̃†〉δ〈bc†c〉
+ 〈b〉δ〈b̃†c†c〉 + 〈c†c〉δ〈b̃†b〉 + 〈b̃†〉〈b〉〈c†c〉

together with the semiclassical approximation used to de-
rive the CI models, which for these equations reduces to
δ〈b̃†c†c〉 ∼ δ〈bc†c〉 ∼ 0. With these approximations Eqs. (19)
become

dτ 〈b̃†b〉 = −(γc + iν)〈b̃†b〉 + Ng∗〈b̃†v†c〉, (20a)

dτ 〈b̃†v†c〉 = −(γ + iνε )〈b̃†v†c〉 + g〈b̃†b〉(2〈c†c〉 − 1).

(20b)

Equations (20) are formally identical for the single- and mul-
tielectron models, the only difference in g(1)(τ ) coming from
the different values of the term 〈c†c〉. This is due to the fact
that the Heisenberg equations and the dissipative Lindblad
terms for the operators at time t + τ do not depend on the
losses of 〈c†c〉 that are proportional to γnl.

With the help of these expressions, we can now plot the
first-order autocorrelation as a function of the model parame-
ters. We expect that below threshold the correlation function
decays exponentially with the delay time,

g(1)(τ ) ∝ e−t/τc , (21)

with τc the correlation decay time. This behavior is confirmed
by the logarithmic plot of g(1)(τ ) in the inset of Fig. 4, where
we have set the pump at 15% of the single-electron threshold
value (see Eq. (20) of the Supplemental Material of Ref. [11])
for N = 40 quantum dots. We have computed τc as a function
of β by fitting these curves with a straight line. The decay rate
has a sigmoidal behavior; it is an increasing function of β that
jumps by two orders of magnitude as β changes from 10−4

to 10−2 and is approximately constant outside this interval.
This clearly illustrates a fundamental feature of small lasers,
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FIG. 5. Plot of |g(1)| for delay τM = 60/γnr as a function of the
pump for β = {1, 7 × 10−4, 3.4 × 10−6} (blue, red, and green lines,
respectively) for the single-electron (solid lines) and multielectron
(dashed lines with symbols) CI models. The number of quantum
dots is (a) N = 40 and (b) N = 1000. The points where g(1)(τM )
reaches unity, and where the slopes of the curves suddenly change,
are the laser thresholds. As a result of quantum and thermal fluctu-
ations, in experiments g(1)(τM ) will be smaller than 1 also beyond
the threshold. However, the behavior of g(1)(τM ) as a function of the
pump still provides a clear indication of the threshold value. All other
parameters are the same as in Fig. 2.

whose coherence grows gradually as threshold is approached,
in agreement with the smooth response of their IO curve.
For macroscopic lasers, on the other hand, we obtain results
which are consistent with the standard picture of a nearly
incoherent output up until threshold, with a sudden conversion
to full coherence. The single- and multielectron CI models
have similar behavior, with the multielectron model having
larger decay time. This is an effect of the lower effective losses
of the multielectron with respect to the single-electron model;
at equal pump values the former is closer to threshold than
the latter (cf. the shift of threshold positions between the two
models in Fig. 3).

The evolution of coherence with pump power is exam-
ined in Fig. 5 for the single- and multielectron models at a
fixed number of emitters N = {40, 1000} and cavity volumes
β = {1, 7 × 10−4, 3.4 × 10−6}. In order to clearly highlight
the pump influence, a delay time τ = 60/γnr is fixed. Exper-
imental information can be gathered, as in [15], by fixing the

difference in the Michelson interferometer arm lengths and
measuring the fringe visibility as a function of pump. The
laser threshold corresponds to the smallest pump value for
which g(1)(τM ) = 1; at this point the curve slope is discontinu-
ous. While in experiments quantum and thermal fluctuations,
not included in the model, will limit the coherence time even
beyond the threshold, the behavior of the coherence time as
a function of the pump will provide a clear indication of the
threshold value. Irrespective of laser size, there is a continuous
growth of coherence, driven by the increase in correlation
between absorption and emission properties (as in Fig. 3);
however, while in smaller systems coherence evolves steadily
over a broad pump range below threshold, in macroscopic
lasers the change occurs over a narrow interval of pump
values. In other words, as β decreases moving toward the
macroscopic limit, it becomes more and more difficult to ob-
tain partially coherent emission. This result does not depend
on the choice of τM , as long as τM 
 λ0/v, with λ0 and v the
light wavelength and velocity in the interferometer, respec-
tively. Changing τM only changes the shape of the curves of
Fig. 5. It is worth stressing again that the deformation of the
coherence curves progresses continuously from the nano- to
the macroscale.

Increasing the number of emitters from N = 40 [Fig. 5(a)]
to N = 103 [Fig. 5(b)] while keeping the other parameters
constant reduces the threshold values and the range of pump
values over which the transition toward g(1)(τM ) = 1 occurs
for all values of β. While nanolasers are typically built with
tens of emitters, in macroscopic lasers their number will eas-
ily be largely in excess of what we are showing here, thus
further enhancing the differences between the two categories
of devices.

We conclude this section by highlighting that these ana-
lytical and numerical results are supported by independent
experimental measurement of g(1)(τ ) [15]. The first-order
coherence was experimentally obtained in Ref. [15] by mea-
suring the visibility of interference fringes resulting from
Michelson interferometry and plotted as a function of the
pump power [see Fig. 2(b) in [15]]. From these data the
authors also computed the coherence decay time as a function
of the pump power. It is not possible from the experimental
data available in Ref. [15] to obtain unique values for the CI
model parameters. However, the parameter values used in the
figures in this paper are reasonable estimates. We plot in Fig. 6
the correlation decay time as a function of the pump power,
measured in units of the analytical threshold for the single-
and multielectron CI model [see Eq. (20) of the Supplemental
Material of Ref. [11]]. The similarities between this figure and
its inset and Figs. 2(c) and 2(b), respectively, of Ref. [15] are
uncanny, keeping in mind the uncertainty in the mapping of
the experimental parameters. We can therefore conclude that
the CI model is capable of clearly and unequivocally identify-
ing the onset of coherence, matching it to the crossing of laser
threshold (self-sustained growth of stimulated emission), and
explaining experimental observations using a model derived
from first principles.

VIII. CONCLUSION

We have presented the details of a model for (semiconduct-
ing) quantum emitters (with a single or multiple electrons)

063710-8



COHERENCE BUILDUP AND LASER THRESHOLDS FROM … PHYSICAL REVIEW A 107, 063710 (2023)

10-2 10-1 100101

102

103

104

105

0 500 1000 1500
10-1

100

FIG. 6. Coherence decay time τc of the single-electron (S) and
multielectron (M) models as a function of the pump power in units
of the single-electron CI threshold for β = 7 × 10−4 and N = 40
quantum dots. Here τc has been obtained by fitting with a straight
line ln[|g(1)(τ )|] as a function of τ . The inset is a logarithmic plot
|g(1)(τ )| of the single-electron model as a function of the delay
time τ for the pump values indicated by squares in the main plot.
All other parameters are the same as in Fig. 2. This figure is the
analog of Figs. 2(b) and 2(c) of Ref. [15]. For ease of comparison,
time units are expressed in picoseconds. The dimensional timescale
has been fixed by setting γnr = 1 ns and rth is the threshold of the
single-electron model.

coupled to an electromagnetic cavity of arbitrary size to
describe the transition from thermal to coherent emission.
The joining of a fully quantum treatment, based on the ex-
plicit description of incoherent fields and the correspondingly
induced dipole moments, and of a coherent field with its
accompanying polarization, together with an analysis based
on nonlinear dynamical properties permits the clear and un-
equivocal identification of a threshold for the emergence of a
self-sustained stimulated emission, i.e., the lasing onset. The
coherent-incoherent model marks an entirely new approach in
the depiction of laser action, due to the traditional attention
brought to macroscopic devices and to the resulting attempts
at adjusting the latter to cover small devices through simple
modifications. This treatment shows that simple adjustments
are not sufficient and that a consistent treatment can be ob-
tained only through fundamentally revisiting the physics to
explicitly introduce the two categories of incoherent and co-
herent variables.

The main result is a proper definition of lasing threshold
irrespective of laser size, accompanied by a continuous de-
scription of the evolution of the degree of coherence from the
macro- to the nanoscale; we further find that the number of
coupled emitters contributes to sharpening or softening the
more extreme aspects of the system size.

In addition to the definition of threshold based on nonlinear
physics concepts, the quantum-mechanical approach permits
the direct evaluation of the coherence properties of the elec-
tromagnetic field through the first-order coherence function.
Its use shows that full coherence is attained at the bifurcation
point (laser threshold), which, at variance with scaling laws

established at the macroscale, is placed closer and closer to the
upper emission branch (or directly on it) as the finite-system-
size contribution increases through the reduced number of
electromagnetic cavity modes. Simultaneously, the quantum-
mechanical analysis shows that the rapid growth in photon
number originates from an increase in correlation between
absorption and emission processes in the absence of self-
sustained stimulated emission, which account for the entirety
of the transition to the upper emission branch in the smallest
devices. In macroscopic lasers, instead, this contribution is
limited to the lower portion of the (nearly) vertical growth in
photon number.

A remarkable aspect of the CI model rests in its ability
to predict features experimentally observed in measurements
of fringe visibility [15]; a good qualitative agreement is
obtained without any free parameters between observations
and the predictions shown in this paper. The topic is of
great interest since it allows for an unequivocal quantifica-
tion, as well as and for general model-based predictions,
of the amount of coherence, potentially paving the way to
numerous applications including novel uses for micro- and
nanolasers, but also permitting better assessment of their
performance as sources for data treatment (e.g., intercon-
nects in data centers with ultralow dissipation and small
footprint [28–33]).

The availability of a complete description of the threshold
physics at all scales permits the comparison with other experi-
mental choices. For instance, one can envisage computing the
output of a mixing interferometer [34] to interpret its results
on the basis of a first-principles model rather than superposing
ad hoc radiation packets with preset features.

We note that second-order correlation g(2) can be calcu-
lated considering correlations of five bosonic operators; this
is possible, but requires a computer-assisted derivation of
the equations, as the number of correlations to consider is
very large. The simultaneous availability of first-order and
second-order autocorrelations, in addition to the threshold
information gathered through the linear stability analysis, also
permits a careful evaluation of the individual properties of
these indicators. This way, second-order autocorrelation mea-
surements, which are easier to perform and routinely used not
only in quantum-dot-based devices [11,35–37] but also with
quantum-well emitters [26,38,39] and metallic nanolasers
[40,41], can acquire a higher degree of reliability in the de-
termination of the nature of the emitted radiation. This can
contribute to reaching an agreement on a definite measure-
ment technique for the determination of laser threshold [25],
thus sorting the different practical definitions used over the
past decades, which give concordant results only at the macro-
scopic scale [22].

The CI models conclusively show that the transition from
incoherent to coherent radiation occurs in a negligibly small
pump interval for macroscopic devices. However, they also
prove that the physics of laser threshold remains the same even
for large lasers, thus implying that the only obstacle in ob-
taining information from an experiment is of practical nature.
This interpretation is consistent with the results of pioneering
work of [42,43], where statistical ensemble measurements
gave evidence for a gradual evolution in the nature of the
emitted radiation at threshold crossing. More information
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could become now available through the realization of a novel
system constituted by a broadband semiconducting amplifier,
where feedback is provided by a fiber loop (also containing
adjustable filters) which permits stroboscopic measurements
of the light amplification as a function of round-trip [44]. The
degree of spatiotemporal resolution gained from this realiza-
tion, due to the long delay time of the fibered cavity, enables
the measurement of the radiation properties at each round-trip.

This scheme could garner detailed information to refine our
understanding and mathematical description of laser thresh-
old.

Finally, the single-electron model could be applied to
model atoms falling through a cavity containing a light field;
fluctuations on the number of atoms could be studied, but the
precise modeling would depend on the typical amplitude and
timescale of the fluctuations.
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