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There has been a problem of gauge ambiguities with the Rabi Hamiltonian due to the fact that it can be derived
from two formally different but physically equivalent fundamental Hamiltonians. This problem has recently
been resolved for models with a single quantized electromagnetic mode. In this paper, we mathematically and
numerically verify this for multimode models. With this established, we combine the numerical methods, matrix
product states (MPS) and numerical mode decomposition (NMD), for analyzing cavity QED systems. The MPS
method is used to efficiently represent and time evolve a quantum state. However, since the coupling structure of
the Rabi Hamiltonian is incompatible with MPS, it is numerically transformed into an equivalent Hamiltonian
that has a chain coupling structure, which allows efficient application of MPS. The technique of NMD is used to
extract the numerical electromagnetic modes of an arbitrary environment. As a proof of concept, this combined
approach is demonstrated by analyzing one-dimensional cavity QED systems in various settings.
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I. INTRODUCTION

Quantum computers are becoming increasingly scalable
and reliable [1–4], and cavity quantum electrodynamics
(QED) in the ultrastrong-coupling (USC) regime will poten-
tially allow the operations to be incredibly fast [5] as a result
of the field-atom coupling coefficient that is engineered to
be comparable to the field frequency. The USC and even
deep strong-coupling regimes have been experimentally re-
alized on superconducting circuits [6–8] and various other
platforms [9]. This necessitates accurate numerical analysis
of cavity QED systems in the USC regime, which is par-
ticularly challenging due to the sheer size of the Hilbert
space when the atom is coupled to multiple electromag-
netic modes of the cavity. In this paper, we formulate a
numerical analysis method for cavity QED, where a two-
level atom (TLA) is placed in a complex electromagnetic
environment.

The quantum Rabi model, which is based on the Rabi
model [10] but with quantized electromagnetic fields, is suit-
able for studying a TLA interacting with the electromagnetic
fields of the surrounding structure, e.g., a cavity. The model
is beyond the rotating-wave approximation, which makes it
valid even in the USC and deep strong-coupling regimes of
field-atom interactions [9].

However, there has been a problem of gauge ambigu-
ities due to two reasons: (i) there are two fundamental
Hamiltonians different in their forms from which the Rabi
Hamiltonians can be derived [11] and (ii) two-level truncation
of the atomic Hilbert space may ruin gauge invariance [12] if
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not applied properly. The two fundamental Hamiltonians are
called the minimal coupling and electric dipole Hamiltonians
[13] or, equivalently, p · A and r · E interactions [14,15] or
Hamiltonians in the Coulomb gauge and dipole gauge [16,17].
Recently, the ambiguities have been resolved for models with
single electromagnetic mode [16,17]. In these works, a proper
way of applying two-level truncation to the atomic Hilbert
space has been established, and from this, gauge-invariant
Rabi Hamiltonians have been derived.

It has been pointed out by Muñoz et al. [18] that the
quantum Rabi model in the USC regime and beyond may
violate relativistic causality, and to avoid this, multiple field
modes of the cavity (in which the TLA is placed) must be
taken into account. In [18], this has been numerically demon-
strated using the matrix product state (MPS) method, where
periodic boundary conditions have been employed with the
TLA placed at the center of a one-dimensional (1D) lattice.
Similar work has been done by Flick et al. [19] in the context
of 1D cavity QED, where they consider a truncation of the
higher-energy part of the Hilbert space. In particular, bosonic
Fock states with a total number of photons beyond 2 were
truncated.

Our paper is focused on formulating a generalized sim-
ulation strategy and mainly consists of the following three
contributions.

(1) We identify the gauge-invariant multimode Rabi
Hamiltonians, where both the two-level truncation of the atom
and proper truncation of the electromagnetic modes [20] are
considered. We confirm that previous conclusions regarding
gauge invariance of single mode Rabi Hamiltonians in [16,17]
extend to the multimode Rabi Hamiltonians. In particular,
we compute and compare the energy eigenvalue spectra of
various multimode Hamiltonians.
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(2) We stabilize the numerical transformation scheme
that turns the multimode Rabi Hamiltonian into the chain
Hamiltonian. This allows transformations of not just linearly
distributed electromagnetic mode frequencies but also arbi-
trarily distributed frequencies.

(3) We present a formulation that combines MPS with
numerical mode decomposition (NMD) [21,22], which is a
computational electromagnetics (CEM) technique of solving
classical Maxwell’s equations, to simulate arbitrary, inhomo-
geneous cavity QED settings.

II. GAUGE INVARIANCE OF MULTIMODE
RABI HAMILTONIANS

The problem of gauge ambiguities of single mode quantum
Rabi models has recently been resolved [16,17]. The proper
truncation of electromagnetic modes without considering ma-
terial truncation (two-level truncation) has been studied [20].
In this paper, we consider both the two-level truncation of
the atom and the proper truncation of electromagnetic modes.
We present the relevant cavity QED Hamiltonians in this sec-
tion and verify their gauge invariance properties. For detailed
derivations of the Hamiltonians presented in this section, see
Appendices A–E.

A. Relevant Hamiltonians

1. Fundamental Hamiltonians

The multimode Rabi Hamiltonians can be derived from
two formally different but physically equivalent fundamental
Hamiltonians. One of them is the Hamiltonian in the Coulomb
gauge:

ĤC = [p̂ − qÂ(r0)]2

2m
+ V (r̂) + ĤF , (1)

where r̂ and p̂ are the canonically conjugate position and
momentum operators for the moving charge in the atom; m
and q are its mass and charge; Â is the vector potential op-
erator; r0 is the position of the nucleus; V (r̂) = q�(r̂) is the
scalar potential that binds the free charge; and the free field
Hamiltonian is

ĤF =
∫

dV

(
�̂

2
(r)

ε(r)
+ [∇×Â(r)]2

μ0

)
=

M∑
k=1

h̄ωkâ†
k âk . (2)

In the above, ε(r) is the permittivity that describes the medium
inhomogeneity inside the cavity, μ0 is the permeability of
free space, �̂(r) = ε(r)∂Â(r)/∂t is the canonically conjugate
variable of Â [23,24], M is the truncated number of cavity
modes, ωk is the mode frequency, and â†

k (âk) is the creation
(annihilation) operator for mode k. The Hamiltonian (1) is
in the Coulomb gauge (∇ · Â = 0) where the vector potential
operator is purely transverse.

The Coulomb gauge Hamiltonian (1) can be transformed
into an electric dipole interaction based Hamiltonian by
the Power-Zienau-Woolley (PZW) transformation [25,26],
which is implemented with the unitary operator, ÛPZW =
e−iqr̂·Â(r0 )/h̄. The dipole gauge Hamiltonian is obtained as

ĤD = ÛPZWĤCÛ †
PZW, (3)

which is why the two fundamental Hamiltonians are physi-
cally equivalent [27], and it is written out as

ĤD = p̂2

2m
+ V (r̂) − d̂ · Ê⊥(r0) + ĤF +

M∑
k=1

[d̂ · Ak (r0)]2

2ε0V0
,

(4)

where d̂ = qr̂ is the dipole moment operator; Ê⊥ = −∂Â/∂t
is the transverse electric-field operator; Ak is the vector po-
tential spatial eigenfunction obtained by solving classical
Maxwell’s equations; ε0 is the permittivity of free space; and
V0 is the volume of the cavity that the atom is in.

2. Traditional Rabi Hamiltonians

The Rabi Hamiltonians are obtained by applying two-level
truncation to the atomic Hilbert space as an approximation.
The projection operator, P̂ = |g〉〈g| + |e〉〈e|, is used for this
purpose, where |g〉 and |e〉 represent the ground and first
excited states, respectively, of the bare atomic Hamiltonian
ĤA = p̂2

2m + V (r̂).
Traditionally, the Rabi Hamiltonians were obtained by a

direct truncation of the Hamiltonian:

Ĥ′
i = P̂ĤiP̂, (5)

where i = C or D for Coulomb or dipole gauge, and the
prime indicates the direct truncation of the atomic Hilbert
space. Calligraphic symbols with hats are used in this paper to
represent operators in the two-level truncated atomic Hilbert
space.

When the direct truncation is applied to (1), the resulting
multimode Rabi Hamiltonian is

Ĥ′
C = h̄ωa

2
σ̂z +

M∑
k=1

[h̄ωkâ†
k âk + h̄gC,k σ̂y(âk + â†

k )]

+ h̄

ωa

[
M∑

k=1

gC,k (âk + â†
k )

]2

, (6)

where h̄ωa is the energy gap between |e〉 and |g〉 of the atom,
and the mode-dependent coupling coefficient in the Coulomb
gauge is

gC,k = ωad · Ak (r0)√
2h̄ωkε0V0

(7)

where d = 〈g|d̂|e〉 is the dipole moment vector assumed to
be real [28]. The coefficient of the diamagnetic term [last
term in (6)] is determined by the Thomas-Reiche-Khun (TRK)
sum rule [29–32]. Similarly, the multimode dipole gauge Rabi
Hamiltonian is derived to be

Ĥ′
D = h̄ωa

2
σ̂z +

M∑
k=1

[
h̄ωkâ†

k âk − ih̄gD,k σ̂x(âk − â†
k )

+ 1

2ε0V0
P̂[d̂ · Ak (r0)]2P̂

]
(8)

with the coupling coefficient in the dipole gauge:

gD,k = d · Ak (r0)
√

ωk

2h̄ε0V0
. (9)
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FIG. 1. The truncated Rabi Hamiltonians are derived from the fundamental Hamiltonians that are equivalent. The direct two-level
truncation leads to Rabi Hamiltonians that are not equivalent anymore, but the proper two-level truncation preserves the unitarity relation.

The coupling coefficients in the two gauges, (7) and (9),
are related as gC,k = gD,kωa/ωk . This is why for the single
electromagnetic mode that is resonant with the TLA, the in-
teraction Hamiltonians of Ĥ′

C and Ĥ′
D appear equivalent [33].

However, there is no unitary operator that links the two
directly truncated Rabi Hamiltonians, (6) and (8). Upon
truncation, we obtain Ĥ′

C = P̂ĤCP̂ and Ĥ′
D = P̂ĤDP̂ =

P̂ÛPZWĤCÛ †
PZWP̂ using (3) and (5). Although ĤC and ĤD are

unitary transforms of each other as shown in (3), Ĥ′
C and Ĥ′

D

are not because P̂ÛPZW is not unitary [16,17].1 Therefore,
gauge invariance has been lost in the process of direct two-
level truncation.

Also, the last term in (8) is the dipole self-energy term that
cannot be written in terms of the two-level Pauli operators.
Due to the direct truncation method applied to the Hamilto-
nian, all eigenstates (and not just |g〉 and |e〉) of the atom are
needed to express this term [17].

3. Properly truncated Rabi Hamiltonians

The full Hamiltonian in either gauge [(1) or (4)] can
be thought of as a function of four conjugate operators:
Ĥi(r̂, p̂, Â, �̂) with i = C or D. The proper way to truncate
the atomic part of these Hamiltonians is [16,17]

Ĥi = Ĥi(P̂ r̂P̂, P̂ p̂P̂, Â, �̂). (10)

The difference between this and the direct truncation approach
may seem subtle, but (10) leads to a very different form of the
Rabi Hamiltonian in the Coulomb gauge. In this gauge, the
multimode Rabi Hamiltonian is obtained to be

ĤC =
M∑

k=1

h̄ωkâ†
k âk+ h̄ωa

2

{
σ̂z cos

[
M∑

k=1

2gD,k

ωk
(âk + â†

k )

]

+ σ̂y sin

[
M∑

k=1

2gD,k

ωk
(âk + â†

k )

]}
. (11)

Likewise, the one in the dipole gauge is

ĤD = h̄ωa

2
σ̂z + h̄

M∑
k=1

[
ωkâ†

k âk −igD,k σ̂x(âk −â†
k ) + g2

D,k

ωk
Î
]

(12)

1For more mathematical details, see Appendix E.

where Î = P̂ is the identity operator in the two-level subspace
of the atomic Hilbert space. The coefficient of the dipole
self-energy term [last term in (12)] can be confirmed using
the TRK sum rule for interacting photons [34] (discussed
in Appendix F). The properly truncated Rabi Hamiltonians,
(11) and (12), are still unitarily related by the two-level
PZW transformation: ĤD = ÛPZWĤCÛ†

PZW where ÛPZW =
e−iqP̂ r̂P̂ ·Â(r0 )/h̄. Thus, gauge invariance is preserved by the
proper two-level truncation (10). The various Hamiltonians
presented in this section are summarized in Fig. 1.

B. Spectra comparison

Although it is mathematically shown in Appendix E that
the properly truncated Rabi Hamiltonians (11) and (12)
are equivalent with each other, it would be interesting to
see if they are good approximations of the fundamental
Hamiltonians (1) and (4). To this end, the energy eigenvalue
spectra of various Hamiltonians discussed in this section are
numerically calculated and compared.

For simplicity, the atom is assumed to be placed at the
center of a 1D perfect electric conductor (PEC) cavity, whose
fundamental mode is resonant with the TLA at ωa. The setting
is illustrated in Fig. 2. The mode frequencies of the cavity are
ωk = kωa with integer k ∈ [1, M].2 A total of M = 5 modes
are considered for the calculation of the energy eigenvalue
spectra shown in Fig. 3, but only the modes with odd index
k are coupled to the TLA due to its position. Using a larger
M would not make a difference in Fig. 3 since the higher
modes would only contribute to the higher part of the spectra
that is not shown. For the full Hamiltonian, the atom is not
truncated, and a double-well potential is used to implement
an anharmonic atom as done in [12,35]. To model the full
atom numerically, the Fourier grid Hamiltonian approach is
used [36].

The various multimode spectra in Fig. 3 essentially show
that except for Ĥ′

C (6), the Hamiltonians agree with one

2Assuming a 1D PEC cavity results in this simple and conve-
nient situation. However, we emphasize that the conclusions drawn
from the plot in Fig. 3 would not change even if we used a three-
dimensional cavity that has unevenly distributed electromagnetic
mode frequencies.
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FIG. 2. (a) 1D simulation setting with a TLA placed at the center
of a uniform PEC cavity. (b) Circuit analog of (a) that involves a flux
qubit capacitively coupled to a transmission line resonator.

another even when multiple electromagnetic modes are con-
sidered with two-level truncation. Because the double-well
potential used to model the full atom is highly anhar-
monic, very good agreements are observed among the various
multimode Rabi Hamiltonians with the full Hamiltonian.
Therefore, we confirm that the conclusions made about the
single mode Rabi Hamiltonians [16,17] extend to the multi-
mode case. From this point and onward, we primarily use the
multimode Rabi Hamiltonian in the dipole gauge (12) with the
dipole self-energy term dropped. Note that because this term
is proportional to an identity operator, dropping it does not
make a difference to the eigenvalue spacings plotted in Fig. 3.

One last issue that should be touched upon when dealing
with multimode cavity QED is the divergence of Lamb shifts
when an infinite number of modes is considered without a
cutoff. It has recently been shown that finite expressions can
be obtained in circuit QED when gauge invariance is respected
[37] and that divergences can be avoided by rescaling the bare
atomic parameters from circuit analysis [38]. In this paper,
we make a simplifying assumption that the TLA frequency
is experimentally measured so that its energy levels do not
depend on the number of modes considered [18].

III. STABLE NUMERICAL TRANSFORMATION
TO THE CHAIN HAMILTONIAN

In order to simulate the multimode Rabi Hamiltonian
(12) using MPS, its coupling structure must be altered be-
cause, in its current form, the TLA is simultaneously coupled
to all electromagnetic modes of the cavity. To make the
coupling structure more compatible with MPS, the multi-

FIG. 3. Energy eigenvalue spectra of various multimode field-
atom Hamiltonians derived in Sec. II A. The vertical axis represents
energy difference from the ground state normalized by the photonic
energy of the fundamental mode of the cavity, and the horizontal axis
is the normalized coupling strength of the same mode.

. . .
. . .

FIG. 4. The coupling structure of the TLA and the bosonic
modes for the multimode Rabi Hamiltonian (left) and the chain
Hamiltonian (right).

mode Rabi Hamiltonian must be transformed to an equivalent
Hamiltonian with a chain coupling structure as illustrated
in Fig. 4. This transformation scheme has been derived
for the spin-boson model [39] and applied to the quantum
impurity model [40]. For the spin-boson model, analyti-
cal transformation schemes have been derived for linearly
[41,42] and logarithmically [42] discretized bosonic modes,
which represent bath oscillators. In this paper, we take the
equations derived in [39] and numerically solve them in
a stable manner to implement the transformation to the
chain Hamiltonian. This numerical transformation works for
electromagnetic modes with arbitrarily distributed, discrete
frequencies in contrast to the analytical schemes which only
work for linearly and logarithmically distributed frequencies.

A. General transformation scheme

For a TLA in a cavity, the multimode Rabi Hamiltonian
(12) without the dipole self-energy term is

ĤD = h̄ωa

2
σ̂z + h̄

M∑
k=1

[ωkâ†
k âk − igD,k σ̂x(âk − â†

k )]. (13)

Since the TLA is simultaneously coupled to all electromag-
netic modes, the MPS implementation would be inefficient.
For this reason, it is desirable to turn this Hamiltonian into
one with 1D chain coupling structure with nearest-neighbor
interactions.

The electromagnetic modes (or harmonic oscillators) rep-
resented by âk and â†

k are associated with the vector potential
spatial eigenfunctions Ak (r) which form an orthonormal set
of basis. It is thus possible to form a new set of orthonormal
bases using a real, orthogonal matrix [39]: b̂n = ∑M

k=1 Un,kâk ,

where [U]k,n = Uk,n, U
T · U = U · U

T = I, and I is an M×M
identity matrix. The inverse transform is naturally

âk =
M∑

n=1

Un,kb̂n. (14)

There exist infinitely many orthogonal matrices for U,
each of which implements a unique transformation on (13)
that results in an equivalent Hamiltonian with a different
coupling structure. Observing that the coupling term in (13)
has the TLA coupled to a linear superposition of electromag-
netic modes, we choose U1,k such that

∑
k gD,k σ̂x(âk − â†

k ) =
ρσ̂x(b̂1 − b̂†

1), where ρ is a new coupling coefficient to be
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determined. This means the hybrid oscillator b̂1 is formed
by lumping all the electromagnetic modes âk together. This,
in turn, induces the uncoupled harmonic oscillators to be
coupled to each other in the transformed basis:

∑
k ωkâ†

k âk =∑
n[ξnb̂†

nb̂n + tn(b̂†
nb̂n+1 + b̂†

n+1b̂n)] with a new set of bosonic
mode frequencies ξn and hopping parameters tn. This pro-
posed structure of the Hamiltonian gives rise to a recursive
relation for finding rows of U involving only the previous two
rows of the matrix, which is simple to implement with low
computational cost.

Combining what has been discussed above, (13) is trans-
formed into the chain Hamiltonian:

Ĥch = h̄ωa

2
σ̂z − ih̄ρσ̂x(b̂1 − b̂†

1)

+ h̄
M∑

n=1

[ξnb̂†
nb̂n + tn(b̂†

nb̂n+1 + b̂†
n+1b̂n)], (15)

where tM = 0. The above is equivalent to (13). For example,
(15) can be obtained by inserting (14) into (13), and the other
way is also possible by the inverse orthogonal transform. The
remaining derivation of the transformation scheme is detailed
in [39], and only the important results are summarized here.
The rows of U are recursively determined as

U1,k = gD,k

ρ
, U2,k = ωk − ξ1

t1
U1,k, (16)

Un+1,k = 1

tn
[(ωk − ξn)Un,k − tn−1Un−1,k] (17)

with the coefficients

ρ =
√∑M

k=1 g2
D,k, (18a)

t1 = 1

ρ

√∑M
k=1(ωk − ξ1)2g2

D,k, (18b)

ξn =
M∑

k=1

ωkU
2
n,k, (18c)

tn =
√∑M

k=1[(ωk − ξn)Un,k − tn−1Un−1,k]2. (18d)

B. Stabilization of the numerical transformation

A straightforward numerical calculation of (17) leads to
unstable solutions [39,40]. Beyond what are suggested in [40],
we have an effective remedy for this problem, which is to
apply the modified Gram-Schmidt orthogonalization to every
new row of U calculated using (17). The accuracies of the
numerical transformation schemes are shown in Fig. 5. To test
the schemes, an analytically solvable case of linear, discrete
electromagnetic mode frequencies [42] is considered. The
normalized, transformed mode frequencies in the chain basis
(ξn/ωa) are plotted analytically, numerically, and numerically
with modified Gram-Schmidt. The simple numerical scheme
suffers instability, whereas the stabilized numerical scheme is
completely accurate and stable as shown in Fig. 5.

FIG. 5. Plots of normalized, transformed bosonic mode frequen-
cies in the chain basis (ξn/ωa). While the straightforward numerical
implementation suffers instability, the numerical scheme combined
with modified Gram-Schmidt (mGS) shows good agreement with the
analytical result.

IV. MATRIX PRODUCT STATES AND NUMERICAL
MODE DECOMPOSITION

A. Time evolution using MPS

Once the chain Hamiltonian (15) is obtained, the dynam-
ics of the multimode Rabi Hamiltonian can be simulated
efficiently by MPS, which is implemented using the tensor
network contracting function provided in [43]. A quantum
state governed by the chain Hamiltonian is expressed in terms
of a high-order tensor:

|ψch〉 =
∑

na,n1,...,nM

cna,n1,...,nM |na, n1, . . . , nM〉, (19)

where na = 0 for g and 1 for e, and nk with integer k ∈ [1, M]
is the Fock state for the kth bosonic mode in the chain ba-
sis. When the number of photons is truncated for numerical
calculations such that nk ∈ [0, N − 1], (19) requires storing
O(NM ) complex numbers in the computer memory. By taking
the tensor cna,n1,...,nM and decomposing it into M + 1 tensors
of order 3 or 2 (as illustrated in Fig. 6), we obtain the MPS
representation of the same state:

|ψch〉 =
∑

na,n1,...,nM
a1,...,aM

Ana
a1

An1
a1,a2 . . . AnM−1

aM−1,aM
AnM

aM
|na, n1, . . . , nM〉, (20)

where Ani
ai,ai+1

is an order 3 tensor that has three indices.
This MPS representation now only requires storing O(NMd2)

…
…

FIG. 6. Illustration of decomposing a high-order tensor (left) into
an MPS (right).
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complex numbers, where d is the maximum allowed bond
dimension3 of the MPS.

The MPS representation (20) can be made exactly equal
to the original state (19), but it would not be efficient to do
so. In practice, low-rank approximations using singular value
decomposition (SVD) are applied to reduce the bond dimen-
sions between individual tensors of the MPS. To speed up this
process, randomized SVD [44] can be used. Consequently,
(20) becomes an approximate but much more efficient rep-
resentation of (19).

Time evolving the quantum state boils down to solving the
following time-stepping equation:

|ψch(t + 
t )〉 = e−iĤch
t/h̄|ψch(t )〉. (21)

To solve the above using MPS, the matrix product operator
(MPO) representation of the time evolution operator must be
formed first. This can be achieved using the time-evolving
block decimation algorithm [45]. This algorithm involves
taking the chain Hamiltonian (15) and dividing it into even
and odd parts as Ĥch = Ĥch,even + Ĥch,odd. Then, the time-
evolution operator is approximated:

e−iĤch
t/h̄ ≈ e−iĤch,even
t/h̄e−iĤch,odd
t/h̄, (22)

where the approximate equality becomes exact in the limit

t → 0. Because the terms within the even or odd part of the
chain Hamiltonian commute, (22) can be readily turned into
an MPO.

As the quantum state is evolved in time, the expectation
values of various physical quantities can be computed to study
the interaction dynamics of the system. Although all the in-
formation of the quantum dynamics is encoded into |ψch(t )〉,
which is represented by an MPS, it is necessary to construct
the quantized field operators in order to study the behavior of
the quantum fields emitted by the TLA.

B. Field quantization using mode decomposition

When the quantized vector potential operator in the
Schrödinger picture is given by

Â(r) =
M∑

k=1

√
h̄

2ωkε0V0
[âkAk (r) + â†

kA∗
k (r)], (23)

the quantized electric-field operator naturally follows as

Ê(r) = i
M∑

k=1

√
h̄ωk

2ε0V0
[âkAk (r) − â†

kA∗
k (r)]. (24)

The spatial eigenfunction Ak (r) satisfies the vector wave
equation,

μ−1
0 ∇×∇×Ak (r) − ω2

kε(r)Ak (r) = 0, (25)

and is properly normalized as

1

V0

∫
V0

dV A∗
k (r) · εr (r)Ak′ (r) = δkk′ (26)

3The bond dimensions are the dimensions of indices ai and ai+1 for
an MPS tensor Ani

ai,ai+1
. The bonds connect a tensor at a physical site

with the neighboring tensors.

FIG. 7. (a) Illustration of the three different 1D simulation set-
tings that are primarily considered in this paper. (b) Circuit analogs
of the 1D simulation settings in (a). The components highlighted
in orange are flux qubits implementing TLAs, capacitively coupled
to transmission line resonators. The transmission line in solid blue
color has a different characteristic impedance than the rest, causing
discontinuous interfaces in the inhomogeneous case, but the junction
effects in multisection waveguides (such as mode conversion) are
ignored in this paper [46].

with the relative permittivity εr (r) = ε(r)/ε0. The spatial
eigenfunction is purely real for closed, perfect cavities. For
certain cases where analytical solutions are available for (25),
the analytical eigenfunctions are used to construct the quan-
tized field operator. However, for a general, inhomogeneous
case, numerical modes must be used. This technique of NMD
has been applied to simulate various quantum electromagnetic
phenomena [21,22].

1. Simulation settings

As a proof of concept, three kinds of simulation settings
are considered in this paper: a TLA in a lattice with PBC,
in a homogeneously filled PEC cavity,4 and in an inhomoge-
neously filled PEC cavity, all of which are illustrated in Fig. 7.
Since these are 1D models that have variations only in the
x direction, they can be interpreted in terms of their circuit
analogs also shown in Fig. 7. The lattice or cavity is defined
on x ∈ [−L/2, L/2] where L is its length. The TLA is placed
at the center (x = 0) for most simulations. The only nonzero
component of the electric field is along the z direction, and the
dipole moment vector d of the TLA is perfectly aligned with
the electric field.

Moreover, the TLA is set to be resonant with the funda-
mental mode of the lattice or cavity. Because of this setting,

4This is an idealizing assumption that ignores any loss in the sys-
tem. Therefore, the time-domain simulation results under this setting
should be valid at time scales that are much shorter than the energy
relaxation times for physical implementations of these QED systems.
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-LPBC/2 0 LPBC/2

0

-LPEC/2 0 LPEC/2

0
Mode 1
Mode 2
Mode 3

FIG. 8. 1D electric-field profiles for the first three modes with
different boundary conditions. To have the lowest mode of the lattice
or cavity resonant with the TLA, we have LPBC = 2LPEC = λa.

the length of the lattice LPBC is different from the length of the
cavity LPEC due to different boundary conditions. If we define
the resonant wavelength in terms of the atomic frequency as
λa = 2πc/ωa, the lattice must be of length LPBC = λa, while
the cavity must be of length LPEC = λa/2 (see Fig. 8).

2. Analytical modes

In the PBC case, the solutions to (25) are Ak (x) = eze±ikx

where ez is a unit vector in the z direction. The wave number is
k = ωk/c where mode frequencies are ωk = kωa with integer
k ∈ [1, M].

The homogeneous PEC cavity case can also be handled
analytically, and the eigenfunction in this case is Ak (x) =
ez

√
2 cos(kx). The mode frequencies are still ωk = kωa due

to the PEC boundary conditions and the size of the cavity,
LPEC = LPBC/2. However, when the TLA is placed at the
center of the cavity, only the modes with odd k couple to the
TLA, so we denote the relevant modes in this case as ωk =
(2k − 1)ωa with integer k ∈ [1, M]. The quantized electric-
field operator is constructed according to (24) by inserting the
proper eigenfunctions depending on the boundary conditions.

3. Numerical modes

For the general case of inhomogeneous PEC cavity, it is
usually impossible to find analytical solutions to (25). There-
fore, it must be solved by CEM techniques such as the finite
element or finite difference method. By employing such a
method, one discretizes the field and samples it at discrete
points in 1D space:

Ak ( j
x) = ez[�k] j (27)

where �k is an Nx×1 vector for the kth mode, the integer
j ∈ [1, Nx] indexes over the Nx discrete points in space, and

x is the discretization length. With this, (25) is turned into a
generalized eigenvalue problem of the form

K · �k = ω2
k M · �k, (28)

where K is the stiffness matrix that implements a scaled, dis-
crete curl-curl operation, M is the mass matrix that describes
the medium inhomogeneity ε(x), ω2

k is the eigenvalue, and �k

is the eigenvector. Once this is solved, the numerical modes
(27) are inserted into (24) to construct the quantized electric-
field operator for the general inhomogeneous medium.

V. CALCULATION OF THE FIELD CORRELATIONS
USING MODE DECOMPOSITION

With the quantum dynamics simulated using MPS and
the field quantized by either analytical or numerical mode

decomposition, we are ready to discuss the calculation of the
first-order field correlation function.

A. Formulation

1. First-order field correlation function

Given the quantized electric-field operator (24), its positive
and negative frequency parts are

Ê(+)(r) = i
M∑

k=1

√
h̄ωk

2ε0V0
âkAk (r), Ê(−)(r) = [Ê(+)(r)]†.

(29)

The quantity of interest is the first-order field correlation
function,

〈E(−)(r) · E(+)(r)〉 = h̄

2ε0V0

∑
k,k′

√
ωkωk′A∗

k (r)

· Ak′ (r)〈ψD(t )|â†
k âk′ |ψD(t )〉, (30)

where |ψD(t )〉 is obtained by time evolving an initial state
using the dipole gauge multimode Rabi Hamiltonian (13)
as |ψD(t )〉 = e−iĤDt/h̄|ψD,0〉. The first-order field correlation
function (30) represents the total counting rate of single pho-
tons at r (or average field intensity at that point) [47,48].

However, the calculations with MPS are done in the chain
basis by time evolution with the chain Hamiltonian (15) as
|ψch(t )〉 = e−iĤcht/h̄|ψch,0〉. Since the transformation to the
chain basis is realized with the orthogonal matrix U as ex-
plained in Sec. III A, the correlation function is reformulated
in this basis:

〈E(−)(r) · E(+)(r)〉 = h̄

2ε0V0

∑
k,k′

√
ωkωk′A∗

k (r) · Ak′ (r)

×
∑
n,n′

Un,kUn′,k′ 〈ψch(t )|b̂†
nb̂n′ |ψch(t )〉.

(31)

The numerical computation of (31) may seem burdensome
since it involves four summations, each of which indexes
through all M modes. Nevertheless, the calculation of this
quantity on a computer can be made more efficient by vector-
izing the expression (for array programming). To do this, we
define the correlation matrix in the chain basis as [B]m,m′ =
〈ψch(t )|b̂†

mb̂m′ |ψch(t )〉 and the columns of U as [uk]n = Un,k .
These lead to the vectorized form of (31), which can be
computed efficiently:

〈E(−)(r) · E(+)(r)〉 = h̄

2ε0V0

∑
k,k′

√
ωkωk′A∗

k (r)

· Ak′ (r)
(
uT

k · B · uk′
)
. (32)

2. Average number of photons

With the quantities defined above, it is simple to calculate
the average number of photons in the kth electromagnetic
mode, 〈a†

kak〉 = 〈ψD(t )|â†
k âk|ψD(t )〉, which is converted to the
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FIG. 9. Simulation of a TLA in various settings: (a) periodic boundary conditions, (b) a homogeneous PEC cavity, (c) a TLA in a PEC
cavity next to a dielectric slab, and (d) a TLA in a dielectric slab in a PEC cavity. For each case, the three plots from top to bottom display the
average population in the excited state of the TLA, the first-order field correlation function in time and space, and average numbers of photons
in five electromagnetic modes of lowest frequencies.

chain basis and vectorized as

〈a†
kak〉 =

∑
n,n′

Un,kUn′,k′ 〈ψch(t )|b̂†
nb̂n′ |ψch(t )〉 = uT

k · B · uk .

(33)

B. Simulation results

The simulation settings discussed in Sec. IV B are con-
sidered here, and three quantities are calculated: the average
population in the excited state of the TLA, first-order field
correlation function, and average number of photons in each
electromagnetic mode. These quantities are displayed in Fig. 9
respectively. The latter two quantities are formulated in the
previous subsection. The average population in the excited
state is calculated as 〈σ+σ−〉 = 〈ψch(t )|σ̂+σ̂−|ψch(t )〉, where
the MPS representation of the state is defined in (20). In
all simulations, the quantum state is initialized to |ψch,0〉 =
|e, 0, . . . , 0〉, i.e., an excited TLA in vacuum. The coupling
coefficient is tuned by the dipole moment vector d such
that gD,1/ω1 = 0.6, which represents ultrastrong coupling be-
tween the TLA and the fundamental mode of the cavity or
lattice. This is a deliberate choice to be consistent with [18].

Figure 9(a) shows the simulation results for the PBC case,
which is analyzed in [18]. The plots show a semiperiodic,
resonant behavior of the TLA and fields. A lone TLA evolves
in time as e−iωat , so it has a period of 2π/ωa. Light waves
are emitted when the TLA decays, and the TLA is resonantly
revived for a moment as it absorbs the waves that return at
every period. When the emitted wave arrives at one end of
the spatial simulation domain, it reappears at the opposite end
due to PBC. This dynamics matches the results shown in [18].
The periodic revival behavior is not as perfect here because
20 modes are considered. The amplitude of the average num-
ber of photons in each mode is proportional to the normalized
coupling coefficient squared, (gD,k/ωk )2 ∝ 1/ωk , which has
been noticed in [18] as well.

When the boundary conditions are changed to PEC, the be-
havior of the TLA changes completely as shown in Fig. 9(b).
The effect of the cavity size being halved (LPEC = LPBC/2 as
explained in Sec. IV B) is clearly observed here. The light
wave reflected from the walls of the cavity returns in half a
period of the TLA [t/(2π/ωa) = 0.5], so it is unable to absorb
much of the energy, being out of phase with the fields. When
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FIG. 10. Absolute values of normalized coupling coefficients for
electromagnetic modes indexed by k. The TLA next to the slab
case corresponds to Fig. 9(c), and the TLA inside the slab case
corresponds to Fig. 9(d).

the light returns again in a full period [t/(2π/ωa) = 1], most
of the energy is absorbed by the TLA. Due to the half-period
excitations, the highly periodic behavior seen in the PBC case
is lost in the PEC cavity case. However, the number of photons
still is roughly proportional to (gD,k/ωk )2 as in the PBC case.

When a dielectric slab (εr = 4) of thickness LPEC/8 is cen-
tered at x = −LPEC/4, the dynamics changes drastically once
again. In Figs. 9(c) and 9(d), the dielectric slab is placed in
between the white dashed lines shown in the field correlation
plots. As a result of the accurate extraction of the numerical
modes Ak (x) from NMD, all the reflections and transmissions
at the vacuum-dielectric interfaces are properly realized. An
interesting potential use case of our technique of MPS and
NMD is demonstrated when the TLA is placed inside the
dielectric slab [Fig. 9(d)]. In this case, it is observed that
photons of higher modes are strongly suppressed except for
the first two modes. This can be understood when the nor-
malized coupling coefficients shown in Fig. 10 are observed.
For most modes, the coefficients are smaller when the TLA
is placed inside the slab. This directly results in less photons
excited in these modes. Using this simulation approach, it is
thus possible to design and engineer the electromagnetic envi-
ronments for TLAs that allow dominant emission of photons
for specific modes of the cavity. This could be useful when
one seeks a design that produces monochromatic photons
from a TLA source ultrastrongly coupled to its surrounding
electromagnetic environment.

VI. CONCLUSION AND FUTURE WORK

We have derived the multimode Rabi Hamiltonians and
identified the gauge-invariant ones, confirming that the con-
clusions made with the single mode models [16,17] extend to
the multimode case. We then chose to work with the dipole
gauge multimode Rabi Hamiltonian to model cavity QED
systems. To efficiently time step the quantum state, the Rabi
Hamiltonian was transformed to the chain form, after which
the MPS method was applied efficiently for time stepping
the system. We have also presented the CEM technique of
NMD, which allows modeling quantum electromagnetic fields
not only for analytically solvable cases but also for general,
inhomogeneous medium cases. The two methods, MPS and
NMD, were combined to simulate the quantum dynamics of
field-atom systems in various settings. The PBC setting was

simulated to match the results with a previously published
work [18], and other more general cases were demonstrated
to show the versatility of our approach to this problem.

Assuming the simple case of a PEC cavity in this paper
is an idealizing assumption that ignores dissipation and loss
which happens in the real world. This is a convenient assump-
tion for our initial attempt at MPS simulations of cavity QED,
but we have three ideas for more realistic models that can
be considered for future work. First, bath oscillators can be
added to the Hamiltonian [49–51]. Since the bath oscillators
typically interact with the system weakly, it should be possi-
ble to incorporate them in MPS simulations of cavity QED.
Second, an open cavity could be simulated by properly setting
up the port boundary conditions [52,53]. Third, quantization
of the field using quasinormal modes would be another poten-
tial way to model open or dissipative cavity [54,55].

Our future work also includes extending this method to
the multiatom case and three-dimensional (3D) problems.
Extending the chain mapping technique (Sec. III) to multi-
ple atoms is not trivial, but it would be absolutely essential
for MPS simulations of quantum computing systems, where
the effect of multiple qubits simultaneously interacting with
multimode quantized fields is crucial. We also seek to nu-
merically analyze practical 3D QED structures in the USC
regime, such as a flux qubit coupled to a coplanar waveguide
resonator [6,8].
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APPENDIX A: MINIMAL COUPLING HAMILTONIAN

The Hamiltonian for a free atom with a charge bound by
the scalar potential is

ĤA = p̂2

2m
+ q�(r̂), (A1)

where m is the mass of the particle, q is its electric charge,
and the potential-energy term is also written as V (r̂) = q�(r̂).
When the atom is interacting with the electromagnetic fields
in a cavity, the system must be invariant under a gauge trans-
formation. The minimal coupling replacement,

p̂ → p̂ − qÂ(r0), (A2)

makes the system gauge invariant. In the above, r0 is the
position of the nucleus. Considering this replacement together
with the energy in the electromagnetic fields of a cavity, the
total Hamiltonian governing the system is

ĤC = [p̂ − qÂ(r0)]2

2m
+ V (r̂)

+ 1

2

∫
dV

(
�̂

2
(r)

ε(r)
+ [∇×Â(r)]2

μ0

)
, (A3)

which is called the minimal coupling Hamiltonian.
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The integral term in (A3) is the free field Hamiltonian that
represents the total energy in the electromagnetic fields of a
cavity:

ĤF = 1

2

∫
dV

(
�̂

2
(r)

ε(r)
+ [∇×Â(r)]2

μ0

)
, (A4)

where ε(r) is the permittivity that describes the medium
inhomogeneity, μ0 is the permeability of free space, and
�̂(r) = ε(r)∂Â(r)/∂t is the canonically conjugate variable
of the vector potential operator Â [23,24]. The above is in
the Coulomb gauge (∇ · Â = 0), where the vector potential
is purely transverse. The scalar potential � plays the role of
the binding potential, V (r̂) = q�(r̂), for the free charge in the
atom. For this reason, (A3) is also called the Hamiltonian in
the Coulomb gauge [16]. Considering a closed, perfect cavity,
the number of modes is countably infinite, and (A4) becomes
ĤF = ∑∞

k=1 h̄ωkâ†
k âk , where ωk is the frequency of the kth

cavity mode, â†
k (âk) is the photon creation (annihilation)

operator for the kth mode, and the zero-point energy term is
ignored.

In [20], a proper way to truncate the electromagnetic modes
has been defined by a projection operator of the form

P̂(M ) = ÎA ⊗
⎛
⎝ M⊗

k=1

∞∑
nk=0

|nk〉〈nk|
∞⊗

k′=M+1

|0k′ 〉〈0k′ |
⎞
⎠, (A5)

where ÎA is the identity operator in the atomic Hilbert space,
and |nk〉 represents the Fock state of the kth electromag-
netic mode. This projection operator truncates the number
of electromagnetic modes down to M by allowing infinite
numbers of photons in the modes with indices k ∈ [1, M] and
zero photons for all other modes. For example, the free field
Hamiltonian would be truncated as

P̂(M )ĤF P̂(M ) =
M∑

k=1

h̄ωkâ†
k âk . (A6)

Throughout the rest of this paper, this proper truncation of
electromagnetic modes is assumed.

APPENDIX B: COULOMB AND DIPOLE
GAUGE HAMILTONIANS

Even though the Hamiltonian in the Coulomb gauge (A3)
is treated as the fundamental form by many, a gauge trans-
formation is often applied to work in the dipole gauge where
the resulting Hamiltonian is based on the electric dipole inter-
action. This process involves the PZW transformation [25,26].
More recently, a simplified presentation of these Hamiltonians
has been shown in [16,17]. This presentation and the equiva-
lence of these Hamiltonians are shown in this section.

Many physicists prefer to work in the dipole gauge for
various reasons. Some prefer it because they can avoid
the potentials and directly work with the fields, and the
Hamiltonian is manifestly gauge invariant [13]. It also turns
out that the calculations involving electric dipole induced
transitions in atoms are much more convenient to carry out
in the dipole gauge [15]. Another reason is that the canoni-

cal momentum (p̂) of the atom coincides with the kinematic
momentum (m˙̂r) in the dipole gauge [27].

1. Minimal coupling replacement as a unitary transformation

The minimal coupling replacement (A2) can be imple-
mented as a unitary transformation [16] with the operator

ÛMC = e
i
h̄ qr̂·Â(r0 ). (B1)

The Hamiltonian in (A3) can then be written in terms of the
minimal coupling replacement operation as

ĤC = ÛMCĤAÛ †
MC + ĤF . (B2)

To show that (A3) can be obtained from (B2), the unitary
transformation in the first term of the right-hand side of (B2) is
evaluated. A lemma of the Baker-Campbell-Hausdorff (BCH)
formula,

eX̂Ŷ e−X̂ = Ŷ + [X̂ , Ŷ ] + 1
2! [X̂ , [X̂ , Ŷ ]]

+ 1
3! [X̂ , [X̂ , [X̂ , Ŷ ]]] + · · · , (B3)

is extremely useful here. The above applies to any operators X̂
and Ŷ that may not commute, and the formula can be derived
by applying Taylor expansions to the operator exponentials.

To evaluate the unitary transformation in the first term of
(B2), we note that ĤA (A1) has two terms. The application of
ÛMC (B1) to the binding potential term of ĤA is trivial because
the term and unitary operator commute:

ÛMCV (r̂)Û †
MC = e

i
h̄ qr̂·Â(r0 )V (r̂)e− i

h̄ qr̂·Â(r0 ) = V (r̂). (B4)

The momentum operator, on the other hand, changes under
the transformation:

ÛMCp̂Û †
MC = e

i
h̄ qr̂·Â(r0 )p̂e− i

h̄ qr̂·Â(r0 )

= p̂ + i

h̄
q

∑
j

[r̂ j Â j (r0), p̂] (B5)

= p̂ − qÂ(r0),

where the summation index goes through j = x, y, and z,
and the canonical commutation relation, [r̂i, p̂ j] = ih̄δi j Î , has
been used in the second and third equalities of the above.
Also, the tensor product notation is omitted throughout the
Appendices.5 Since

ÛMCp̂2Û †
MC = ÛMCp̂Û †

MCÛMCp̂Û †
MC, (B6)

5The term r̂ j Â j in (B5) is a shorthand notation for r̂ j ⊗ Â j . The
composite Hilbert space for the field-atom system is formed by a
tensor product of the constituent Hilbert spaces: H = HA ⊗ HF . For
this reason, the position operator r̂ j should technically be written as
r̂ j ⊗ ÎF where ÎF is the identity operator in the field Hilbert space.
Similarly, the vector potential operator should be ÎA ⊗ Â j where ÎA

is the identity operator in the atomic Hilbert space. The position and
vector potential operators clearly commute: [r̂ j ⊗ ÎF , ÎA ⊗ Â j] =
(r̂ j ⊗ ÎF )(ÎA ⊗ Â j )−(ÎA ⊗ Â j )(r̂ j ⊗ ÎF ) = r̂ j ⊗ Â j − r̂ j ⊗ Â j =0.
Therefore, two operators that belong to different constituent
Hilbert spaces always commute. For notational simplicity, the
tensor products and identity operators are omitted throughout the
Appendices.
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the transformed atomic Hamiltonian is

ÛMCĤAÛ †
MC = [p̂ − qÂ(r0)]2

2m
+ V (r̂). (B7)

This reveals that (B2) is equal to (A3). Finally, the Coulomb
gauge Hamiltonian is written out:

ĤC = p̂2

2m
+ V (r̂)+

M∑
k=1

h̄ωkâ†
k âk − q

m
p̂ · Â(r0) + q2

2m
Â2(r0).

(B8)

2. Power-Zienau-Woolley transformation

When the PZW transformation is applied to ĤC given in
(B2), the Hamiltonian in the dipole gauge is obtained. The
unitary operator that implements the PZW transformation is
given by

ÛPZW = Û †
MC = e− i

h̄ qr̂·Â(r0 ). (B9)

It is clearly seen in the above that ÛPZW is just an inverse
of ÛMC. This implies that the PZW transformation makes
the replacement, p̂ → p̂ + qÂ(r0), which is the opposite of
the minimal coupling replacement. Later in this section, it is
shown that the transformation also shifts the field operator.
Applying this transformation to (B2) yields

ĤD = ÛPZWĤCÛ †
PZW (B10)

= ÛPZWÛMCĤAÛ †
MCÛ †

PZW + ÛPZWĤFÛ †
PZW

= ĤA + ÛPZWĤFÛ †
PZW, (B11)

the Hamiltonian in the dipole gauge. It is observed in the
above that the PZW transformation simply undoes the min-
imal coupling replacement in the atomic part and shifts the
field part of the Hamiltonian.

It is useful to write down the general form of the vector
potential operator in the Schrödinger picture at this point:

Â(r) =
M∑

k=1

√
h̄

2ωkε0V0
[âkAk (r) + â†

kA∗
k (r)], (B12)

where Ak (r) is the vector potential eigenfunction. This op-
erator is evaluated at r0 in (B9) under the long-wavelength
approximation. The vector potential eigenfunction, Ak (r), is a
real quantity for closed, perfect cavities, which are primarily
dealt with in this paper. Given (B12), the quantized, transverse
electric-field operator naturally follows:

Ê⊥(r) = i
M∑

k=1

√
h̄ωk

2ε0V0
[âkAk (r) − â†

kA∗
k (r)]. (B13)

In order to specifically derive how the PZW transformation
affects the free field Hamiltonian in (B11), the BCH for-
mula (B3) is utilized here again. The transformation shifts the

creation operator as

ÛPZWâ†
kÛ †

PZW = e− i
h̄ qr̂·Â(r0 )â†

ke
i
h̄ qr̂·Â(r0 )

= â†
k − i

h̄
qr̂ ·

M∑
k′=1

√
h̄

2ωkε0V0
Ak (r0)[âk′ , â†

k]

= â†
k − i

h̄
q

√
h̄

2ωkε0V0
r̂ · Ak (r0) (B14)

where [â†
k′ , â†

k] = 0 has been used in the second equality of the
above. Similarly, the annihilation operator is transformed as

ÛPZWâkÛ
†
PZW = âk + i

h̄
q

√
h̄

2ωkε0V0
r̂ · A∗

k (r0). (B15)

Considering Ak (r0) to be real, we write

ÛPZWâ†
k âkÛ

†
PZW

= ÛPZWâ†
kÛ †

PZWÛPZWâkÛ
†
PZW

= â†
k âk − i

qr̂ · Ak (r0)(âk − â†
k )√

2h̄ωkε0V0
+ q2[r̂ · Ak (r0)]2

2h̄ωkε0V0
,

(B16)

where we identify the second term in (B16) to be containing
the kth mode component of the transverse electric-field oper-
ator (B13). Defining the dipole moment operator,

d̂ = qr̂, (B17)

the free field Hamiltonian is transformed as

ÛPZWĤFÛ †
PZW = ĤF − d̂ · Ê⊥(r0) +

M∑
k=1

[d̂ · Ak (r0)]2

2ε0V0
.

(B18)

The last term in (B18) is called the dipole self-energy term.
Therefore, the Hamiltonian in the dipole gauge is

ĤD = p̂2

2m
+ V (r̂) +

M∑
k=1

h̄ωkâ†
k âk − d̂ · Ê⊥(r0)

+
M∑

k=1

[d̂ · Ak (r0)]2

2ε0V0
, (B19)

which is sometimes called the electric dipole Hamiltonian
[13].

It is obvious from (B10) that the Hamiltonians in the
Coulomb and dipole gauges are equivalent because one is a
unitary transformation of the other. This means they share
the same energy eigenvalue spectrum, and therefore, they
represent the same physical system. However, upon two-
level truncation of the atomic part, the results from the two
Hamiltonians do not agree anymore. This has been investi-
gated for single electromagnetic mode models in [12,16,17]
and resolved in [16,17]. We deal with the multimode case in
the main text.
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APPENDIX C: DERIVATION OF THE TRADITIONAL
MULTIMODE RABI HAMILTONIANS

The Rabi Hamiltonian is obtained under the assumption
that the frequency gap between the lowest two eigenstates of
the atom is resonant with the fundamental electromagnetic
mode of the cavity. In this case, the atomic part of the full
Hamiltonian (ĤC or ĤD) is truncated using the two-level pro-
jection operator:

P̂ = |g〉〈g| + |e〉〈e| (C1)

where |g〉 and |e〉 are the ground and first excited states,
respectively, of the free atomic Hamiltonian (A1). When
all of its eigenstates and energy eigenvalues are found, this
Hamiltonian can be diagonalized as

ĤA =
∑

n

En|En〉〈En|. (C2)

In terms of these eigenstates, |g〉 = |E0〉 and |e〉 = |E1〉. A
useful relation between the projection and identity operators
is

ÎA = P̂ + Q̂ (C3)

where Q̂ = ∑
n�2 |En〉〈En|.

Using the two-level projection operator (C1), the tradi-
tional way to obtain the Rabi Hamiltonian is through a direct
truncation:

Ĥ′
i = P̂ĤiP̂ (C4)

where i = C or D for the Coulomb or dipole gauge. Such way
of truncation applied in both gauges is demonstrated in [11].
The prime on the left-hand side of the above indicates a direct
truncation as opposed to a more proper way of truncation
which is discussed in Appendix D. Calligraphic symbols with
hats are used to represent the operators in the truncated two-
level subspace of the atomic Hilbert space. Equations (6) and
(8) are derived in this section.

1. Direct truncation of the dipole gauge Hamiltonian

The truncation (C4) is applied to (B19) as

Ĥ′
D = P̂ĤAP̂ + ĤF − P̂d̂P̂ · Ê⊥(r0)

+
M∑

k=1

P̂[d̂ · A0(r0)]2P̂
2ε0V0

, (C5)

where the two-level truncation on the field Hamiltonian (sec-
ond term in the above) is omitted for notational simplicity.6

The two-level truncation of the first term of (C5) represents
the truncation of the free atomic Hamiltonian. Using (C1)

6As discussed in the previous footnote, we do not denote identity
operators and tensor products for notational simplicity. The field
Hamiltonian should technically be written as ÎA ⊗ ĤF before the two-
level truncation and as (P̂ ⊗ ÎF )(ÎA ⊗ ĤF )(P̂ ⊗ ÎF ) = P̂ ⊗ ĤF =
Î ⊗ ĤF after, where Î = P̂ is an identity operator in the truncated
two-level subspace. We omit the Î ⊗ part since it consists of an
identity operator and a tensor product.

and (C2),

P̂ĤAP̂ = E0|g〉〈g| + E1|e〉〈e|

= E1 − E0

2
(|e〉〈e|−|g〉〈g|) + E1 + E0

2
(|e〉〈e| + |g〉〈g|)

= h̄ωa

2
σ̂z + E1 + E0

2
Î, (C6)

where h̄ωa = E1 − E0, and

Î = P̂ (C7)

is the identity operator in the two-level subspace. In (C6), the
second term is usually dropped from the Rabi Hamiltonian
because it is proportional to the identity operator.

The third term in (C5) is the interaction term. For sym-
metric potentials centered at the origin in space, P̂d̂P̂ only
has nonzero elements in the off-diagonal entries. The dipole
moment operator in the two-level subspace is written as

P̂d̂P̂ = dσ̂− + d∗σ̂+ (C8)

where d = 〈g|d̂|e〉 is the complex dipole moment vector. By
properly choosing the phases of the eigenstates |g〉 and |e〉, the
dipole moment d can be made real [28]. What is meant here
is that the phase of an eigenstate is arbitrary: for example, it
is possible to make the replacement |g〉 → e−iφg|g〉 without
altering the orthogonality of the eigenstates. Therefore, by
properly selecting the phases of the eigenstates, the dipole
moment vector can be computed as (assuming a z-directed
dipole for simplicity)

d = ezq〈g|ei(φg−φe )ẑ|e〉

= ezqei(φg−φe )
∫

dz zψ∗
g (z)ψe(z). (C9)

It is always possible to pick the phase difference φg − φe such
that the above quantity is real. Therefore, the third term of
(C5) is written out as

−P̂d̂P̂ · Ê⊥(r0) = −ih̄
M∑

k=1

d · Ak (r0)
√

ωk

2h̄ε0V0︸ ︷︷ ︸
=gD,k

σ̂x(âk − â†
k ),

(C10)

where σ̂x = σ̂− + σ̂+ is a Pauli operator, and gD,k is the mode-
dependent coupling coefficient in the dipole gauge.

The last term of (C5) is a diagonal operator in the atomic
Hilbert space, and it does not include any field operator. For
this reason, this term (the dipole self-energy term) only mod-
ifies the atomic energy and does not alter the interaction [15].

Gathering the results, the multimode Rabi Hamiltonian in
the dipole gauge obtained by a direct truncation is

Ĥ′
D = h̄ωa

2
σ̂z +

M∑
k=1

[
h̄ωkâ†

k âk − ih̄gD,k σ̂x(âk − â†
k )

+ 1

2ε0V
P̂[d̂ · Ak (r0)]2P̂

]
. (C11)
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2. Direct truncation of the Coulomb gauge Hamiltonian

When the direct truncation (C4) is applied to the Coulomb
gauge Hamiltonian (B8), gauge invariance is ruined (reasons
are discussed in Appendix E), and the following results:

Ĥ′
C = P̂ÛMCĤAÛ †

MCP̂ + ĤF (C12)

= P̂ĤAP̂ − q

m
P̂p̂P̂ · Â(r0) + q2

2m
Â2(r0) + ĤF . (C13)

The first term of the above has already been evaluated in
(C6). In order to apply the two-level truncation to the inter-
action term, the third term in (C13), as explained in [11],
the relation between the position and momentum operators
must be established in the two-level subspace. To this end,
the free atomic Hamiltonian (A1) is considered here again.
The Heisenberg equation of motion for the position operator
implies the following relation:

p̂ = m

ih̄
[r̂, ĤA]. (C14)

Expanding the commutator and taking the matrix element of
the operators on both sides yields

〈g|p̂|e〉 = − im

qh̄
(E1 − E0︸ ︷︷ ︸

=h̄ωa

) 〈g|qr̂|e〉︸ ︷︷ ︸
=d

(C15)

where the dipole moment vector has been identified. This
equation relates the matrix element of the momentum operator
to the electric dipole moment. Using this result, the interaction
term is written in the two-level subspace as

− q

m
P̂p̂P̂ · Â(r0) = h̄

M∑
k=1

ωad · Ak (r0)√
2h̄ωkε0V0︸ ︷︷ ︸

=gC,k

σ̂y(âk + â†
k ), (C16)

where σ̂y = i(σ̂− − σ̂+) is a Pauli operator, and the mode-
dependent coupling coefficient in the Coulomb gauge (gC,k)
is identified above.

It is interesting to compare the coupling coefficients in the
two gauges from (C10) and (C16). They are related to each
other as

gC,k = gD,k
ωa

ωk
. (C17)

This is why the Rabi Hamiltonians in the two gauges appear
equivalent on resonance for single mode models [33].

Therefore, the Rabi Hamiltonian in the Coulomb gauge
when truncated directly is written out as

Ĥ′
C = h̄ωa

2
σ̂z + h̄

M∑
k=1

[ωkâ†
k âk + gC,k σ̂y(âk + â†

k )]

+ h̄

ωa

[
M∑

k=1

gC,k (âk + â†
k )

]2

. (C18)

The coefficient of the last term in the above, called the dia-
magnetic term, is obtained by applying the TRK sum rule as
detailed in Appendix F. Although the Coulomb and dipole
gauge Hamiltonians (ĤC and ĤD) are equivalent, the Rabi
Hamiltonians with direct truncation (Ĥ′

C and Ĥ′
D) are not.

Gauge invariance has been lost in the process of direct two-
level truncation.

APPENDIX D: DERIVATION OF THE PROPERLY
TRUNCATED MULTIMODE RABI HAMILTONIANS

The two Rabi Hamiltonians derived in the previous sec-
tion are not equivalent because after the truncation, the
Hamiltonians are not unitarily related anymore. There is, how-
ever, a more proper way to truncate the Hamiltonian such
that the unitarity between the Hamiltonians in both gauges
is maintained [16,17]. When the full Hamiltonian (before the
truncation) is thought of as a function of four conjugate oper-
ators, Ĥi(r̂, p̂, Â, �̂), the following truncation method keeps
unitarity between the two gauges:

Ĥi = Ĥi(P̂ r̂P̂, P̂ p̂P̂, Â, �̂) (D1)

where the subscript i = C or D for the Coulomb or dipole
gauge. Using this proper truncation method, Eqs. (11) and
(12) from the main text are derived in this section.

1. Truncation of the Coulomb gauge Hamiltonian

The initial form of the properly truncated Coulomb gauge
Hamiltonian is written from (D1) and (B2) as

ĤC = ĤC (P̂ r̂P̂, P̂ p̂P̂, Â, �̂)

= eiqP̂ r̂P̂ ·Â(r0 )/h̄ĤA(P̂ r̂P̂, P̂ p̂P̂ )e−iqP̂ r̂P̂ ·Â(r0 )/h̄ + ĤF

= ÛMCĤAÛ†
MC + ĤF , (D2)

where

ÛMC = e
i
h̄ qP̂ r̂P̂ ·Â(r0 ) = ei

∑M
k=1

gD,k
ωk

σ̂x (âk+â†
k ) (D3)

is the minimal coupling replacement operator in the two-level
subspace, and

ĤA = h̄ωa

2
σ̂z (D4)

is the free two-level atomic Hamiltonian derived in (C6).
To evaluate the first term of (D2), the BCH formula (B3)

comes in handy here. Applying it yields

ÛMCσ̂zÛ†
MC = σ̂z + i

M∑
k=1

gD,k

ωk
(âk + â†

k )[σ̂x, σ̂z]

+
[
i
∑M

k=1
gD,k

ωk
(âk + â†

k )
]2

2!
[σ̂x, [σ̂x, σ̂z]] + · · ·

= σ̂z + 2
M∑

k=1

gD,k

ωk
(âk + â†

k )σ̂y

−
[
2

∑M
k=1

gD,k

ωk
(âk + â†

k )
]2

2!
σ̂z − · · ·

= σ̂z cos

[
M∑

k=1

2gD,k

ωk
(âk + â†

k )

]

+ σ̂y sin

[
M∑

k=1

2gD,k

ωk
(âk + â†

k )

]
(D5)

where the commutation relations for the Pauli operators
([σ̂ j, σ̂k] = 2iε jkl σ̂l with the Levi-Civita symbol ε jkl ) and the
Taylor series expansions for sine and cosine have been used.
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Therefore, the properly truncated Rabi Hamiltonian in the
Coulomb gauge is

ĤC =
M∑

k=1

h̄ωkâ†
k âk + h̄ωa

2

{
σ̂z cos

[
M∑

k=1

2gD,k

ωk
(âk + â†

k )

]

+ σ̂y sin

[
M∑

k=1

2gD,k

ωk
(âk + â†

k )

]}
(D6)

which is the multimode version of Eq. (10) in [16].

2. Truncation of the dipole gauge Hamiltonian

In a similar manner to how (D2) is written down, we can
do the same in the dipole gauge using (D1) and (B11):

ĤD = ĤD(P̂ r̂P̂, P̂p̂P̂, Â, �̂)

= ĤA(P̂ r̂P̂, P̂ p̂P̂ ) + e−iqP̂ r̂P̂ ·Â(r0 )/h̄ĤF eiqP̂ r̂P̂ ·Â(r0 )/h̄

= ĤA + ÛPZWĤF Û†
PZW (D7)

where we identify the PZW transformation operator in the
two-level subspace:

ÛPZW = Û†
MC = e−i

∑M
k=1

gD,k
ωk

σ̂x (âk+â†
k )
. (D8)

This operator can be used to transform the Coulomb gauge
Rabi Hamiltonian (11) as

ĤD = ÛPZWĤCÛ†
PZW. (D9)

The transformation of the field Hamiltonian, which is the
second term in (D7), is evaluated using the BCH formula (B3)
again in a very similar manner as it is done in Appendix B2.
The PZW transformation in the two-level subspace (D8) is
applied to the creation and annihilation operators:

ÛPZWâ†
k Û

†
PZW = â†

k − i
M∑

k′=1

gD,k′

ωk′
σ̂x[âk′ + â†

k′ , â†
k]

= â†
k − i

gD,k

ωk
σ̂x, (D10)

ÛPZWâkÛ†
PZW = âk − i

M∑
k′=1

gD,k′

ωk′
σ̂x[âk′ + â†

k′ , âk]

= âk + i
gD,k

ωk
σ̂x. (D11)

Using the fact that

ÛPZWâ†
k âkÛ†

PZW = ÛPZWâ†
k Û

†
PZWÛPZWâkÛ†

PZW, (D12)

the free field Hamiltonian is transformed as

ÛPZWĤF Û†
PZW

=
M∑

k=1

h̄ωk

(
â†

k − i
gD,k

ωk
σ̂x

)(
âk + i

gD,k

ωk
σ̂x

)

=
M∑

k=1

h̄ωk

[
â†

k âk + g2
D,k

ω2
k

σ̂ 2
x − i

gD,k

ωk
σ̂x(âk − â†

k )

]

=
M∑

k=1

[
h̄ωkâ†

k âk + h̄gD,k σ̂y(âk − â†
k ) + h̄

g2
D,k

ωk
Î
]

(D13)

where σ̂ 2
x = Î, and Î has been defined in (C7).

Therefore, the properly truncated Rabi Hamiltonian in the
dipole gauge is

ĤD = h̄ωa

2
σ̂z + h̄

M∑
k=1

[
ωkâ†

k âk−igD,k σ̂x(âk−â†
k ) + g2

D,k

ωk
Î
]
.

(D14)

The coefficient of the dipole self-energy term (last term
in the above) in the two-level subspace is derived in
Appendix F.

APPENDIX E: TRUNCATION METHOD AND UNITARITY

Other than the reasons mentioned in [16,17] about why
gauge invariance is ruined when the direct truncation method
is applied, it is also possible to mathematically see that this is
the case because unitarity between the two gauges is lost. The
directly truncated Rabi Hamiltonians are

Ĥ′
C = P̂ĤCP̂ = P̂eiqr̂·Â(r0 )/h̄ĤA(r̂, p̂)e−iqr̂·Â(r0 )/h̄P̂ + ĤF ,

(E1)

Ĥ′
D = P̂ĤDP̂ = P̂ĤA(r̂, p̂)P̂ + P̂e−iqr̂·Â(r0 )/h̄ĤF eiqr̂·Â(r0 )/h̄P̂ .

(E2)

The above two are not unitarily related partly because
P̂eiqr̂·Â(r0 )/h̄ is not unitary:

P̂eiqr̂·Â(r0 )/h̄(P̂eiqr̂·Â(r0 )/h̄)† = P̂, (E3)

(P̂eiqr̂·Â(r0 )/h̄)†P̂eiqr̂·Â(r0 )/h̄ = e−iqr̂·Â(r0 )/h̄P̂eiqr̂·Â(r0 )/h̄. (E4)

In other words, there exists no unitary operator Û such that
Ĥ′

D = ÛĤ′
CÛ†.

In contrast, the properly truncated Rabi Hamiltonians are
clearly unitarily related:

ĤC = ĤC (P̂ r̂P̂, P̂ p̂P̂, Â, �̂)

= eiqP̂ r̂P̂ ·Â(r0 )/h̄ĤA(P̂ r̂P̂, P̂p̂P̂ )e−iqP̂ r̂P̂ ·Â(r0 )/h̄ + ĤF ,

(E5)

ĤD = ĤD(P̂ r̂P̂, P̂ p̂P̂, Â, �̂)

= ĤA(P̂ r̂P̂, P̂ p̂P̂ ) + e−iqP̂ r̂P̂ ·Â(r0 )/h̄ĤF eiqP̂ r̂P̂ ·Â(r0 )/h̄.

(E6)

They are unitary transforms of each other by the PZW opera-
tor in the two-level subspace:

ÛPZW = e−iqP̂ r̂P̂ ·Â(r0 )/h̄. (E7)

Thus, it is possible to write ĤD = ÛPZWĤCÛ†
PZW, and this

means the two Rabi Hamiltonians share the same spectra and
represent the same physical system.

APPENDIX F: APPLICATION OF THE
THOMAS-REICHE-KUHN SUM RULE

The TRK sum rule [29,30] is a useful identity for atomic
electrons derived from the canonical commutation relation. It
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has been used to find the coefficient of the diamagnetic term of
the Rabi Hamiltonian in the Coulomb gauge [32]. We derive
this and the coefficient of the dipole self-energy term in the
dipole gauge for the multimode case here.

1. TRK sum rule

Given the free atomic Hamiltonian (A1), the TRK sum rule
is written from [31] as

∑
n

(En − E0)|〈E0|r̂|En〉|2 = 3h̄2

2m
. (F1)

This is a useful relation because multiplying both sides by
the electric charge squared results in the weighted sum of the
transition dipole moment equaling a constant. The generalized
version of the TRK sum rule for any Hermitian observable Ô
(as derived in [31]) is

∑
n

(En − E0)|〈E0|Ô|En〉|2 = 1

2
〈E0|[Ô, [Ô, ĤA]]|E0〉. (F2)

This relation can be derived by applying the resolution of the
identity and the fact that En are the energy eigenvalues of the
free atomic Hamiltonian.

2. Coefficient of the diamagnetic term

The coefficient of the diamagnetic term is derived using the
TRK sum rule in [32]. Their result can be easily extended to

the multimode case as

q2

2m
Â2 �

∑
n

|〈En| q
m p̂ · Â|E0〉|2
En − E0

= h̄

ωa

[
M∑

k=1

gC,k (âk + â†
k )

]2

(F3)

where the inequality is saturated when p̂ is perfectly aligned
with Â.

3. Coefficient of the dipole self-energy term

The same technique can be applied for the dipole self-
energy term of ĤD (12) that is proportional to d̂2 in the
dipole gauge Hamiltonian. This is called the TRK sum rule
for interacting photons [34], and the following equation can
be obtained:

[d̂ · Ak (r0)]2

2ε0V
=

∑
nk

|〈nk|d̂ · Ê⊥,k (r0)|0k〉|2
h̄ωknk

, (F4)

where |nk〉 is the kth mode Fock state, and Ê⊥,k is the trans-
verse electric-field operator for the kth mode. Under two-level
truncation, the above reduces to

[P̂d̂P̂ · Ak (r0)]2

2ε0V
=

∑
nk

|〈nk|P̂d̂P̂ · Ê⊥,k (r0)|0k〉|2
h̄ωknk

= h̄g2
D,k

ωk
σ̂ 2

x . (F5)

Considering σ̂ 2
x = Î = P̂ is the identity operator in the trun-

cated two-level subspace, the above confirms the coefficient
of the dipole self-energy term in Eq. (12) of the main text.
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