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Coherence-assisted superradiant laser with hertz-level linewidth and 10−10-W power
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The superradiant laser, based on the clock transition between the electric ground state 1S0 and the metastable
state 3P0 of fermionic alkaline-earth-metal-like atoms, has been proposed to be a new promising light source
with linewidth of the order of millihertz. However, due to the small 1S0 to 3P0 transition strength, the steady-
state power in that system is relatively low (approximately 10−12 W). In this work we propose an alternative
superradiant laser scheme based on a Raman-transition-induced coupling between the 3P0 and 3P1 states in
bosonic alkaline-earth-metal-like atoms and achieve a laser with narrow linewidth (less than approximately 2π ×
1 Hz) and high power (greater than approximately 10−10 W, approximately 103 photons in steady state) at a
small pumping cost (less than approximately 2π × 10 kHz). The Raman beams play two significant roles in our
scheme. First, the coherence between the dark and bright states induced by the Raman beams produces a new
local minimum in the pumping-linewidth curve with pumping rate lower than 2π × 10 kHz, which is beneficial
for continuous output. Second, the Raman beams mix the long-lived 3P0 state into the lasing state and thus make
the laser linewidth tunable. Our work greatly improves the output performance of the superradiant laser system
with coherence induced by Raman transitions and may offer a firm foundation for its practical use in the future.
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I. INTRODUCTION

Nowadays, the narrow-linewidth laser finds its importance
in both fundamental scientific interest and practical applica-
tions, such as determining physical constants, gravitational
wave detection, and global positioning systems [1–5]. The
traditional frequency stability method uses a rigid Fabry-
Pérot cavity as a reference, which is fundamentally limited
by thermal fluctuations of the cavity length [6–10]. In the
past decade, instead of further reduction of thermal noise of
the reference cavity, the superradiant laser that utilizes the
atomic transition with a long lifetime, such as the 1S0 to
3P0 clock transition of fermionic alkaline-earth-metal atoms,
was proposed and has attracted much attention. Unlike the
traditional laser, the superradiant laser works in the bad-cavity
regime where the cavity loss is several orders of magnitude
larger than the atomic decay [11–18]. Thus the cavity mode
can be eliminated adiabatically in this regime, leading to a
strong atom-atom correlation (a collective spin) [13,19–21],
and the coherence of the superradiant laser is solely stored
in the atoms. The most attractive feature of the superradiant
laser is that its linewidth can be smaller than the corresponding
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atomic decay rate with frequency robust against cavity length
fluctuation [12,15].

However, in previous superradiant laser systems, it was
hard to achieve a laser with both a narrow linewidth and high
power at the same time. For instance, due to the long-lifetime
nature of the 3P0 state in fermionic alkaline-earth-metal atoms,
the weak coupling of the 1S0 to 3P0 transition to the cavity field
prevents the system from outputting a high power, while the
scheme with bosonic alkaline-earth-metal atoms possesses a
stronger coupling to the cavity field but a much broader laser
linewidth of about 2π × 1 kHz, achieved with a pumping rate
of several tens of kilohertz [15]. In fact, theoretical studies
have also shown that the laser linewidth in the scheme with
bosonic alkaline-earth-metal atoms can be reduced to the hertz
level when the pumping strength is increased to several mega-
hertz [17]. Considering that the superradiant laser has been
experimentally demonstrated based on the 1S0 to 3P0 transition
in 87Sr [14] and the 1S0 to 3P1 transition in 88Sr [15], we
expect to propose a scheme with both advantages of these two
systems, i.e., narrow linewidth and appreciable power.

To this end, we propose to couple the 3P0 state to the
3P1 state in the bosonic alkaline-earth-metal atom (e.g., 88Sr)
by Raman transitions. The 3P0 state has an extremely long
lifetime which can effectively suppress the spontaneous decay
rate of the lasing state. Meanwhile, the laser power can get
significantly increased compared to the system with fermionic
alkaline-earth-metal atoms, since the 1S0 to 3P1 transition
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assists in the lasing process. The idea of this proposal stems
from our previous work [22] where we produced a Raman-
transition-assisted ultranarrow transmission spectrum based
on magnetically induced optical transparency [23].

The second-order mean-field calculation shows that our
proposed scheme can realize a superradiant laser with a
2π × 1 Hz level linewidth and 10−10-W level power (ap-
proximately 103 photons in steady state) at a small pumping
rate of 2π × 10 kHz. Interestingly, in the pumping-linewidth
curve, apart from the local minimum point that also appears
in other superradiant laser systems, a new local minimum
emerges in our scheme with a small pumping rate. The above
narrow-linewidth, high-power, and low-pumping output laser
is created by this new minimum. The feature of this low-
pumping rate can inhibit the heating effect in the lasing
process and thus is very beneficial for continuous output.
Further analyses and calculations illustrate that the double-
minimum character in linewidth originates from the coherence
between the dark and bright states induced by the Raman
transitions. This is the most attractive feature of our scheme
over those without Raman beams.

The remainder of this paper is organized as follows. We
introduce our setup and the calculation methods in Secs. II
and III, respectively. In Sec. IV, by taking the 88Sr atomic
ensemble as the working medium, we illustrate the power,
linewidth, and pulling coefficients of the superradiant laser in
our proposal. In Sec. V we investigate the double-minimum
behavior of the linewidth in the frame with respect to the
dark and bright states. Section VI provides a summary and
discussion of our results. Details of the calculations are given
in Appendixes A and B.

II. MODEL

A. System setup

In our system, as shown in Figs. 1(a) and 1(b), an ensemble
of N cold bosonic alkaline-earth-metal-like atoms are trapped
in an optical cavity with the axis along the y direction. The
quantization axis of the atomic angular momentum is along
the z direction and Jz = mJ h̄ (we set h̄ = 1 hereinafter) is the
projection on the z axis. The x-polarized cavity mode couples
with the lasing transition between the electronic 1S0 state |g〉
and the 3P1 state |x〉, which is defined as

|x〉 ≡ 1√
2

(|3P1, mJ = −1〉 − |3P1, mJ = +1〉). (1)

Two Raman beams α and β are employed to effectively couple
the 3P1 state to the long-lived 3P0 state. The y-polarized beam
α couples the state |x〉 to the 3S1 (mJ = 0) state |S〉 and the
z-polarized beam β couples |S〉 to the 3P0 state |P〉.

B. Lasing process

Before the detailed calculation, it is necessary to present a
rough and qualitative description of how the laser is generated
in our scheme. The pumping process incoherently transfers
the atoms from the ground state |g〉 to the excited state
|S〉. (One possible pumping scheme includes three pumping
beams: The first beam pumps the atom from 1S0 to 3P1, the
second one from 3P1 to 3S1 probably with a large detuning,

FIG. 1. (a) N bosonic alkaline-earth-metal-like atoms are trapped
in an optical cavity. Two Raman beams α and β polarized in the y and
z directions, respectively, are injected into the cavity. (b) Schematic
diagram of the four-level lasing system. The atoms are incoherently
pumped to the 3S1 state |S〉 and then transit to the 3P1 state |x〉 or the
3P0 state |P〉 via spontaneous decay or Raman-induced coupling. The
atoms in |x〉 further transit to the 1S0 state |g〉 and emit laser photons
into the cavity mode. (c) Schematic diagram of our scheme in the
basis with dark state |D〉 and bright state |B〉. The atoms in state |S〉
can transit to |D〉 via only spontaneous decay and to |B〉 via both
spontaneous decay and the Raman transition. The atoms in both |B〉
and |D〉 can emit laser photons.

and the last one from 3S1 to 5s6p 3P1, which then decays to
3S1. The second and third beams are two-photon resonant with
the atomic transition from 3P1 to 5s6p 3P1.)

Some of the atoms in the 3S1 state will fall to the state |x〉 or
|P〉 via either the spontaneous decay or Raman-beam-induced
coherent transitions. As the 3P0 to 1S0 transition of bosonic
alkaline-earth-metal atoms is electric dipole forbidden (e.g.,
24Mg, 40Ca, and 88Sr) [24], it does not couple with the cavity
mode. Hence, when the population inversion is established
between |x〉 and |g〉 and the stimulated emission overwhelms
the photon loss, the laser polarized in the x direction will be
generated.

Although the 1S0 to 3P0 transition does not directly couple
with the laser mode, the Raman-induced coherence between
the 3P0 and 3P1 states plays a crucial role in reducing the
linewidth, which is similar to our previous work on the
ultranarrow transmitted spectrum [22]. An appropriate way
to investigate this coherence is revisiting the above lasing
scheme utilizing the dark (|D〉) and bright (|B〉) states corre-
sponding to the Raman coupling, which are defined as

|D〉 ≡ (�β |x〉 − �α|P〉)/�̃, (2)

|B〉 ≡ (�α|x〉 + �β |P〉)/�̃. (3)

Here �α (β ) is the Rabi frequency corresponding to the Raman
beam α (β) and �̃ ≡ √|�α|2 + |�β |2 is the Raman strength.

Figure 1(c) shows the same lasing scheme as Fig. 1(b)
but uses the basis of |D〉 and |B〉. We can see that the state
|S〉 couples with only the bright state |B〉 through the Raman
beams with effective coupling intensity �̃. Thus, besides the
spontaneous decay, the pumped state |S〉 can also transit to
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the state |B〉 via the Raman transition. In contrast, the state |S〉
transits to the state |D〉 only through the spontaneous decay.
As both states |D〉 and |B〉 have the |x〉 component, the lasing
mode coherently couples with both the |D〉-|g〉 and |B〉-|g〉
transitions. It is remarkable that there exists an incoherent
coupling between |D〉 and |B〉, which comes from the spon-
taneous decay of the state |S〉.1 We will show the explicit
calculation of the laser properties using the bare basis |x〉 and
|P〉 in Sec. III and Appendix A and discuss the influence of
coherence between the dark and bright lasing transitions on
the laser linewidth in Sec. V.

III. MODEL AND METHODS

In this section we use the second-order mean-field master
equation to calculate the laser power, frequency, and linewidth
in our scheme.

A. Hamiltonian and master equation

The Hamiltonian, including the N atoms, the quantized
cavity field, and the classical Raman beams, is given by

Ĥ = ωcâ†â +
N∑

j=1

(
ω0σ̂

( j)
xx + ωSσ̂

( j)
SS + ωPσ̂

( j)
PP

)

+
N∑

j=1

(
�c

2
â†σ̂ ( j)

gx + �α

2
σ̂

( j)
Sx e−iωαt

+ �β

2
σ̂

( j)
SP e−iωβ t + H.c.

)
, (4)

where â (â†) is the annihilation (creation) operator of the
cavity mode with angular frequency ωc and

σ̂ ( j)
μν ≡ |μ〉( j)〈ν| (μ, ν = g, x, S, P) (5)

is the electronic state transition operator for the jth atom. We
choose the energy of the electronic ground state |g〉 to be zero
and then the frequencies of the states |x〉, |S〉, and |P〉 are
ω0, ωS , and ωP, respectively. The angular frequencies of the
Raman beams α and β are ωα and ωβ , respectively. Here �c

is the Rabi frequency of the atom-cavity coupling and �α (β )

is that of the Raman-induced coupling between the state |S〉
and |x〉 (|P〉). We assume that all the atoms homogeneously
interact with the optical cavity and the Raman beams. Without
loss of generality, we choose all the Rabi frequencies as real.

In the rotated frame, the above Hamiltonian (4) can be
simplified as

ĤI = δcâ†â +
N∑

j=1

[
δασ̂

( j)
SS + (δα − δβ )σ̂ ( j)

PP

]

+
N∑

j=1

(
�c

2
â†σ̂ ( j)

gx + �α

2
σ̂

( j)
Sx + �β

2
σ̂

( j)
SP + H.c.

)
, (6)

1One can find this coupling by writing the master equation (10) in
the basis of |D〉 and |B〉.

where the detunings are defined as

δc ≡ ωc − ω0, (7)

δα ≡ ωS − ω0 − ωα, (8)

δβ ≡ ωS − ωP − ωβ. (9)

In the following, when we explore the laser power and
linewidth, all these detunings are assumed to be zero. When
calculating the pulling coefficients which describe the influ-
ence of these detunings on the laser frequency, we assume that
they fluctuate around zero.

During the incoherent pumping process, the spontaneous
decay of the electronic excited states and the loss of the photon
from the cavity are also taken into account. The evolution of
the atoms and cavity field density matrix ρ̂(t ) is determined
by the Born-Markov master equation

d

dt
ρ̂ = −i[ĤI , ρ̂] + κL [â]ρ̂

+
N∑

j=1

(
γxL

[
σ̂

( j)
xS

] + γPL
[
σ̂

( j)
PS

])
ρ̂

+
N∑

j=1

(
γ0L

[
σ̂ ( j)

gx

] + ηL
[
σ̂

( j)
Sg

])
ρ̂, (10)

with the Lindblad operator defined as

L [Ô]ρ̂ ≡ Ôρ̂Ô† − 1
2 (Ô†Ôρ̂ + ρ̂Ô†Ô ). (11)

Here κ is the decay rate of the cavity photon; γ0, γx, and γP are
the spontaneous decay rates of the state |x〉 to |g〉, |S〉 to |x〉,
and |S〉 to |P〉, respectively; and η characterizes the effective
pumping rate from the ground state |g〉 to the state |S〉.

B. Calculation of laser power

In this work we solve the master equation (10) with the
second-order mean-field approximation, where the correla-
tions of three and more operators are ignored during the
cumulant expansion [12,25,26], for example,

〈ÂB̂Ĉ〉 � 〈Â〉〈B̂Ĉ〉 + 〈B̂〉〈ÂĈ〉 + 〈Ĉ〉〈ÂB̂〉 − 2〈Â〉〈B̂〉〈Ĉ〉.
(12)

Here we define the instantaneous and steady-state expectation
values of operator Ô as

〈Ô〉 ≡ Tr[Ôρ̂(t )], (13)

〈Ô〉s ≡ Tr[Ôρ̂(∞)]. (14)

As all the coupling strengths are homogeneous
with respect to the N atoms, the one- and two-
operator expectation values are symmetric concerning
the permutation of atoms. Therefore, we can write
〈σ̂ ( j)

μν 〉 = 〈σ̂ (1)
μν 〉 ≡ 〈σ̂μν〉, 〈σ̂ ( j)

μν â〉 = 〈σ̂ (1)
μν â〉 ≡ 〈σ̂μν â〉, and

〈σ̂ (i)
μνσ̂

( j)
μ′ν ′ 〉i 	= j = 〈σ̂ (1)

μν σ̂
(2)
μ′ν ′ 〉 ≡ 〈σ̂μνσ̂μ′ν ′ 〉 (μ, ν = S, P, x, g and

i, j = 1, . . . , N).
Starting from the average photon number 〈â†â〉, we derive

a series of dynamical equations of operator expectation values
until they are closed, which are given in Appendix A. Then
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FIG. 2. Output power (average photon number) and linewidth of the superradiant laser as functions of pumping rate for the cases with
(a) and (d) �α/�β = 1, (b) and (e) �α/�β = 101/2, and (c) and (f) �α/�β = 10. The black solid and red dashed lines are plotted for
�̃ = 2π × 101/2 and 2π × 10 MHz, respectively. The regions satisfying P � 10−10 W, �ν � 2π × 1 Hz, and η � 2π × 10 kHz can be found
when �α/�β = 101/2 and 10, as marked in purple. In (b) optical bistability appears when �̃ = 2π × 10 MHz and the pumping strength is
around the greater laser threshold (η ∼ 2π × 20 MHz), where the red (green) dashed line plots the laser power in the direction of increasing
(decreasing) pumping rate.

we can obtain the steady-state photon number 〈â†â〉s and
laser power P ≡ κωc〈â†â〉s by numerically solving the above
dynamical equations.

For each Raman intensity �̃ and Raman ratio �α/�β , the
steady-state photon number 〈â†â〉s is a function of the pump-
ing rate η. As shown in Fig. 2, in some regions of η, 〈â†â〉s is
much larger than unity (e.g., 103–106). Outside these regions,
〈â†â〉s is only of the order of unity or even below. Moreover,
at the border of these regions, 〈â†â〉s sharply increases or
decreases with η. Apparently, the laser is generated in the
regions with large 〈â†â〉s. Hence, we define the value of η at
the border of these regions as the laser threshold.2

C. Calculation of lasing frequency and linewidth

One cannot obtain the laser spectrum directly from the
steady-state solutions of Eq. (10). Here we employ the filter-
cavity method [17,25] to calculate the frequency and linewidth
of the output laser numerically. Specifically, we assume that a
low-dissipation filter cavity is weakly coupled with the laser
cavity, which is described by the Hamiltonian

Ĥf = ωbb̂†b̂ + ζ (b̂†â + â†b̂). (15)

Here b̂ is the photon annihilation operator of the filter cavity
with angular frequency ωb and ζ denotes its coupling strength

2Precisely speaking, the border of the regions with large 〈â†â〉s is
not a single point on the η axis, but has finite width, as shown in
Fig. 2. Here we just choose one point on the border to be the pumping
threshold, and our result is not influenced by the chosen of this point.

with the lasing cavity. As both the dissipation rate of the filter
cavity and its coupling with the laser mode are assumed to
be much smaller than the Rabi frequencies and the dissipation
rates of the lasing system, the filter cavity has a negligible
influence on the lasing process. Meanwhile, the laser photon
can enter into and dissipate from the filter cavity. Therefore,
the spectrum of the steady-state photon number 〈b̂†b̂〉s versus
the filter-cavity frequency ωb will provide information about
the laser frequency and linewidth of our scheme. As shown in
Fig. 3, the spectrum of 〈b̂†b̂〉s has a single peak whose central
frequency is just the lasing angular frequency ω∗. The full
width at half maximum (FWHM) of this peak corresponds to
the laser linewidth �ν [17].

Before we present the numerical results, it is worth men-
tioning that the laser linewidth �ν can also be obtained by the
quantum regression theorem [12,27,28]. Though the quantum-
regression method is not as efficient as the filter-cavity
one for numerical calculation, it can give an approximate

FIG. 3. Schematic diagram of the spectrum of filter cavity. The
laser frequency and linewidth correspond to the central frequency
and FWHM of this spectrum.
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expression of the laser linewidth in terms of 〈σ̂μν〉s (μ, ν = S, P, x, g) as

�ν =
∣∣∣∣∣∣

κ + N�2
c

F

[
η�αIm〈σ̂Sx〉s + �α�βRe〈σ̂Px〉s − (

η� + �2
β

)〈σ̂xx − σ̂gg〉s
]

1 + κ
F

[
η� + (γ0 + η)(� + η) + �2

α + �2
β

] + N�2
c

F [�αIm〈σ̂Sx〉s − (� + η)〈σ̂xx − σ̂gg〉s]

∣∣∣∣∣∣, (16)

where we have defined � = γx + γP + η and F =
η�2

α + (γ0 + η)(η� + �2
β ). The detailed derivation of

Eq. (16) is given in Appendix B, which also shows that
Eq. (16) coincides with the numerical result very well. We
will discuss the effects of the dark-bright state coherence with
the help of Eq. (16) in Sec. V.

IV. LASER PROPERTIES

In this section we consider an ensemble of cold alkaline-
earth-metal 88Sr atoms as the gain medium to illustrate the
properties of the superradiant laser generated via our scheme.
A laser using the same kind of atoms, but without the Raman
beams, has been experimentally achieved in the superradi-
ant crossover regime [15]. In our following second-order
mean-field calculation, we adopt the parameters achievable
in experiments, for instance, N = 105, κ = 2π × 150 kHz,
and �c = 2π × 21.2 kHz. The spontaneous decay rates of the
88Sr atom are γx = 2π × 2.6 MHz, γP = 2π × 1.8 MHz, and
γ0 = 2π × 7.5 kHz [29].

A. Power and linewidth

We show the superradiant laser power P and the linewidth
�ν as functions of the pumping rate η in Fig. 2. The black
solid (red dashed) lines represent the case with the Raman
strength �̃ = 2π × 101/2 MHz (2π × 10 MHz) plotted for
the Raman ratios �α/�β = 1 [Figs. 2(a) and 2(d)], �α/�β =
101/2 [Figs. 2(b) and 2(e)], and �α/�β = 10 [Figs. 2(c) and
2(f)]. We see that the power P increases with the pumping
rate η in the lasing regime, which is similar to other superradi-
ant systems. However, in the pumping-linewidth curve, while
only one minimum appears in the system without Raman
beams [12,17], another local minimum point emerges in our
scheme to the left of the former. Moreover, for proper Raman
strengths and ratios, the new local minimum of linewidth be-
comes the global minimum with a pumping rate smaller than
2π × 10 kHz. This may inhibit the heating effect in the lasing
process, which is helpful for the continuous output. Hence,
the emergence of this new local minimum implies that our
scheme may generate a narrow-linewidth (2π × 1 Hz) laser
with a considerable power (10−10 W) for practical use. For
clarity, we mark the regions satisfying the conditions

P � 10−10 W, (17)

�ν � 2π × 1 Hz, (18)

η � 2π × 10 kHz (19)

in purple in Fig. 2.
We emphasize that the double-minimum behavior of

linewidth is a characteristic resulting from the Raman-induced
coherence, which is a significant difference of our superradi-

ant lasing scheme from the previous works without Raman
beams [12,16,17]. We leave the discussion of the underlying
physics to Sec. V.

In Fig. 4 we provide more comprehensive information
about our lasing scheme by two-dimensional plots of the laser

10-2 1 102 104

10-15/2

10-5

10-5/2

100

105/2

105

P  (10-12 W)(a)

Ω
α
/Ω

β

1

10

102

101/2

103/2

η/2�  (kHz)
10-2 1 102 104

Ω
α
/Ω

β

1

10

102

101/2

103/2

10-3

10-2

1

101

102

103

10-1

∆ν/2�  (Hz)(b)

FIG. 4. Two-dimensional plots of (a) the power P and (b) the
linewidth �ν as functions of the pumping rate η and the Raman ratio
�α/�β . The thresholds of the laser scheme are illustrated by black
dashed lines and the laser is generated in the regions in between.
The area surrounded by the white dashed line represents the region
satisfying P � 10−10 W, �ν � 2π × 1 Hz, and η � 2π × 10 kHz.
Here we set �̃ = 2π × 101/2 MHz. In (b) we show only the linewidth
in the lasing region.
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power P and linewidth �ν as functions of the pumping rate
η and the Raman ratio �α/�β . The Raman strength �̃ is
fixed at 2π × 101/2 MHz. The black dashed lines represent
the threshold of our lasing scheme, and the area surrounded by
the white dashed line shows the region satisfying Eqs. (17)–
(19). In Fig. 4(b) we plot only the laser linewidth inside the
lasing region.

Figure 4 shows that the Raman ratio �α/�β can be used
to tune the laser power and linewidth. When increasing the
Raman ratio, we find that both the laser power and linewidth,
working around the left local minimum of linewidth, decrease
continuously. Thus, there is competition between achieving
considerable output power and keeping a small linewidth. In
particular, when �α/�β is raised to the order of 102, we
can realize the superradiant laser with a millihertz linewidth
and 10−12-W output power. This linewidth is at least six
orders of magnitude smaller than the natural linewidth of the
3P1 state of 88Sr and comparable to that of the 3 P0 state of
87Sr [12].

B. Lasing frequency and pulling coefficients

When the cavity mode is resonant with the atomic 1S0 to
3P1 transition (δc = 0) and both of the Raman beams are reso-
nant with the corresponding atomic transitions (δα = δβ = 0),
numerical calculation shows that the central frequency ω∗
of the output laser equals the atomic 1S0 to 3P1 transition
frequency ω0, i.e., ω∗ = ω0. Nevertheless, in realistic systems,
fluctuations of the frequencies of the cavity mode and Raman
beams (nonzero δc,α,β) will shift the lasing frequency from ω0.
The three pulling coefficients can describe the stability of the
lasing frequency under these fluctuations,

c(i)
p =

∣∣∣∣∂δ∗

∂δi

∣∣∣∣
δc=δ1=δ2=0

(i = c, 1, 2), (20)

where δ∗ ≡ ω∗ − ω0 is the fluctuation of the laser fre-
quency and δ1 ≡ δα + δβ (δ2 ≡ δα − δβ) is the one-photon
(two-photon) detuning. According to the definition of δα

and δβ in Eqs. (8) and (9), the detunings δ1 and δ2 are
determined by the summation and difference of the frequen-
cies of the two Raman beams (i.e., ωα + ωβ and ωα − ωβ),
respectively.

In Fig. 5 we plot the pulling coefficients c(c)
p , c(1)

p , and
c(2)

p as functions of the Raman ratio �α/�β and pumping
rate η. Our results show that for η ∼ 2π × 5 kHz, we have
c(c)

p ∼ 10−2, c(1)
p ≈ 0, and c(2)

p ≈ 1. Therefore, in this region,
the central frequency of the output laser is robust against the
fluctuation of the cavity frequency and that of the frequency
sum of the two Raman beams. However, the fluctuation of
the frequency difference of the two Raman beams δ2 results
in an uncertainty of the central lasing frequency, which is
approximately equal to δ2. In the current experiments, via
locking the two Raman beams with an optical comb or two
modes of the same cavity [30], one can suppress |δ2| to the
level of hertz (or even lower). Therefore, the uncertainty of
the central lasing frequency corresponding to δ2 can approach
the order of hertz as well.
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FIG. 5. Pulling coefficients c(c)
p , c(1)

p , and c(2)
p (a)–(c) as functions

of the Raman ratio �α/�β with the pumping rate η = 2π × 5 kHz
and (d)–(f) as functions of the pumping rate η with the Raman ratio
�α/�β = 10. Here we set �̃ = 2π × 101/2 MHz.

V. COHERENCE-INDUCED DOUBLE MINIMA
OF THE LINEWIDTH

In the above sections we have demonstrated that the ap-
pearance of double minima in the pumping-linewidth curve
is a crucial characteristic of our lasing scheme. Based on
this fact, it is possible to realize a laser with a relatively
small linewidth and high power at a low pumping rate (e.g.,
�ν � 2π × 1 Hz and P � 10−10 W at η � 2π × 10 kHz). In
this section we reveal that such a double-minimum feature
stems from the Raman-induced coherence between the dark
state |D〉 and the bright state |B〉. To this end, we illustrate
the effect of this coherence from two aspects. First, we show
that a simplified three-level model (TLM) cannot fully capture
the features of the four-level lasing system; then, a rescaled
coherence measure is defined for quantitative investigation.

A. Three-level models

In our system, as shown in Fig. 1(c), the atoms pumped to
the state |S〉 can transit to both of the states |D〉 and |B〉 and
then emit laser photons to the cavity mode. However, since the
state |S〉 is coupled to |B〉 by the Raman beams, the atoms in
state |B〉 can be repumped to |S〉. The atoms in state |D〉, in
contrast, cannot directly transit back to |S〉 and have a 100%
possibility to emit laser photons. The above facts indicate that
it is the dark state rather than the bright one that dominates in
the lasing process. Thus, a simplified TLM ignoring the state
|B〉 may capture certain main properties, such as power and
threshold, of our laser scheme.

In order to verify this thinking, we investigate a sim-
plified TLM containing the atomic states |g〉, |D〉, and |S〉,
which is referred to as a dark TLM and schematically shown
in Fig. 6(a). Compared to the four-level model shown in
Fig. 1(c), the dark TLM ignores the bright state |B〉 and the
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FIG. 6. Simplified three-level models used in Sec. V A. (a) The
dark three-level model contains the ground state |g〉, the 1S0 state
|S〉, and the dark state |D〉. (b) The bright three-level model contains
the bright state |B〉 instead of |D〉. In addition, an effective transition
induced by the Raman beams couples the state |B〉 with |S〉.

spontaneous-decay-induced coupling between |D〉 and |B〉.
As the dark state |D〉 is a superposition of the atomic states
|x〉 and |P〉 [see Eq. (2)], the parameters used here are also
superposed on those of the states |x〉 and |P〉. For instance,
the spontaneous decay rates of state |S〉 to |D〉 and |D〉 to |g〉
are (�2

αγP + �2
βγx )/�̃2 and �2

βγ0/�̃
2. The Rabi frequency

of the coupling between the state |D〉 and the cavity mode is
�β�c/�̃.

We calculate the output power of the dark TLM with the
second-order mean-field method and compare the result with
that of the four-level scheme given in Sec. IV. As shown in
Fig. 7, the laser power and threshold of the dark TLM are very
close to that of the four-level model. Nevertheless, the laser
linewidth of the dark TLM has only one minimum at about
η = 2π × 104 kHz, while another local minimum emerges in
the four-level model at around η = 2π × 3 kHz. Moreover,

FIG. 7. Comparison of (a) the laser output power and (b) the
linewidth of the four-level lasing model in Sec. II (black solid lines),
the dark TLM (red dotted lines with diamonds), and the bright TLM
(blue dashed lines with triangles). Here we set �α/�β = 101/2 and
�̃ = 2π × 101/2 MHz.

near the new local minimum, the linewidth of the four-level
model is of the subhertz level and three orders of magnitude
smaller than that of the dark TLM. The above results yield
that the dark lasing state alone cannot explain all the proper-
ties of the four-level model, especially the double-minimum
behavior of the linewidth as a function of the pumping rate.

As a comparison, we also investigate a bright TLM, which
contains the atomic states |g〉, |B〉, and |S〉, as shown in
Fig. 6(b). Unlike the dark TLM, in the bright TLM, the |B〉
state coherently couples to the |S〉 state with an effective
coupling strength �̃ induced by the Raman beams. The other
parameters are similar to those in the dark TLM. In Fig. 7, the
blue dashed lines with triangles show the power and linewidth
of the bright TLM, which are much different from those of the
four-level model.

Clearly, neither the dark state nor the bright one alone is
the reason for the double-minimum linewidth of the four-level
model. The failure of these two TLMs suggests that the co-
herence between |D〉 and |B〉 may play a significant role in the
double-minimum behavior.

B. Coherence between the dark and bright states

The steady-state expectation value 〈σ̂BD〉s ≡
Tr[|B〉〈D|ρ̂(∞)] naturally measures the coherence between
the dark and bright states. When rewriting the linewidth
equation (16) with the basis of the states |D〉 and |B〉,
we can find that the term 〈σ̂BD〉s explicitly appears in the
expression of �ν. However, the direct comparison of 〈σ̂BD〉s

between different parameter cases is meaningless because
the populations in the dark and bright states vary with
η and �α(β ). Therefore, we define a rescaled measure of
coherence as

CBD = |〈σ̂BD〉s|
〈σ̂DD〉s + 〈σ̂BB〉s

, (21)

where 〈σ̂DD〉s and 〈σ̂BB〉s are the steady-state populations of
the dark and bright states, respectively.

In Fig. 8 we plot the laser linewidth and the corresponding
coherence measure CBD with different values of �̃ as a func-
tion of the pumping rate η. Here we choose the same value of
�α/�β = 101/2 as in Fig. 7. It can be seen from Fig. 8(a)
that the double-minimum behavior of �ν is more obvious
for small Raman strength �̃. When we increase the Raman
strength �̃ from 2π × 101/2 to 2π × 10 MHz, the left local
minimum of the linewidth increases from below 2π × 1 Hz to
2π × 10 Hz. Further increasing the Raman strength to 2π ×
102 MHz, we see that the double-minimum curve reduces to
a single-minimum one which coincides with that of the dark
TLM. Meanwhile, the rescaled coherence CBD corresponding
to the left local minimum of linewidth decreases from the
order of 10−1 to 10−5 as �̃ increases from 2π × 101/2 to
2π × 102 MHz [see Fig. 8(b)]. Such a correlation between a
large CBD and the double-minimum behavior of the linewidth
confirms the importance of the coherence between the dark
and bright states in our lasing scheme.

The coherence between the dark and bright states is also
crucial in reducing the linewidth of 88Sr superradiant lasing in
the scheme discussed in Ref. [25]. Unlike our approach where
the dark state is decoupled from the Raman lights, in Ref. [25]
the dark state (the same as |x〉 in our work) corresponds to
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FIG. 8. (a) Linewidth �ν and (b) rescaled coherence CBD of
the four-level lasing model introduced in Sec. II. The results are
plotted for �̃ = 2π × 101/2 MHz (red dotted line with diamonds),
�̃ = 2π × 10 MHz (green dash-dotted line with circles), and 2π ×
102 MHz (blue dashed line with triangles). The linewidth of the dark
TLM is also displayed with the black solid line for comparison. Here
we have chosen the Raman ratio �α/�β = 101/2.

a state that does not interact with the cavity mode, and the
coherence between dark and bright states is induced by the
presence of a magnetic field.

VI. CONCLUSION

In this work we have proposed a quantum-coherence-
assisted superradiant laser scheme with bosonic alkaline-
earth-metal atoms. The Raman beams play two critical roles
here. First, they induce the steady-state coherence between
the dark and bright states which produces a new local mini-
mum in the pumping-linewidth curve with a small pumping
rate. Thus our scheme can achieve a narrow-linewidth (less

than approximately 2π × 1 Hz) and high-power (greater than
approximately 10−10 W, approximately 103 photons in the
steady state) output laser with a low pump (less than approx-
imately 2π × 10 kHz). Second, as the Raman beams mix the
long-lived 3P0 state into the lasing state, the linewidth of our
scheme is tunable with the Raman beams.

To illustrate the significance of the coherence between
the dark and bright states in our scheme, we investigate two
simplified three-level laser models which ignore the bright or
dark state separately. A rescaled quantity is also introduced to
measure the coherence between these two states. Calculations
show a strong correlation between the double-minimum fea-
ture of linewidth and a large rescaled coherence measure. The
lasing frequency is robust against the fluctuations of the cavity
length and the one-photon detuning. Although a nonzero two-
photon detuning will fluctuate the laser frequency with almost
the same amount, this two-photon detuning can be well con-
trolled by locking the two Raman beams to an optical comb or
two modes of the same cavity. There are still some unresolved
questions pertaining to the physical explanation of our lasing
scheme. One may ask, for instance, why the three-level model
(dark TLM) agrees with the four-level model for a very large
Rabi strength �̃.3 Also, why does line narrowing occur at low
pump strengths when the Raman ratio �α/�β is increased?
The underlying physics, perhaps from the perspective of noise
reduction, warrants further investigation.

Based on these achievements, our work greatly improves
the output performance of the superradiant laser system with
coherence induced by Raman transitions and may offer a firm
foundation for its practical use in the future.
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APPENDIX A: MEAN-FIELD DYNAMICAL EQUATIONS

Using the second-order mean-field theory described in the
main text, a set of closed equations of motion for the expecta-
tion values of operators are obtained and listed as follows:

d

dt
〈â†â〉 = −κ〈â†â〉 + i

N�c

2
(〈σ̂xgâ〉 − H.c.),

d

dt
〈σ̂xgâ〉 = −

[
iδc + 1

2
(γ0 + η + κ )

]
〈σ̂xgâ〉 + i

�α

2
〈σ̂Sgâ〉 − i

�c

2
[〈σ̂xx〉 + 〈â†â〉(〈σ̂xx〉 − 〈σ̂gg〉) + (N − 1)〈σ̂xgσ̂gx〉],

d

dt
〈σ̂Pgâ〉 =

[
i(δα − δβ − δc) − 1

2
(η + κ )

]
〈σ̂Pgâ〉 + i

�β

2
〈σ̂Sgâ〉 − i

�c

2
[〈ââ†〉〈σ̂Px〉 + (N − 1)〈σ̂Pgσ̂gx〉],

3One possible reason is that the large Raman coupling between |S〉 and |B〉 drives the atom from |B〉 to |S〉, which then decays partially to |D〉.
Consequently, even though both the bright and dark states couple with the lasing mode, the population inversion mainly occurs between |D〉
and |g〉. Furthermore, �̃2, the coherence between |B〉 and |D〉 is substantially diminished (see Fig. 8). As a result, our lasing scheme behaves
similarly to the dark TLM in the presence of a large Raman strength.
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d

dt
〈σ̂Sgâ〉 =

[
i(δα − δc) − 1

2
(� + κ )

]
〈σ̂Sgâ〉 + i

�α

2
〈σ̂xgâ〉 + i

�β

2
〈σ̂Pgâ〉 − i

�c

2
[〈ââ†〉〈σ̂Sx〉 + (N − 1)〈σ̂Sgσ̂gx〉],

d

dt
〈σ̂xgσ̂gx〉 = −(γ0 + η)〈σ̂xgσ̂gx〉 +

(
i
�α

2
〈σ̂Sgσ̂gx〉 + H.c.

)
+

(
i
�c

2
〈σ̂xgâ〉 + H.c.

)
(〈σ̂xx〉 − 〈σ̂gg〉),

d

dt
〈σ̂xgσ̂gP〉 =

[
− i(δα − δβ ) − 1

2
(γ0 + 2η)

]
〈σ̂xgσ̂gP〉+ i

�α

2
〈σ̂Sgσ̂gP〉− i

�β

2
〈σ̂xgσ̂gS〉+ i

�c

2
[〈σ̂xgâ〉〈σ̂xP〉 − 〈â†σ̂gP〉(〈σ̂xx〉 − 〈σ̂gg〉)],

d

dt
〈σ̂xgσ̂gS〉 =

[
− iδα − 1

2
(γ0 + � + η)

]
〈σ̂xgσ̂gS〉 + i

�α

2
(〈σ̂Sgσ̂gS〉 − 〈σ̂xgσ̂gx〉) − i

�β

2
〈σ̂xgσ̂gP〉

− i
�c

2
〈â†σ̂gS〉(〈σ̂xx〉 − 〈σ̂gg〉) + i

�c

2
〈σ̂xS〉〈σ̂xgâ〉,

d

dt
〈σ̂Pgσ̂gP〉 = −η〈σ̂Pgσ̂gP〉 +

(
i
�c

2
〈σ̂Pgâ〉〈σ̂xP〉 − i

�β

2
〈σ̂Pgσ̂gS〉 + H.c.

)
,

d

dt
〈σ̂Pgσ̂gS〉 =

[
− iδβ − 1

2
(� + η)

]
〈σ̂Pgσ̂gS〉 − i

�α

2
〈σ̂Pgσ̂gx〉 + i

�β

2
(〈σ̂Sgσ̂gS〉 − 〈σ̂Pgσ̂gP〉) + i

�c

2
(〈σ̂Pgâ〉〈σ̂xS〉 − 〈σ̂Px〉〈â†σ̂gS〉),

d

dt
〈σ̂Sgσ̂gS〉 = −�〈σ̂Sgσ̂gS〉 +

(
i
�α

2
〈σ̂xgσ̂gS〉 + i

�β

2
〈σ̂Pgσ̂gS〉 + i

�c

2
〈σ̂Sgâ〉〈σ̂xS〉 + H.c.

)
,

d

dt
〈σ̂xx〉 = −γ0〈σ̂xx〉 + γx〈σ̂SS〉 +

(
−i

�α

2
〈σ̂xS〉 + i

�c

2
〈â†σ̂gx〉 + H.c.

)
,

d

dt
〈σ̂PP〉 = γP〈σ̂SS〉 −

(
i
�β

2
〈σ̂PS〉 + H.c.

)
,

d

dt
〈σ̂SS〉 = −(γx + γP )〈σ̂SS〉 + η〈σ̂gg〉 +

(
i
�α

2
〈σ̂xS〉 + i

�β

2
〈σ̂PS〉 + H.c.

)
,

d

dt
〈σ̂xP〉 =

[
− i(δα − δβ ) − 1

2
γ0

]
〈σ̂xP〉 + i

�α

2
〈σ̂SP〉 − i

�β

2
〈σ̂xS〉 + i

�c

2
〈â†σ̂gP〉,

d

dt
〈σ̂xS〉 =

[
− iδα − 1

2
(γ0 + γx + γP )

]
〈σ̂xS〉 + i

�α

2
(〈σ̂SS〉 − 〈σ̂xx〉) − i

�β

2
〈σ̂xP〉 + i

�c

2
〈â†σ̂gS〉,

d

dt
〈σ̂PS〉 =

[
− iδβ − 1

2
(γx + γP )

]
〈σ̂PS〉 − i

�α

2
〈σ̂Px〉 + i

�β

2
(〈σ̂SS〉 − 〈σ̂PP〉).

Here we have used the relation 〈σ̂gg〉 + 〈σ̂xx〉 + 〈σ̂SS〉 + 〈σ̂PP〉 = 1.
As the coherence between the bright and dark states plays a significant role in our lasing scheme, here we rewrite the

dynamical equation of the expectation value of the coherence term σ̂BD in the basis of the bright and dark states

d

dt
〈σ̂BD〉 = −

(
iδ2

�2
α − �2

β

�̃2
+ γ0

2

)
〈σ̂BD〉 + �α�β

�̃2

(
iδ2 − γ0

2

)
〈σ̂BB〉 − �α�β

�̃2

(
iδ2 + γ0

2

)
〈σ̂DD〉

+ (γx − γP )
�α�β

�̃2
〈σ̂SS〉 − i

�β

�̃

�c

2
〈σ̂Bgâ〉 + i

�c

2

�α

�̃
〈â†σ̂gD〉 + i

�̃

2
〈σ̂SD〉. (A1)

Hence, for the case of zero two-photon detuning, as discussed
in the main text, the coupling between the dark and bright
states mainly arises from the terms in the second line of
Eq. (A1). These terms include the spontaneous decay of |S〉,
the coupling between the cavity mode and the |B〉-|g〉 and
|D〉-|g〉 transitions, and the Raman coupling. The correspond-
ing strength is related to (γx − γP )�α�β/�̃2, �c�β/2�̃,
�c�α/2�̃, and �̃/2, respectively.

APPENDIX B: LINEWIDTH OBTAINED BY THE
QUANTUM REGRESSION THEOREM

In this Appendix we show how to obtain the analytical ex-
pression of the linewidth via the quantum regression theorem.

1. Dynamical equations of the correlation functions

The laser linewidth �ν can be read from the FWHM of
the laser power spectrum S(ω), which is related to the two-
time correlation function of the laser according to the Wiener-
Khinchin theorem [31–33], i.e.,

S(ω) = 2
∫ ∞

0
dt Re[〈â†(t )â(0)〉se

−i(ω−ω0 )t ]. (B1)

The two-time correlation function can be found using the
quantum regression theorem, which reads
d

dt
〈â†(t )â(0)〉s =

(
iδc − κ

2

)
〈â†(t )â(0)〉s + iN�c

2
〈σ̂xg(t )â(0)〉s.

(B2)
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This equation contains another correlation function
〈σ̂xg(t )â(0)〉s. Thus, we continuously derive a set of
equations of motion until they are closed under the
second-order mean-field approximation as

d

dt
A(t ) = B · A(t ), (B3)

where

A(t ) = [〈â†(t )â(0)〉s, 〈σ̂xg(t )â(0)〉s, 〈σ̂Pg(t )â(0)〉s,

〈σ̂Sg(t )â(0)〉s]
T (B4)

and

B = −1

2

⎛
⎜⎜⎜⎝

−2iδc + κ −iN�c 0 0
i�c〈σ̂xx − σ̂gg〉s γ0 + η 0 −i�α

i�c〈σ̂Px〉s 0 −2iδ2 + η −i�β

i�c〈σ̂Sx〉s −i�α −i�β −2iδα + �

⎞
⎟⎟⎟⎠.

(B5)

The initial condition of Eq. (B3) is the steady-state solutions
of the corresponding operators given in Appendix A.

2. Analytical solutions of the dynamical equations

As the matrix B is not Hermitian, its eigenvalues are not
real, and the corresponding eigenvectors are not orthogonal.
Before solving the dynamical equations (B3), we need to in-
troduce the left and right eigenvectors of B, which are defined
as

B|i〉 = λi|i〉, (B6)

〈ĩ|B = λi〈ĩ|. (B7)

In these equations λi (i = 1, 2, 3, 4) is the ith eigenvalue of
B, and 〈ĩ| and |i〉 are the left and right eigenvectors of B,
respectively, which satisfy the relation 〈ĩ| j〉 = δi, j for i, j =
1, 2, 3, 4. Then the unit operator in this space becomes I =∑

i |i〉〈ĩ|.
Next we perform the Laplace transformation to Eq. (B3)

and obtain

Ā(p) = 1

p − B
A(0), (B8)

where Ā(p) is the Laplace transform of A(t ). Inserting the
operator I = ∑

i |i〉〈̃i| into Eq. (B8), we have

Ā(p) =
∑

i

1

p − λi
|i〉〈ĩ|A(0). (B9)

After applying the inverse Laplace transformation, we find the
A(t ) as

A(t ) =
∑

i

eλit |i〉〈ĩ|A(0). (B10)

Equation (B10) indicates that the two-time correlation func-
tion 〈â†(t )â(0)〉s is a superposition of the functions eλit (i =
1, 2, 3, 4). As the spectrum function S(ω) is the Fourier trans-
form of the correlation function 〈â†(t )â(0)〉s [see Eq. (B1)],
it is superposed by four Lorentzian line shapes whose cen-
tral frequencies and linewidths are ω0 + Im(λi) and 2|Re(λi)|
(i = 1, 2, 3, 4), respectively.
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3. Approximate analytical expression of the linewidth

According to the numerical calculation, under the resonant
condition that δc = δα = δβ = 0, the central frequency ω∗ of
the output laser equals the atomic 1S0 to 3P1 transition fre-
quency ω0. This fact indicates that, among the four Lorentzian
line shapes, the one corresponding to the eigenvalue with a
zero imaginary part and a small real part contributes most
significantly to the laser spectrum.

Therefore, we try to find the eigenvalue λmin of the matrix
B which has a zero imaginary part and a small real part. By
solving the eigenfunction of B to the first order, we obtain an
approximated expression

λmin � iA1 + A2

2B1
, (B11)

where A1, A2, and B1 are real numbers and

B1 � N�2
c[�αIm〈σ̂Sx〉s − (� + η)〈σ̂xx − σ̂gg〉s]

+ κ[η� + (γ0 + η)(� + η)] + γ0�
2
β

+ (η + κ )
(
�2

α + �2
β

) + η�(γ0 + η),

A1 � N�2
c�α[�βIm〈σ̂Px〉s − ηRe〈σ̂Sx〉s],

A2 � κ
[
(γ0 + η)�2

β + η�2
α + η�(γ0 + η)

]
− N�2

c

(
η� + �2

β

)〈σ̂xx − σ̂gg〉s

+ N�2
c�α[�βRe〈σ̂Px〉s + ηIm〈σ̂Sx〉s].

In the steady state, we numerically find that Re〈σ̂Sx〉s =
Im〈σ̂Px〉s = 0, which verifies that the imaginary part of λmin is
zero. As the laser linewidth depends on the real part of λmin,
we finally obtain the approximate analytical expression of the
linewidth as

�ν = 2|Re(λmin)| = |A2/B1|, (B12)

the explicit expression of which is given in Eq. (16).
We show the analytical expression (16) with the red

dashed lines in Fig. 9. The numerical results using the quan-
tum regression method and the filter-cavity method are also
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presented with the blue diamonds and the black solid lines,
respectively. The curves of the three methods coincide with

each other very well and thus demonstrate the validity of our
analytical expression.
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