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Adiabatic rapid passage (ARP) is extensively used to achieve efficient transfer or inversion of populations in
quantum systems. Landau and Zener accurately estimated the transfer probability of ARP for a closed system
and showed that this probability improved with higher drive amplitude. Recently, we found that, in open quantum
systems, applying a strong drive can give rise to significant drive-induced dissipation (DID). Here, we investigate
the effect of DID on the performance of ARP that is implemented using a linearly chirped pulse on a two-level
system. From the Landau-Zener formula, the population transfer was known to be enhanced with increasing
drive amplitude. However, here we show that, beyond a threshold value of the drive amplitude, the transfer
probability is reduced because of the detrimental effect of DID. We show that the competition between the two
processes results in an optimal behavior of the population transfer. We also propose a phenomenological model
that helps explain such nonmonotonic behavior of the transfer. Using this model, we estimate the optimum time
at which the maximum population transfer occurs. We extend the analysis for rectangular as well as Gaussian
pulse profiles and conclude that a Gaussian pulse outperforms a rectangular pulse.
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I. INTRODUCTION

Adiabatic rapid passage (ARP) is an efficient and robust
method for population transfer between two levels of a quan-
tum system. ARP commonly involves applying a chirped
pulse across the resonance frequency of two specific energy
levels of a quantum system. The chirped pulse, usually sym-
metric, covers a wide frequency range, with endpoints far
away from the resonance. If the sweep is sufficiently slow
to satisfy the adiabaticity criterion, then populations of the
concerned levels undergo complete inversion with 100% ef-
ficiency. In the early 1930s, Landau provided a theoretical
description of the process, which Zener perfected soon after
[1–3]. Since the 1970s, it is commonly referred to as the
Landau-Zener theory [4–7]. According to them, if the adia-
baticity criterion is not maintained during the sweep, there is
a possibility that the system could make a transition from one
eigenstate to the other. This is known as the Landau-Zener
(LZ) transition, which is a nonadiabatic transition. As a result,
ARP and LZ transition are two complementary processes and
the probability of the population transfer in ARP follows from
the LZ formula, as we shall discuss in detail in the next
section.

For a linearly chirped drive of constant amplitude ω1 and
frequency sweep rate R, the adiabaticity condition requires
R/ω1 � ω1 [8]. To achieve an efficient transfer, free from
the effects of the environment the process must be executed
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fast enough compared to the timescale of relaxation TR of
the quantum system. As such, this passage is fast or rapid.
The two requirements can be combined as 1

TR
� R

ω1
� ω1.

The first inequality is the requirement for rapid, whereas the
second is the requirement for adiabaticity. So, it is evident
that the application of a higher drive amplitude is preferable
for more efficient transfer. This condition also follows from
the LZ formula.

As an experimental technique, ARP has been known since
its seminal use by Bloch, Hansen, and Packard to detect nu-
clear magnetic resonance [9]. Since then, through the works
of Redfield, Abragam, Proctor, Slichter, and others, ARP
emerged as a useful technique for the population inversion,
adiabatic demagnetization, spin temperature studies, and oth-
ers [10–15]. In recent times, ARP has been extensively used
in population transfer, wavelength conversions, quantum com-
puting, and others [16–20].

In addition to magnetic resonance, ARP has also been
used in optical regimes using frequency-swept laser pulses
[21–23]. Melinger et al. demonstrated that, when applied
in the adiabatic limit, frequency-swept picosecond laser
pulses could be used to achieve efficient population trans-
fer by ARP in two-level and multilevel systems [22]. A
few years later, Malinovsky et al. presented a general the-
ory of ARP with intense, linearly chirped laser pulses [23].
They derived a modified LZ formula to determine the op-
timal conditions for efficient and robust population transfer.
Maeda et al. reported coherent population transfer between
Rydberg states of Li atoms by higher-order multiphoton
ARP [24]. Instead of using a sequence of ARPs of single-
photon transitions, they used ARP of a single multiphoton
transition.
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ARP has also been studied on systems where the “rapid”
criterion is not completely satisfied [25–31]. In such systems,
the effect of the relaxation on the transfer efficiency is not
negligible. Nalbach and others investigated LZ transition in a
dissipative environment [28]. They showed a nonmonotonic
dependence of the transition probability on the sweep speed
due to competition between relaxation and the external sweep.
They explained it in terms of a simple phenomenological
model. Sun et al. investigated finite-time LZ processes in the
presence of an environment, modeled by a broadened cavity
mode at zero temperature [30]. They numerically studied the
survival fidelity of adiabatic states. They showed that the
fidelity of the transfer exhibits a nonmonotonic dependence on
the system-environment coupling strength and the sweep rate
of the energy bias. Both works hint that the transfer efficiency
may be optimal in the case of dissipative dynamics.

We note that a strong chirped pulse favors the ARP con-
dition; the LZ formula of transfer also supports it. For a
commonly employed linearly chirped drive of constant am-
plitude ω1 and sweep rate R, both the conditions imply
ω2

1 � R [8]. However, we note that a strong drive gives rise
to significant excitation-induced dissipation or drive-induced
dissipation (DID) in open quantum systems. Although the vol-
ume of works mentioned above incorporates the dissipation
due to system-environment coupling, they did not consider
the drive-induced dissipation. In this work, we incorporate the
DID to study the population transfer using ARP in a two-level
system (TLS) coupled to its environment. To this end, we use
a fluctuation-regulated quantum master equation (FRQME); a
recently proposed Markovian quantum master equation that
can estimate the DID [32]. We choose the parameters to
mimic a nearly closed system. Thus, for our system, DID
is stronger than the relaxation rate processes arising from
system-environment coupling. Under this condition, we show
that the population transfer has an optimal dependence on
ω1. We estimate the critical value and provide a condition
for an optimal transfer using a phenomenological model. We
propose that to achieve the maximum population transfer, we
need to stop the drive at that very point of time when the
optimal transfer is achieved. If we wait any longer, the transfer
will start to decay due to the DID. The analysis is carried out
for two commonly used pulse profiles, the rectangular and
Gaussian, and we analyze the relative merits of their use in
population transfer.

We organize the remaining part of the article in the fol-
lowing order. In Sec. II, we introduce our frequency sweep
model to deal with the problem and describe the mathematical
construction of our work. In Sec. III, we show the results.
In this section, we also propose a phenomenological model
to explain the optimal behavior of population transfer in the
presence of DID. In Sec. IV, we discuss the implications of
our work. Section V summarizes the major findings and draws
final conclusions.

II. MODEL AND METHOD

As is the common practice to emulate ARP, we use a
frequency sweep model. We note that Bloch and others orig-
inally proposed the feasibility of this process [9]. In the past,
many used this model to study ARP. Rubbmark et al. used

E(t)

t

|g〉

|g〉|e〉

|e〉

E+(t)

E−(t)

T/2 T

ω1
0

P

P ′

FIG. 1. The plot shows the diabats, denoted by blue straight
lines and adiabats, denoted by red hyperbola. For a perfect adiabatic
sweep, the system stays on the adiabat. So it can start asymptotically
on a diabat |g〉 at t = 0 and move adiabatically along the E−(t )
adiabat to reach |e〉 at t = T . The Landau-Zener formula gives the
transition probability to move from one adiabat to another. The solid
red filled circle (color online) depicts a system at state |g〉 initally.
The pale red filled circles on the adiabats E+(t ) and E−(t ), at t = T
represent the final state of the system with probabilities P and P′,
respectively.

various sweep functions and checked how the energy diagram
changes with each sweep [33]. Others used frequency sweep
for efficient population transfer via ARP [22–24].

Before we add the dissipative effects, we describe the
model and its characteristics. We consider a spin-1/2 sys-
tem subjected to a linearly chirped drive swept across the
resonance frequency. In the rotating frame of the drive, the
Hamiltonian of the system under this process takes the form

H∗
tot = −�ω(t )Iz + ω1Ix, (1)

where the frequency offset is taken as, �ω(t ) = Rt − δω,
R = 2δω/T is the sweep rate with T being the duration of
the sweep, Iα = σα/2, with σα being the Pauli matrix for α

component, and ω1 is the drive amplitude. In Eq. (1) and in
the subsequent parts, the superscript “∗” stands for represen-
tations in the rotating frame of the drive.

The eigenvalues of the above Hamiltonian are given by

E±(t ) = ± 1
2

√
(Rt − δω)2 + ω2

1 = ± 1
2

√
�ω2(t ) + ω2

1 . (2)

The asymptotes for the hyperbola E±(t ) are as follows:

E±(t ) = ±1

2
(Rt − δω) = ±�ω(t )

2
. (3)

Figure 1 shows E±(t ) versus t plot. In this figure, we ob-
serve that the energy curves form a set of hyperbolas and the
asymptotes of this hyperbola follow Eq. (3). Let us define the
asymptotes Eg = �ω(t )

2 and Ee = −�ω(t )
2 as the ground state

|g〉 and the excited state |e〉 energies, respectively.
Suppose the system initially lies in the ground state |g〉 and

the perturbing chirped drive is turned on. From Fig. 1, we
can infer the dynamics of the system. In this figure, the red
curves that denote the energy eigenvalues E±(t ) of the total
Hamiltonian H∗

tot form a hyperbola and are referred to as the
adiabats. Since the two energy curves do not cross each other,
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there is always a minimum gap of ω1 between them, it is called
an avoided crossing. The diabats, i.e., the straight blue lines,
are asymptotes of this hyperbola. They represent the energy
eigenvalues of the unperturbed system. In the adiabatic limit
R � ω2

1, the system follows the instantaneous eigenstate and
stays in the same adiabat it started in, according to the adia-
batic theorem. As a result, the system finally ends up in the
other level |e〉. This demonstrates the use of ARP to transfer
the population from one level to the other in a TLS. But if the
sweep rate R is very high compared to ω1, i.e., if R � ω2

1, then
the system can make a transition from one energy eigenlevel
[E±(t )] to the other, which is the nonadiabatic Landau-Zener
transition.

In our notation, Zener’s formula [1] for the probability of
the LZ transition can be expressed as

P = exp

(
−πω2

1

2R

)
. (4)

Therefore, the probability of following the same adiabat
would be

P′ = 1 − P = 1 − exp

(
−πω2

1

2R

)
. (5)

In other words, P′ also indicates the probability of population
transfer from one level |g〉 to the other level |e〉 using ARP.

A. Fluctuation-regulated quantum master equation

In this formulation, we consider a driven quantum sys-
tem connected to its environment, which is part of a larger
heat bath, assumed to be in thermal equilibrium. Further,
we consider that this bath experiences thermal fluctua-
tions originating from collisional processes. We describe the
system-environment pair by the following Hamiltonian:

H(t ) = H◦
S + H◦

E + HSE + HS(t ) + HE(t ), (6)

where H◦
S is the time-independent Hamiltonian of the system,

H◦
E is the time-independent Hamiltonian of the environ-

ment, HSE is the coupling between the system and the
environment, HS(t ) represents the other system Hamilto-
nians including the external drive applied to the system,
and HE(t ) denotes the fluctuations in the environment. We
model the Hamiltonian HE(t ) as the stochastic fluctuations
of the energy levels of H◦

E , and chose it to be diagonal
in the eigenbasis {|φ j〉} of H◦

E , as represented by HE(t ) =∑
j f j (t )|φ j〉〈φ j |, where the f j (t )s are modeled as Gaussian,

δ-correlated stochastic variables with zero mean and standard
deviation κ .

The fluctuation-regulated quantum master equation
(FRQME) was introduced a few years back to incorporate
the thermal fluctuations of the environment in the dynamics.
Chakrabarti and others provided the complete derivation of
the FRQME elsewhere [32]; as such, we provide a brief sketch
of the derivation. To derive the master equation, one needs
to start from the coarse-grained Liouville–von Neumann
equation in the interaction representation of (H◦

S + H◦
E ) as

ρS(t + �t ) = ρS(t ) − i
∫ t+�t

t
dt1 TrE[Heff (t1), ρ(t1)], (7)

where ρS denotes the reduced density matrix of the system,
�t is the coarse-graining interval, TrE denotes the partial
trace operation on the environmental degrees of freedom,
Heff (t ) = HS(t ) + HSE(t ), and ρ is the full density matrix of
the system and the environment. We note that the Hamilto-
nian HE(t ) is absent in the commutator because of the partial
trace taken over E. The density matrix inside the commutator
at time t1 can be written as, ρ(t1) = U (t1, t )ρ(t )U †(t1, t ),
where U (t1, t ) denotes the propagator for the system and
environment pair from time t to t1 in the Hilbert space and is
estimated as

U (t1, t ) ≈ UE(t1, t ) − i
∫ t1

t
Heff (t2)UE(t2)dt2, (8)

where UE(t1, t ) is a finite propagator for evolution solely
under fluctuations, and is given by T exp[−i

∫ t1
t dt2 HE(t2)],

with T denoting the Dyson time-ordering operator. In the
construction of the propagator U (t1, t ), it is assumed that,
(t1 − t ) � τs, where τs denotes the timescale of the system
dynamics and τs ∼ ω1

−1, ωSE
−1, where ωSE is the system-

environment coupling strength. As such, U (t1, t ) captures a
finite propagation under the environmental fluctuations and an
infinitesimal propagation under the system Hamiltonian and
the system-environment coupling.

Using the standard Born-Markov and time coarse-graining
approximations, we would finally arrive at the following
equation:

d

dt
ρS(t ) = −i TrE

[
Heff (t ), ρS(t ) ⊗ ρeq

E

]sec

−
∫ ∞

0
dτ TrE

[
Heff (t ),

[
Heff (t − τ ), ρS(t ) ⊗ ρeq

E

]]sec

× e− |τ |
τc (9)

and we call it the fluctuation-regulated quantum master equa-
tion (FRQME) [32]. Here, the superscript “sec” denotes the
secular approximation that involves ignoring the fast oscil-
lating terms in the quantum master equation. We note that
in Eq. (9), Heff containing the drive as well as the system-
environment coupling Hamiltonians, appears in both first- and
second-order terms. The drive appearing in the second-order
term causes dissipation in the dynamics of the system, which
is known as drive-induced dissipation (DID), and has been
experimentally verified [34]. Recently, we explored the ef-
fect of the DID in quantum computation [35], in quantum
foundations [36], in quantum optics [37], and in quantum
storage [38].

The other dissipator from the system-environment cou-
pling term gives rise to the regular relaxation phenomenon.
Both these dissipators lead to nonunitary dynamics of the
system. Since we assume that TrE{HSEρ

eq
E } = 0, the system-

environment coupling does not appear in the first order and
the cross terms between HS and HSE also vanish.

We note that the environmental fluctuations provide an
exponential regulator in the dissipator. The characteristic
timescale of the decay of the autocorrelations of the fluctu-
ations (τc) is assumed to be much shorter than the timescale
over which the system evolves, i.e., τc � τs. Also, we note
that FRQME is derived under another assumption of timescale
separation, which is used in constructing the propagator.
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Therefore, for the applicability of the FRQME, one must
choose the coarse-graining interval �t such that the follow-
ing condition is satisfied: τc � �t � ω1

−1, ωSE
−1, which can

also be expressed as ω1τc � 1, ωSEτc � 1. For the present
study involving frequency sweep, we assume that the re-
laxation timescales are very long. Therefore, the defining
criterion is as follows: τc � [ω2

1 + �ω2(t )]−1/2.
Next, we move to the rotating frame of the drive for the

sake of algebraic simplicity. In this frame, the FRQME takes
the following form:

dρ∗
S

dt
= − i [H∗

tot, ρ
∗
S (t )] − τc[H∗

S (t ), [H∗
S (t ), ρ∗

S (t )]]

− DSE[ρ∗
S (t )], (10)

provided we assume that HS(t ) is a slowly varying func-
tion of time such that we can approximate HS(t − τ ) by
HS(t ). This assumption is commensurate with the adia-
baticity condition. Here DSE[ρ∗

S (t )] represents the dissipator
arising from the corresponding double commutator term
involving HSE.

Equation (10) can be expressed in the Liouville space as
follows:

dρ̂∗
S

dt
= [−i ˆ̂L(1) − ˆ̂L(2)

drive − ˆ̂L(2)
system−env.

]
ρ̂∗

S = ˆ̂�ρ̂∗
S , (11)

where ˆ̂L(1) is the Liouville superoperator or Liouvillian for
the corresponding [H∗

tot, ρ
∗
S (t )] term in the master equation.

ˆ̂L(2)
drive and ˆ̂L(2)

system−env. are the second-order Liouville super-
operator from the drive and system-environment coupling,

respectively. The role played by ˆ̂L(2)
system−env. is to restore the

equilibrium population and to destroy the coherences. Without
assuming a specific model for HSE, this process of relaxation
is included in the Liouvillian through the parameters M0, T1,
and T2, where M0 is the equilibrium magnetization and T1 and
T2 denote the longitudinal and transversal relaxation times,
respectively. In the absence of the drive, i.e., when ω1 = 0,
ˆ̂L(2)

system−env. ensures that the steady-state system density matrix

is given by
( 1+M0

2 0
0 1−M0

2

)
.

With the explicit form of the complete superoperator, ˆ̂� in
Eq. (11) can be expressed as follows:

d

dt

⎛
⎜⎜⎝

ρ∗
S ,11

ρ∗
S ,12

ρ∗
S ,21

ρ∗
S ,22

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

−ω2
1τc

2 − 1−M0
T1

ξ ξ� ω2
1τc

2 + 1+M0
T1

ξ −ω2
1τc

2 + χ (t ) − 2
T2

ω2
1τc

2 ξ�

ξ � ω2
1τc

2 −ω2
1τc

2 − χ (t ) − 2
T2

ξ
ω2

1τc

2 + 1−M0
T1

ξ� ξ −ω2
1τc

2 − 1+M0
T1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

ρ∗
S ,11

ρ∗
S ,12

ρ∗
S ,21

ρ∗
S ,22

⎞
⎟⎟⎠. (12)

Here, ξ = iω1/2 and χ (t ) = i�ω(t ) are the first-order
terms, ω2

1τc represents the second-order DID terms, and
the terms involving M0, T1, and T2 are the second-order relax-
ation terms coming from the system-environment coupling. In
this work, we choose very large relaxation times (T1 and T2)

such that ˆ̂L(1) and ˆ̂L(2)
drive predominantly govern the dynamics

of the system.

III. RESULTS AND ANALYSIS

We solved the FRQME (12) numerically and obtained the
final system density matrix at the end of the application of the
frequency sweep. We study the frequency sweep using two
commonly used pulse profiles, viz. rectangular and Gaussian.

A. Rectangular pulse profile

First, we shall consider that the applied drive has a rect-
angular pulse profile with a constant amplitude ω1. Let us
consider that the system’s initial state is |g〉. We take the
parameter values as follows: δω = 10 k rad/s, ω1 = 1 k rad/s,
R = 0.1 ms−2. We remain close to the adiabatic limit as per
our chosen parameter values. That means we are sweeping
the drive frequency very slowly. As a result, the system stays
in the same eigenstate (adiabat) at every instant.

In Fig. 2(a), we plot the population as a function of time.
The light blue line denotes the unitary case. From the plot,
we infer that the entire population is initially in the ground

state. During the sweep, the ground-state population starts
decreasing. On the other hand, the excited-state population
grows up, and finally, at the end of the sweep the excited-
state population reaches 1. This shows that we achieved a
complete population transfer from the ground state to the
excited state. If the adiabaticity condition were not met in
choosing the parameter values, the excited-state population
would be less than 1, and we could not achieve the complete
transfer.

The dark blue line in Fig. 2(a) represents the population
versus time plot for the DID case with τc = 10−2 ms. We ob-
serve that the population transfer is affected by DID, and the
maximum transfer is reduced depending upon the values of
ω1 and τc chosen. The transfer profile shows a nonmonotonic
behavior. At first, the excited-state population increases with
time, then it reaches the maximum, and after that, its value
drops with time and eventually approaches the steady-state
value ρS,11 = ρS,22 = 0.5, as DID causes the saturation of the
spin-1/2 system. It is apparent that there is a substantial loss
in transfer in the asymptotic limit. We focus on achieving the
optimal transfer even in the presence of the adverse effect of
DID. For that, one needs to to turn off the frequency sweep
(the drive) at the very moment when the maximum transfer
is acquired. To predict the position of that optimal point, we
propose a phenomenological model in the later part of the
paper.

We can describe the dynamics using the nutating magneti-
zation. In the rotating frame of the drive, there are effectively
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(a) (b)

(c) (d)

FIG. 2. Rectangular pulse. (a) The population transferred from the ground state to the excited state is plotted with respect to time for the
unitary case, denoted by the light blue curve (upper curve) and the DID case, denoted by the dark blue curve (lower curve). Parameter values
used are as follows: δω = 10 k rad/s, ω1 = 1.0 k rad/s, R = 0.1 ms−2, τc = 10−2 ms. (b) The magnetization vector is plotted over the unit
sphere for the unitary case, denoted by the light blue curve (outer curve) and the DID case, denoted by the dark blue curve (inner curve).
Parameter values used are the following: δω = 50 k rad/s, ω1 = 3.5 k rad/s, R = 1.0 ms−2, τc = 10−3 ms. The filled contours represent the
maximum population transferred to the excited state from the ground state as a function of ω1 and R for the (c) unitary and (d) DID cases.
Here, the yellow strip indicates the optimal region where one can achieve the highest transfer in the presence of DID in the range of 0.7 to 0.8.
The green line denotes the parabolic fit, which matches the numerical data well. Parameter values used: δω = 50 k rad/s, τc = 10−2 ms.

two fields: one is the frequency sweep �ω(t ) along the
z direction that runs from −δω to δω and the other is ω1

along the x direction. So there will be an effective field ωeff =√
�ω2(t ) + ω2

1, about which the magnetization nutates. The
magnetization vector M follows the effective field ωeff at
every instant while nutating about it.

We plot the magnetization vector over the Bloch sphere in
Fig. 2(b). When �ω(t ) > ω1, it remains near the z axis. As we
started with the state |g〉, which is an eigenstate of σz with the
corresponding eigenvalue −1, the magnetization vector has,
initially, its z component Mz as the only nonzero Cartesian
component, For the unitary case Mz runs from −1 to 1, as
denoted by the light blue curve. The final value of Mz becomes
1 because we remain close to the adiabatic limit. If the adia-
baticity condition were not satisfied, the final Mz would be
less than 1. As the sweep progresses towards the resonance,

the offset �ω(t ) becomes comparable to ω1; the effective field
gains a transverse component. As a consequence, Mx and My

develop nonzero values gradually, which causes the wobbling
motion over the sphere. We can see that at the resonance
point, i.e., when �ω(t ) = 0, the effective field ωeff is directed
exactly along the x axis. Consequently, M also points along
the x direction at this point; as a result, only Mx survives and
becomes −1. It is evident that for the unitary case, M moves
over the surface of the sphere and tries to follow the effective
field at every instant.

Here in Fig. 2(b), we plot the magnetization vector by
incorporating the DID terms as well, denoted by the dark
blue curve. We notice that as there is no coherence present
initially, only Mz undergoes a decay in the beginning due to
DID. Eventually, coherences develop and M starts following
a trajectory inside the Bloch sphere. Near the resonance point,
the Mx value builds up, but here again due to the effect of DID,
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(a) (b)

FIG. 3. Rectangular pulse. The filled contours represent the maximum population transferred to the excited state from the ground state as
a function of ω1 and R for the DID case for lower values of τc: (a) for τc = 10−3 ms, (b) for τc = 10−4 ms. Here, the highest possible transfer
in the optimal yellow region lies in the range of 0.9 to 1.

it cannot reach its unitary value −1; so it passes through the
x axis at a reduced radius. Finally, Mz approaches a steady-
state value that is less than 1, as it again suffers a loss.

To observe the dependence of the population transfer on the
parameters ω1 and R, we show a contour plot of the maximum
population transferred to the excited state from the ground
state. From the plot in Fig. 2(c), we can infer that, for a
particular R value, if we increase ω1, the maximum population
increases and after a threshold value of ω1, it reaches the
highest value 1, which means complete population transfer
has taken place. On the other hand, if we fix the ω1 value and
increase the R value, we see that the maximum population
suffers. This behavior of population transfer is in exact agree-
ment with Zener’s formula for transition probability given in

Eq. (5). From the formula, it can be verified that when ω2
1

R � 1,

we obtain better population transfer and ω2
1

R � 1 results in less
population transfer.

Then we study the population behavior when DID is taken
into account. In Fig. 2(d), we notice an optimal region in
the plot as shown by the yellow strip, where we achieve the
highest transfer, in the range 0.7 to 0.8. If we go beyond this
region, the population transfer falls off. Therefore, to achieve
the maximum transfer, we need to choose the parameter val-
ues R and ω1 in such a way that we remain close to this optimal
region. The behavior up to the yellow region can be explained
by the LZ theory. However, it fails to explain what happens
beyond this yellow region. That means the large orange region
(that limits the lower range to 0.5), where DID sets in and
why they reappear. This contour plot captures the competition
and the crossover between the LZ effect and DID. The line
of optimality separates the pre and postoptimal regions. In the
preoptimal region, the LZ effect dominates and in the postop-
timal region, DID dominates. We shall try to understand this
kind of optimal behavior by developing a proper mathematical
model in the following part of the paper.

We construct a set of ω1 and R for the optimal population
transfer. Next, we fit this set of ω1 and R with a simple polyno-
mial function to understand their functional dependence. The
minimum power of ω1 that fits the data is 2. Hence, we obtain
R ∝ ω2

1 for each point in the optimal yellow region of the

contour plot in Fig. 2(d). The green line denotes this parabolic
fit. It gives a good fit with the numerical data. We can explain

the fit from the probability formula. When ω2
1

R � 1, the prob-
ability for population transfer (ARP) for the unitary case is
given by

P′ = 1 − exp

(
−πω2

1

2R

)
≈ πω2

1

2R
. (13)

So the leading-order term in the expression of P′ would be

proportional to ω2
1

R . Thus, our fit function is taken to be R =
kω2

1 and we find that the value of the fitting parameter k is
given by k = 0.88 ± 0.01.

We note that the DID is responsible for the decayed transfer
of population. So the maximum transfer achieved in Fig. 2(d)
is less than 1. The maximum transfer value can be improved
if the decay timescale of the fluctuations τc reduces. In Fig. 3,
we study the behavior of the contour plot of maximum popu-
lation transfer with respect to ω1 and R for lower τc values.
We find that for τc = 10−3 ms in Fig. 3(a), and for τc =
10−4 ms in Fig. 3(b), the maximum population transfer ob-
tained is very close to the unitary value and stays within the
range of 0.9 to 1. In Fig. 3(b), we can see that the optimal
yellow region becomes so wide that it almost approaches the
unitary behavior as obtained in Fig. 2(c).

Existence of optimality: A phenomenological study

From the contour plot in Fig. 2(d), we can see that if
we move along a constant R value, the maximum population
shows a nonmonotonic behavior for ω1. At first, it increases
with ω1 (which can be explained by the LZ formula). How-
ever, after crossing the optimal yellow strip, the effect of DID
becomes more prominent and we notice that the population
transfer reduces with a subsequent increase in the ω1 value.
So the yellow strip shows the optimal value of ω1, for which
we get the best population transfer.

To observe this optimal behavior more concisely, we take
a selected slice from the contour plot in Fig. 2(d) for a fixed
R value, R = 0.1 ms−2 and plotted it with respect to ω1 in
Fig. 4. In Fig. 4, we can see that the maximum population
shows optimality with respect to ω1. When ω1 exceeds a
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FIG. 4. Rectangular pulse. The maximum population transferred
to the excited state in the presence of DID is plotted as a function of
ω1 for different τc values (τc values taken in decreasing order, from
bottom to top). The dotted lines denote the maximum population
curve plotted using our proposed model p(ω1). Parameter values
used: δω = 10 k rad/s, R = 0.1 ms−2.

threshold value, the DID effect dominates and dictates the dy-
namics. Consequently, the population decreases with a further
increase in ω1 and finally saturates at the steady-state value
0.5. To check the dependence on τc, we did the same for
various values of τc. As we increase τc, the decay becomes
more and the optimal value of ω1 gets shifted towards the
origin.

As Eq. (12) does not have any closed-form analytical
solution, we propose a phenomenological model which can
explain the behavior shown in Fig. 2(d) qualitatively as
follows:

P (t ) = 1

2

[
1 − exp

(
−πω2

1

2R

)]

×
[

1 + exp
(−ω2

1τct
)

tanh

(
R

ω1
(t − δω/R)

)]
.

(14)

We construct the model in the following way.
(1) We begin with the unitary case for which τc = 0,

and LZ theory provides the solution for that, i.e., [1 −
exp(−πω2

1
2R )].

(2) The temporal behavior, as we observed in Fig. 2(a),
is qualitatively captured by a phenomenological factor
tanh( R

ω1
(t − δω/R)). Combining (i) and (ii), we get the model

for the unitary case as 1
2 [1 − exp(−πω2

1
2R )][1 + tanh( R

ω1
(t −

δω/R))].
(3) To account for the decay due to DID, we phenomeno-

logically introduce a τc-dependent factor exp(−ω2
1τct ) by

multiplying it with the tanh( R
ω1

(t − δω/R)) term and finally
arrive at the form given in Eq. (14).

This model P (t ) predicts a maximum transfer occurring
when

d

dt
[P (t )] = 0

⇒ tmax = 1

R

[
δω + ω1

2
sinh−1

(
2R

ω3
1τc

)]
. (15)

In Fig. 5(a), we plot the excited-state population as a function
of time for the DID case. The solid blue line represents the
numerically generated data and the dashed red line denotes
the population curve plotted using our proposed model P (t ).
Our model provides a reasonably good match with the data,
and the peaks occur nearly around the same time. Therefore,
tmax in Eq. (15) provides a fair estimation of the occurrence of
the optimal point.

Now, as we saw in Fig. 4, the chosen slices from the
contour data show an optimal transfer for a certain ω1, we
use the above model with t = tmax to fit the slice data.

We define the maximum population at t = tmax as

p(ω1) = P (tmax)

= 1

2

[
1 − exp

(
−πω2

1

2R

)]

×
[
1 + exp

(−ω2
1τctmax

)
tanh

(
R

ω1
(tmax − δω/R)

)]
.

(16)

The above Eq. (16) represents our model for the maximum
population as a function of ω1. This p(ω1) is plotted as a
function of ω1 in Fig. 5(b), as shown by the solid green line.
In this figure, the dashed blue line represents the transfer
described by the conventional LZ formula for population in-
version (ARP) and the dashed-dotted orange line leaves the
signature of DID. When we take the product of these two,
there will be a competition between these two effects: the first
LZ factor will try to make the population transfer happen,
whereas the second part coming from DID causes the pop-
ulation to decay. As a result, we get a nonmonotonic behavior
as is shown by the solid green curve leading to an optimal
population transfer for a certain value of ω1.

In Fig. 4, we also plotted the optimum population as a func-
tion of ω1 using our phenomenological model p(ω1) for each
τc value, as indicated by the dotted lines. Although it does
not give an exact match with the numerical data, our focus is
to reach close to the maximum (peak) value or the optimal
region in terms of the contour plots. Therefore, the model
delivers a qualitative justification for the overall behavior and
successfully explains the existence of the optimal behavior in
a simple way.

B. Gaussian pulse profile

Now, we shall consider a Gaussian pulse profile for the
applied drive. Gaussian pulses are very effective in spin in-
version and selective excitation [39–42]. Selective excitation
involves applying radio-frequency pulses that affects only a
certain bandwidth in the frequency spectrum. It was demon-
strated that Gaussian pulses satisfy the condition of selectivity
with considerable accuracy since its excitation falls off very
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(a) (b)

FIG. 5. Rectangular pulse. (a) The population transferred from the ground state to the excited state is plotted as a function of time. The
solid blue line represents the numerical data and the dashed red line represents the population curve plotted using our proposed model P (t ) as
a function of time. (b) The maximum population transferred to the excited state for the DID case is plotted using our proposed model p(ω1) as
represented by the solid green line. The dashed blue line (the rising curve) represents the transfer described by the conventional LZ formula,
and the dashed-dotted orange line (the falling curve) represents the decay in the transfer due to DID. There will be a competition between
these two effects, leading to an optimal population transfer for a certain value of ω1. Parameter values used: δω = 10 k rad/s, R = 0.1 ms−2,
τc = 10−2 ms.

quickly; its effect on the rest of the spectrum is minimal. They
are also widely used in nuclear magnetic resonance (NMR)
imaging [43]. Here we intend to study how the efficiency of
ARP is influenced with the use of a Gaussian pulse.

For Gaussian pulse, the amplitude ω1 is no longer time
independent; it changes with time in the following manner:

ω
gauss
1 (t ) = ω

g
1 exp

(
− (t − T/2)2

β

)
, (17)

where β is a measure of the width of the Gaussian and is
related to the full-width at half maximum (FWHM) of the
Gaussian σ as β = σ 2

4 ln 2 .
At t = T/2, ω

gauss
1 (t ) = ω

g
1, which is the maximum value

that the pulse profile can take. At t = 0 and t = T , ωgauss
1 (t ) =

ω
g
1 exp(− (T/2)2

β
). Let us suppose we want to cut off the

Gaussian at a fraction f of the maximum. That means,
at t = 0 and t = T , ω

gauss
1 (t ) = ω

g
1 f . By satisfying the

above-mentioned criterion, we find that β = (T/2)2

ln( 1
f )

. For our

simulations, we set f = 0.1 to truncate the Gaussian profile at
0.1 of the maximum.

To compare the system dynamics under a rectangular and
a Gaussian pulse profile, we ensure that an equal amount of
energy is supplied to the system for both these pulse profiles.
We equate the pulse areas of these two profiles and obtain

ω
g
1 = ω1T√

πβ erf
(

T
2
√

β

) . (18)

Equation (18) provides the relation between ω
g
1 and ω1 such

that the equal area condition is satisfied. This relation will be
used for the subsequent simulations with a Gaussian pulse.
In Eq. (17), we chose the Gaussian profile in such a way
that its duration remains T , which is the same as that of the
rectangular pulse profile. So, on physical grounds, we can
argue that to keep the area of both these profiles constant
within the same duration, the peak value (maximum) of the

Gaussian ω
g
1 has to be much higher than ω1 (the maximum

amplitude of the rectangular pulse). This can be verified from
Eq. (18) as well by putting some numerical value for T . For
T = 200 ms, we checked that ω

g
1 = 1.7686 ω1, which means

ω
g
1 > ω1.

In Fig. 6(a), we plot the population with respect to
time. We kept the parameter values the same as that taken
for the rectangular profile: δω = 10 k rad/s, ω1 = 1 k rad/s,
R = 0.1 ms−2. We can see that a Gaussian pulse results in
a much smoother population behavior than a rectangular
pulse with an equal area. Also, we note that for the same
parameter values of ω1 and R, we achieve better steady-
state population transfer for the DID case, using a Gaussian
pulse.

In the magnetization plot over the Bloch sphere for the
DID case, shown in Fig. 6(b), we see that the magnetization
vector follows a trajectory inside the Bloch sphere. In contrast
to the same plot done for a rectangular pulse profile, here
we note that initially Mz decays very slowly. This happens
because near t = 0, ω

gauss
1 (t ) = ω

g
1 f = 0.1 ω

g
1 = 0.17686 ω1,

for our chosen parameter values; i.e., ω
gauss
1 (t ) < ω1. As a

result, it does not exhibit any significant decay along the z
direction, and the overall nature of the magnetization curve is
very smooth.

In Fig. 6(d), we show the contour plot of the maximum
population transferred to the excited state from the ground
state when DID is taken into account. Here also we obtain a
similar optimal behavior of population transfer. However, the
strips become narrower in this case and the highest transfer
increases to 0.9. That means we achieve a more efficient
transfer. In addition to that, we notice that the optimal yellow
region occurs for a lower range of ω1 values, implying that
we can achieve more transfer by applying a drive of rela-
tively lower amplitude. Therefore, frequency sweep using a
Gaussian pulse results in better and more efficient population
transfer. Here, we fit the contour data in the optimal yellow
region with a parabolic fit, as shown by the green line. So our
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(a) (b)

(c) (d)

FIG. 6. Gaussian pulse. (a) The population transferred from the ground state to the excited state is plotted with respect to time for
the unitary case, denoted by the light blue curve (upper curve) and the DID case, denoted by the dark blue curve (lower curve). Parameter
values used: δω = 10 k rad/s, ω1 = 1.0 k rad/s, R = 0.1 ms−2, τc = 10−2 ms. (b) The magnetization vector is plotted over the unit sphere for
the unitary case, denoted by the light blue curve (outer curve) and the DID case, denoted by the dark blue curve (inner curve). Parameter values
used: δω = 50 k rad/s, ω1 = 3.5 k rad/s, R = 1.0 ms−2, τc = 10−3 ms. The filled contours represent the maximum population transferred to
the excited state from the ground state as a function of ω1 and R for the (c) unitary and (d) DID cases. Here, the yellow strip indicates the
optimal region where one can achieve the highest transfer in the presence of DID in the range of 0.8 to 0.9. The green line denotes the parabolic
fit, which matches the numerical data well. Parameter values used: δω = 50 k rad/s, τc = 10−2 ms.

fit function is taken to be R = kω2
1 and the fitting parameter k

turns out to be k = 2.17 ± 0.04 for this case.

IV. DISCUSSIONS

We showed that DID affects the ARP; thus, the population
transfer suffers. DID prevents the complete transfer achieved
under unitary dynamics. When DID is included in the dy-
namics, we find an optimal value of the population transfer,
which is less than 1 (for the excited state). Furthermore,
this implies that since the population transfer gets reduced
due to DID, the system is likely to make a transition from
E+(t ) to E−(t ) or vice versa, which is nothing but an LZ
transition.

This work shows that optimality exists in the transferring
population in a TLS using a frequency sweep model. In the
presence of DID, population transfer shows a nonmonotonic

behavior with respect to time as well as ω1. In the time-series
plot, we observe that the population hits the maximum at a
certain time, which we denote as tmax, and gradually, it decays
down to the steady-state value (which is 0.5 for rectangular
pulse profile). Therefore, we need to turn off the drive at
t = tmax to achieve the best transfer. In the contour plot of the
maximum population in the R versus ω1 plane, the yellow strip
signifies the optimal region. We need to choose the parameters
R and ω1 suitably so that we can arrive at this region to obtain
the most efficient transfer.

Here we choose the relaxation times T1 and T2 to be
large, such that the decoherence due to system-environment
coupling becomes negligibly small. So the nonunitary behav-
ior originates principally due to DID. However, in situations
where the system-environment coupling dominates over DID,
we must include the contribution from the relaxation pro-
cesses. In such cases, we would see that population transfer
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is affected due to system-environment coupling. With time,
the population would finally saturate at the equilibrium values
ρS,11 = 1+M0

2 and ρS,22 = 1−M0
2 .

We propose a qualitative model to explain the optimal
behavior that we observe in ARP for a rectangular pulse. The
factor coming from the conventional LZ formula is respon-
sible for the initial growth in population transfer. However,
as ω1 becomes large enough to have an impact of DID on the
dynamics, the transfer starts to decay with ω1. Therefore, there
exists an optimum value of ω1 for which the transfer hits the
maximum.

We extended our analysis to shaped pulses. We found that
using a Gaussian pulse over a rectangular pulse is a better
and more efficient option to achieve population transfer by
supplying an equal amount of energy. When we look at the
steady-state behavior of the population transfer as shown in
Figs. 2(a) and 6(a), we can conclude that, for a Gaussian pulse,
the transfer finally saturates at a higher value. This behavior
can be explained in the following way: At t = T/2, ω

gauss
1 (t )

attains the maximum value ω
g
1 and when t > T/2 (or t < T/2),

the value of ω
gauss
1 (t ) eventually decreases with time. When

t = T , ω
gauss
1 (t ) = ω

g
1 f = 0.1 ω

g
1, for f = 0.1, which is def-

initely less than ω1 (the amplitude of the rectangular pulse
throughout the duration T ). Therefore, towards the end of
the Gaussian pulse, the DID is small and is insufficient to
cause a saturation at 0.5. So the final steady-state value of the
excited-state population remains above 0.5. It is noteworthy
that, had we chosen a higher cutoff fraction for the Gaussian
profile instead of f = 0.1, the effect of DID would have been
more prominent and the steady-state behavior would look very
similar to the rectangular pulse.

From the contour plots of maximum population trans-
fer for a Gaussian pulse, we can see that in Fig. 6(d), the
upper limit of the color bar has increased to 0.9, whereas
for a rectangular pulse it was 0.8. Moreover, the filled con-
tours (strips) have become narrower, smoother, and shifted
towards the origin. This implies that applying a drive with
a lower strength (low ω1) can achieve better transfer us-
ing a Gaussian pulse. Therefore, a Gaussian pulse provides
higher efficiency in population transfer using ARP than a
rectangular pulse.

Before drawing the final conclusions, we would like to
emphasize that both strong driving and environmental fluc-

tuations are essential to witness the effect of the DID. In
the entire work, we consider strong driving that satisfies the
adiabaticity condition, i.e., ω2

1 � R. So a strong drive favors
the population transfer in ARP. However, the application of
a strong drive also results in a significant amount of decay
due to DID, which is scaled by the timescale of decay of
the environmental fluctuations (τc). We note that the im-
pact of the DID is less if the correlation of the fluctuations
decays very fast, i.e., τc → 0, which corresponds to an ex-
treme motional narrowing regime. When τc = 0, the DID
disappears along with the dissipator arising from system-
environment coupling, leading to the unitary dynamics such
that complete population transfer can be achieved. The other
extreme limit is τc → ∞. In this limit, the assumption in-
volving timescale separation between the system and the
environment will no longer hold. As such, we must abandon
the Markovian picture and adopt a suitable non-Markovian
description.

V. CONCLUSION

We implemented population transfer in a TLS by ARP
using a linear chirped pulse while including the dissipative
effects coming from the applied drive in our study. Most
interestingly, we found that, even within the adiabatic limit,
the population inversion suffers from the detrimental effects of
DID. Further, we showed that the population transfer exhibits
an optimal behavior as a result of the competing processes
like the conventional LZ effect and DID. The values of ω1

and τc decide the maximum value the transferred population
can acquire. Not only does the temporal behavior, but the
population transfer behaves nonmonotonically as a function
of the sweep rate R and the drive amplitude ω1 also. We
showed that a truncated chirped pulse that stops at the point
where optimality is achieved yields the best possible trans-
fer. We proposed a phenomenological model to qualitatively
explain the transfer behavior to estimate the optimal point.
We analyzed both rectangular and Gaussian pulse profiles and
showed that the Gaussian profile gave a more efficient result
than the rectangular profile. We contemplate that our results
would be beneficial for the practitioners of ARP, and they
would be able to achieve the optimal population transfer in
realistic experimental setups.
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