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Chiral and nonreciprocal single-photon scattering in a chiral-giant-molecule waveguide-QED system
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We study chiral and nonreciprocal single-photon scattering in a chiral-giant-molecule waveguide-QED sys-
tem. Here, the giant molecule consists of two coupled giant atoms, which interact with two linear waveguides,
forming a four-port quantum device. We obtain the exact analytical expressions of the four scattering amplitudes
using a real-space method. Under the Markovian limit, we find that the single-photon scattering behavior is
determined by the coupling strength between the giant atoms and the waveguides, the coupling strength between
the two giant atoms, and the nondipole effect caused by the phase accumulation of photons traveling between
the coupling points. It is also found that chiral and nonreciprocal single-photon scattering can be realized by
introducing the chiral coupling to break the symmetry in the coupling configuration between the giant molecule
and the waveguides. In addition, an ideal chiral emitter-waveguide coupling enables a directional single-photon
routing. In the non-Markovian regime, the scattering spectra are characterized by more abundant structures with
multiple peaks and dips. In particular, we demonstrate that the non-Markovian retarded effect can induce the
nonreciprocal single-photon scattering. Our results have potential applications in the design of optical quantum
devices involving giant atoms, which can provide an efficient platform for studying chiral quantum optics.
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I. INTRODUCTION

The interaction between light and atoms is at the heart
of quantum optics [1]. Waveguide quantum electrodynamics
(QED) [2–4], addressing the interactions of various atoms
with running-wave optical fields, provides a good platform
for studying light-matter interaction and quantum optical phe-
nomena. There are a lot of theoretical and experimental works
investigating the interaction of few [5–11] or more [12–15]
atoms with one-dimensional (1D) waveguides, where atoms
can couple to, and interact via, continuous bosonic modes in
1D waveguides. Several quantum devices such as quantum
routers [16–18] and quantum circulators [19] were predicted
in waveguide-QED systems. In addition, photon scatterings
in waveguides coupled to other scattering targets such as a
nonlinear cavity [20] and an optomechanical cavity [21,22]
have been studied.

Generally, the size of atoms is much smaller than the
wavelength of the interacting photons, and hence the atom
can be treated as a point when considering the atom-field in-
teractions, as described by the dipole approximation [23]. For
example, the typical atomic size is of 0.1 nanometers, but the
wavelength of the interacting photons is about several hundred
nanometers, thus the field experienced by the atom can be con-
sidered as a constant field. Recently, the experimental studies
of quantum optics has been expanded to the systems with
superconducting artificial atoms [24–26] coupled to surface
acoustic waves [27–29] or microwave waveguides [30,31],
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where the size of an artificial atom could be on the same order
of magnitude as the wavelength of the field and then the dipole
approximation no longer holds. At this point, the giant atom
[32] as an emerging setup, becomes an effective platform to
deal with this problem. In particular, the coupling of giant
atoms with running waves becomes an interesting research
topic, because the photon/phonon-transport effect needs to
be considered in the interaction. Namely, the giant atom will
couple to the photons/phonons during a range of interac-
tion region. To simplify the continuous coupling effect and
better exhibit the physics, some studies have considered the
multiple-point coupling between giant atoms and waveguides
[30,33–35]. The multiple-point coupling leads to a variety of
quantum interference effects that are not found in small atoms,
such as frequency-dependent Lamb shifts and relaxation rates
[34], interatomic interactions without decoherence [30,33,36–
38], and creation of bound states [39–41].

The waveguide-QED systems provide an efficient platform
for controlling the flow of photons, especially realizing nonre-
ciprocal propagation of photons [42–48], which has wide ap-
plications in quantum optical devices. Chiral waveguide-QED
systems break the time-reversal symmetry of the systems and
make the interactions between atoms and waveguide modes
directionally dependent, which can realize quantum infor-
mation processing tasks that cannot be accomplished by the
bidirectional quantum channels [49–56]. Recently, the con-
cept of chiral quantum optics has been introduced into giant
atomic structures [36–38,57–59], suggesting the possibility of
combining the advantages of both paradigms. Moreover, it
is an interesting topic to study the non-Markovian effects in
chiral optical systems involving giant atoms [57]. Actually, if
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the propagating time of photons/phonons between different
coupling points is comparable to the atomic lifetime, such
effects should be taken into account [29,39,57,60–62].

Motivated by these advances, here we study the single-
photon scattering in a chiral-giant-molecule waveguide-QED
system [63], where the giant molecule consists of two in-
teracting giant atoms. The giant molecule couples to two
linear waveguides, forming a four-port device. The exact
analytical scattering amplitudes are obtained by using the
real-space method, which is valid in both the Markovian
and non-Markovian regimes. It is found that the single-
photon scattering behavior is strongly influenced by the phase
shifts between the coupling points, the coupling strength
between two giant atoms, and the coupling strength be-
tween giant atoms and waveguides. In the Markovian regime,
the phase shifts are detuning-independent. We find that
the single-photon scattering is achiral or reciprocal in the
symmetric-coupling case, whereas the single-photon scatter-
ing is chiral or nonreciprocal in the chiral-coupling case. To
realize perfect chirality and nonreciprocity, we further inves-
tigate the single-photon scattering in the ideal chiral-coupling
case and demonstrate the single photon directional router. In
the non-Markovian regime, we show that the scattering spec-
tra exhibit more abundant structures with multiple peaks and
staggered dips, which is induced by the detuning-dependent
phase shift. In addition, we find that the non-Markovian re-
tarded effect can enhance the nonreciprocity of single-photon
scattering in the chiral-coupling case, while this feature does
not appear in small-chiral-molecule systems.

The rest of this paper is organized as follows. In Sec. II,
we introduce the physical model and present the Hamiltonians
and scattering solutions. In Sec. III, we analyze single-photon
scattering in the cases of symmetric coupling and chiral cou-
pling in the Markovian regime. In Sec. IV, we study the
single-photon scattering in the non-Markovian regime. In
Sec. V, we present some discussions on the experimental im-
plementation of this scheme. Finally, we conclude this work
in Sec. VI.

II. PHYSICAL MODEL AND HAMILTONIANS

We consider a chiral-giant-molecule waveguide-QED sys-
tem, in which the giant molecule couples to two waveguides,
M and N, as shown in Fig. 1. Here, the giant molecule consists
of two interacting giant atoms a and b with coupling strength
g, and each giant atom chirally couples to a corresponding
waveguide via two coupling points with a distance (l or d).
The total Hamiltonian of the system consists of three parts
(h̄ = 1)

Ĥ = Ĥs + Ĥw + ĤI , (1)

where

Ĥs = ωaσ̂
+
a σ̂−

a + ωbσ̂
+
b σ̂−

b , (2a)

Ĥw =
∑

p=M,N

iυg

∫
ĉ†

Lp(x)
∂

∂x
ĉLp(x)dx

−
∑

p=M,N

iυg

∫
ĉ†

Rp(x)
∂

∂x
ĉRp(x)dx, (2b)

FIG. 1. Schematic of a chiral-giant-molecule double-waveguide-
QED system, where the giant-molecule consists of two interacting
giant atoms a and b with g being the coupling strength. The two-
level giant atom a (b) chirally couples to waveguide M (N) via
two coupling points located at xM1 = 0 and xM2 = l (xN1 = 0 and
xN2 = d).

ĤI =
∫

dxA(x)[λRσ̂+
a ĉRM (x) + λLσ̂+

a ĉLM (x)]

+
∫

dxB(x)[ηRσ̂+
b ĉRN (x) + ηLσ̂+

b ĉLN (x)]

+ gσ̂−
a σ̂+

b + H.c., (2c)

with A(x) = δ(x) + δ(x − l ) and B(x) = δ(x) + δ(x − d )
[δ(x) being the Dirac delta function]. The term Ĥs is the free
Hamiltonian of the two giant atoms, where ωa (ωb) is the
transition frequency of the two-level giant atom a (b), and
σ̂+

a (σ̂+
b ) = (σ̂−

a )† [(σ̂−
b )†] = |e〉aa〈g| (|e〉bb〈g|) is the raising

operator of the atom a (b) with the ground state |g〉a (|g〉b)
and the excited state |e〉a (|e〉b). The term Ĥw is the free
Hamiltonian of the two waveguides, where ĉ†

Rp(x) = [ĉRp(x)]†

and ĉ†
Lp(x) = [ĉLp(x)]† are the field operators for creating a

right- and left-moving photon in waveguide p at position x
with the group velocity υg. The last term ĤI describes the
interaction between the giant atoms and the waveguides, with
λR and λL (ηR and ηL ) being the coupling strengths between
the giant atom a (b) and the waveguide M (N).

The total excitation-number operator of the giant molecule
and the waveguides is a conserved quantity. For studying the
single-photon scattering, we restrict the system in the single-
excitation subspace, then the eigenstate |ψ〉 of the system can
be expressed as

|ψ〉 =
∑

p=M,N

∫
dx[φRp(x)ĉ†

Rp(x) + φLp(x)ĉ†
Lp(x)]|∅〉

+uaσ̂
+
a |∅〉 + ubσ̂

+
b |∅〉, (3)

where φRp(x) and φLp(x) are the single-photon wave functions
of the right- and left-propagating photon at position x in the
waveguide p. The coefficients ua and ub are the correspond-
ing excitation probability amplitudes of giant atoms a and
b, respectively. The state |∅〉 represents the vacuum state,
which means that there are no photons in the waveguides
and both giant atoms a and b are in their ground states.
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Based on the stationary Schrödinger equation Ĥ |ψ〉 = E |ψ〉,
the probability amplitudes are determined by the following
equations:

EφRM (x) = −iυg
∂

∂x
φRM (x) + uaλRA(x),

EφLM (x) = iυg
∂

∂x
φLM (x) + uaλLA(x),

EφRN (x) = −iυg
∂

∂x
φRN (x) + ubηRB(x),

EφLN (x) = iυg
∂

∂x
φLN (x) + ubηLB(x), (4)

and

�aua = gub + λR[φRM (0) + φRM (l )]

+λL[φLM (0) + φLM (l )],

�bub = gua + ηR[φRN (0) + φRN (d )]

+ηL[φLN (0) + φLN (d )], (5)

where �a = E − ωa (�b = E − ωb) is the frequency detun-
ing between the propagating photon in waveguide M (N) and
the atomic transition |g〉a ↔ |e〉a (|g〉b ↔ |e〉b).

We first consider the case where a single photon with
energy E is injected from the left-hand side of waveguide
M (port 1). Then the wave functions φRM (x), φLM (x), φRN (x),
and φLN (x) can be written as

φRM (x) = eikmx[θ (−x) + tlθ (x)θ (l − x) + tMθ (x − l )],

φLM (x) = e−ikmx[rMθ (−x) + rlθ (x)θ (l − x)],

φRN (x) = eiknx[tdθ (x)θ (d − x) + tNθ (x − d )],

φLN (x) = e−iknx[rNθ (−x) + rdθ (x)θ (d − x)], (6)

with the Heaviside step function θ (x), which is used to dis-
tinguish different intervals. Here eikmxθ (−x) represents that
the single photon is injected from port 1. The function
tl eikmxθ (x)θ (l − x) [td eiknxθ (x)θ (d − x)] is the wave function
of the single right-propagating photon between x = 0 and x =
l (x = d ) in waveguide M (N) with the transmission ampli-
tude tl (td ). The rle−ikmxθ (x)θ (l − x) [rd e−iknxθ (x)θ (d − x)]
is the wave function of the single left-propagating photon
between x = 0 and x = l (x = d ) in waveguide M (N) with
the reflection amplitude rl (rd ). tM and rM (tN and rN ) are the
transmission and reflection amplitudes of the input photon in
waveguide M (N), respectively. The single right-propagating
photon accumulates a phase term eikml (eiknd ) when it passes
through the two coupling points of waveguide M (N) with the
giant atom a (b). Correspondingly, the photon accumulates a
conjugate phase term e−ikml (e−iknd ) during the propagation in
the opposite direction.

To study chiral and nonreciprocal scattering properties of
the system, we then consider that a single photon with en-
ergy E is injected from the right-hand side of waveguide
M (port 2). The wave functions φ̃RM (x), φ̃LM (x), φ̃RN (x), and
φ̃LN (x) in this case can be written as

φ̃RM (x) = eikmx[r̃lθ (x)θ (l − x) + r̃Mθ (x − l )],

φ̃LM (x) = e−ikmx[t̃Mθ (−x) + t̃lθ (x)θ (l − x)

+ θ (x − l )],

φ̃RN (x) = eiknx[r̃dθ (x)θ (d − x) + r̃Nθ (x − d )],

φ̃LN (x) = e−iknx[t̃Nθ (−x) + t̃dθ (x)θ (d − x)], (7)

where e−ikmxθ (x − l ) represents that the single photon is in-
jected from port 2. The t̃M (t̃N ) and r̃M (r̃N ) denote that the
single photon transmitted out or reflected back in waveguide
M (N), respectively, when the single photon is injected from
port 2 of waveguide M.

III. SINGLE-PHOTON SCATTERING
IN THE MARKOVIAN REGIME

In this section, we study the single-photon scattering in the
chiral-giant-molecule two-waveguide system in the Marko-
vian regime. To this end, we first calculate the single-photon
transmission and reflection amplitudes and then obtain the
corresponding transmission and reflection coefficients.

A. The transmission and reflection coefficients

We begin by considering the case where a single photon is
injected from port 1 of waveguide M. Substitution of Eq. (6)
into Eqs. (4) and (5) yields the following relations:

iυg(1 − tl ) + uaλR = 0,

iυg(rl − rM ) + uaλL = 0,

−iυgtd + ubηR = 0,

iυg(rd − rN ) + ubηL = 0,

iυg(tl − tM )eikml + uaλR = 0,

−iυgrle
−ikml + uaλL = 0,

iυg(td − tN )eiknd + ubηR = 0,

−iυgrd e−iknd + ubηL = 0, (8)

and

�ua = gub + 1
2 [λR(1 + tl ) + λL(rM + rl )]

+ 1
2 [λR(tl + tM )eikml + λLrle

−ikml ],

�ub = gua + 1
2 [ηRtd + ηL(rN + rd )]

+ 1
2 [ηR(td + tN )eiknd + ηLrd e−iknd ]. (9)

In Eq. (9), we assumed that the two giant atoms have the
same transition frequency, i.e., � = �a = �b = E − ω0. By
solving Eqs. (8) and (9), the scattering amplitudes can be
obtained as

rN = i(1 + eiϕd )(1 + eiϕl )g
√

�ηL�λR

g2 − (� + Fη )(� + Fλ)
, (10a)

tN = i(1 + e−iϕd )(1 + eiϕl )g
√

�ηR�λR

g2 − (� + Fη )(� + Fλ)
, (10b)

rM = i(1 + eiϕl )2(� + Fη )
√

�λL�λR

g2 − (� + Fη )(� + Fλ)
, (10c)

tM = g2 − [i(1 + eiϕl )(�λL − e−iϕl �λR) + �](Fη + �)

g2 − (� + Fη )(� + Fλ)
,

(10d)
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with

Fλ = i(1 + eiϕl )(�λL + �λR), (11a)

Fη = i(1 + eiϕd )(�ηL + �ηR). (11b)

By defining the scattering coefficients RN = |rN |2, TN =
|tN |2, RM = |rM |2, and TM = |tM |2, we can prove RN + TN +
RM + TM = 1 due to the energy conservation. In Eq. (10),
the variables �λL = λ2

L/υg and �λR = λ2
R/υg (�ηL = η2

L/υg

and �ηR = η2
R/υg) are the decay rates from the excited state

|e〉a(|e〉b) to the ground state |g〉a(|g〉b) induced by the left-
and right-propagating waveguide modes, respectively. The
ϕl = lkm (ϕd = dkn) is the accumulated phase when the sin-
gle photon passes through the two coupling points of giant
atom a (b) with waveguide M (N). According to the relations
� = E − ω0 and E = υgkp, both ϕl and ϕd can be written as
a �-dependent part plus a constant part: ϕl = τl� + θl and
ϕd = τd� + θd , with τl = l/υg (τd = d/υg) being the prop-
agating time of the single photon between the two coupling
points of giant atom a (b). We point out that Eq. (10) is valid
in both the Markovian and non-Markovian regimes. There-
fore we can study the single-photon scattering in these two
regimes, depending on whether the propagation time τl and
τd can be neglected. In this section, we focus on single-photon
scattering in the Markovian regime, in which the propagation
time τl and τd are much less than the life times of giant atoms,
i.e., {τl�λR, τl�λL} � 1 and {τd�ηR, τd�ηL} � 1, and then the
accumulated phase shifts can be approximated as ϕl ≈ θl and
ϕd ≈ θd .

Similarly, for a single photon injected from port 2 of
waveguide M, we can obtain the scattering amplitudes as

r̃N = i(1 + e−iϕd )(1 + e−iϕl )g
√

�ηR�λL

g2 − (� + Fη )(� + Fλ)
, (12a)

t̃N = i(1 + eiϕd )(1 + e−iϕl )g
√

�ηL�λL

g2 − (� + Fη )(� + Fλ)
, (12b)

r̃M = i(1 + e−iϕl )2(� + Fη )
√

�λL�λR

g2 − (� + Fη )(� + Fλ)
, (12c)

t̃M = g2 − [i(1 + eiϕl )(�λR − e−iϕl �λL ) + �](Fη + �)

g2 − (� + Fη )(� + Fλ)
.

(12d)

Here, the scattering coefficients are defined as R̃N = |r̃N |2,
T̃N = |t̃N |2, R̃M = |r̃M |2, and T̃M = |t̃M |2. It can be seen from
Eqs. (10) and (12) that when considering a single-photon
injection from port 1 and port 2, respectively, the transmission
of the photon from port 1 (2) to other three ports are nonre-
ciprocal under the condition �ηR 	= �ηL or (and) �λR 	= �λL,
and that the reflection in waveguide M is always reciprocal.
We would like to point out that the scattering amplitudes
for the single-photon injection from ports 3 and 4 can also
be obtained via the same method. Therefore the scattering
matrix is defined by S = [si j] (for i, j = 1-4) with si j being
the scattering amplitudes from ports j to i. It has been shown
that when the off-diagonal elements si j (for i 	= j) in S satisfy
the relation si j 	= s ji, the single photon transmission between
the two ports (from ports j to i and from ports i to j) is
nonreciprocal [64]. In this work, we only focus on the single-

photon scattering from ports 1 and 2. To better understand the
nonreciprocal scattering, we will discuss in detail the scatter-
ing behaviors of this chiral-giant-molecule waveguide-QED
system in both the symmetric- and chiral-coupling cases.

B. Symmetric-coupling case

In this section, we study single-photon scattering in the
symmetric-coupling case λR = λL = ηR = ηL (�R = �L =
�R = �L = �). By substituting the symmetry conditions into
Eqs. (10) and (12), the scattering amplitudes are reduced to

rN = e−iθd e−iθl r̃N = i(1 + eiθd )(1 + eiθl )g�

g2 − (� + Fd )(� + Fl )
, (13a)

tN = eiθd e−iθl t̃N = i(1 + e−iθd )(1 + eiθl )g�

g2 − (� + Fd )(� + Fl )
, (13b)

rM = e−2iθl r̃M = i(1 + eiθl )2(� + Fd )�

g2 − (� + Fd )(� + Fl )
, (13c)

tM = g2 − (� − 2� sin θl )(� + Fd )

g2 − (� + Fd )(� + Fl )
, (13d)

with

Fl = 2i(1 + eiθl )�, (14a)

Fd = 2i(1 + eiθd )�. (14b)

Equation (13) shows that the scattering coefficients satisfy
the relations TN = T̃N , RN = R̃N , TM = T̃M , and RM = R̃M ,
which indicate that the scattering behavior of the single pho-
ton is symmetric. Hence, in the case, we only focus on the
scattering behavior for a single photon injected from port 1 of
waveguide M.

Figure 2(a) [Fig. 2(b)] shows the dependence of the
transmission coefficient TN (TM) on the scaled detuning �/�

and the scaled phase shift θ/π in the case θl = θd = θ .
Here we find that the period of the two transmission spectra
is 2π . To see more about the effect of the phase shifts on
the single-photon scattering, in Figs. 2(c)–2(f), we show
the four scattering coefficients as a function of �/� for
different phase-shift values in the region of θ ∈ [0, π ],
due to the relations of RN/M (�, θ ) = RN/M (−�, 2π − θ )
and TN/M (�, θ ) = RN/M (−�, 2π − θ ). One can see that all
the scattering spectra are symmetric about �1 = 2� sin θ .
With the increase of θ , two peaks (or valleys) appear in the
scattering spectra, and the position of the peaks (or valleys)
changes accordingly. The depth of the peaks (or valleys)
increases, and the width of the peaks (or valleys) decreases.
The reflection spectrum of RN (green solid curve) coincides
with the transmission spectrum of TN (yellow dashed curve).
This means that the probabilities for transmitting the single
photon to port 3 and port 4 of waveguide N have equal
value, i.e., RN = TN . When θ = 0, TN and RN have only one
peak located at �1 = 2� sin θ . The features of RM (purple
dot-dashed curve) are different, i.e., there are two peaks
at θ = 0, and the peak values of the RM are larger than
these of TN and RN . As θ increases, the peak values of RM

gradually decrease to be comparable to TN and RN . From
Fig. 2(e), we notice that when θ = 0.75π , all scattering
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FIG. 2. Transmission coefficients (a) TN and (b) TM vs the scaled
detuning �/� and the scaled phase shift θ/π . The white dashed
lines are used to label the transmission coefficient when θ = π .
Scattering coefficients RN (green solid curve), TN (yellow dashed
curve), RM (purple dot-dashed curve), and TM (blue solid curve)
vs the scaled detuning �/� in the symmetric-coupling case, with
(c) θ = 0, (d) 0.5π , (e) 0.75π , and (f) 0.9π . The relation RN + TN +
RM + TM = 1 (red dotted curve) is always valid in the above cases.
In all panels, we choose g/� = 3.

coefficients share a common value of almost 0.25 at
� = �1 ± ie−iθ

√
e2iθ [−g2 + 6�2 + 2�2(4 cos θ + cos(2θ ))],

which indicates an equal probability of the single photon
appearing at all four ports.

The white dashed lines in Figs. 2(a) and 2(b) are used
to label the transmission coefficient when θ = π . It can be
seen that the input single photon is completely transmitted
from ports 1 to 2 of waveguide M, which is caused by the
decoupling between the giant molecule and the waveguides.
However, when θ approaches to (2n + 1)π with an integer n
[for example θ = 0.9π in Fig. 2(f)], the four scattering spectra
exhibit Rabi splitting-like line shapes, which are similar to the
vacuum Rabi splitting in cavity QED [5]. Meanwhile, it can
be seen that the peaks of the four spectra have the same loca-
tions. To explain this phenomenon, we choose θ = π + δ with
|δ| � 1 and take the scattering amplitude tN as an example. In
this case, tN can be approximated to

tN ≈ ig�δ2

g2 − (� + 2�δ + i�δ2)2 . (15)

According to Eq. (15), we obtain the positions of the two
splitting peaks of TN , which are located at � = −2�δ ±
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FIG. 3. (a) Scattering coefficient TN vs the scaled detuning �/�

and the scaled phase shift θd/π . The profiles of (a) are shown by the
curves in (c)–(f) at different phases: (c) θd = 0, (d) 0.6π , (e) π , and
(f) 1.2π . (b) Scattering coefficient TM vs the scaled detuning �/�

and the scaled phase shift θd/π . The profiles of (b) are shown by the
curves in (g)–(j) at different phases: (g) θd = 0, (h) 0.6π , (i) π , and
(j) 1.4π . In all panels, g/� = 3 and θl = 0.6π .

√
g2 − �2δ4. Then the distance between the two peaks can be

calculated as dN = |2
√

g2 − �2δ4|. Since we consider the case
of |δ| � 1, the distance can be approximated as dN = 2g. This
means that when the phase shift θ approaches π , the distance
dN only depends on the coupling strength g.

Next, we consider the case of two different phase shifts
θl 	= θd . Based on the relations TN = RN and TN + RN +
TM + RM = 1, in the following discussions we focus on the
two transmission coefficients TN and TM . Figures 3(a) and
3(b) depict the coefficients TN and TM versus the scaled de-
tuning �/� and the scaled phase shift θd/π , with a given
phase θl = 0.6π . Here we find that the transmission spectra
TN and TM are asymmetric, which is different from the case of
θl = θd . From the figures, we know that the line shapes of the
transmission spectra exhibit different features at various θd .
To see these features more clearly, the profiles of Figs. 3(a)
and 3(b) are shown by the curves in Figs. 3(c)–3(j) at different
phases θd ∈ [0, 2π ]. We can see that the line shapes are non-
Lorentzian and the spectra are symmetric when θl = θd . It
is pointed out that θd = 0 corresponds to the case where the
giant molecule is coupled to waveguide N at one point. In this
case, the transmission peaks in Fig. 3(c) and the transmission
valleys in Fig. 3(g) are irregular. As θd changes, both the size
and shape of the transmission peaks and valleys change. For
example, in Fig. 3(f) for θd = 1.2π , the transmission peak on
the left is higher than the peak on the right, while in Fig. 3(j)
for θd = 1.4π , the transmission valley on the right is deeper
than the one on the left. When θd = 0.6π , the transmission
peaks in Fig. 3(d) and the transmission valleys in Fig. 3(h) are
symmetric. In addition, when θd = (2n + 1)π with an integer
n, the transmission peaks in Fig. 3(e) disappear completely,
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FIG. 4. Scattering coefficients (a) TN and (c) TM as functions of
�/� and g/�. The curves in (b) and (d) show the profiles of (a) and
(c) at g/� = 0 (red solid curve), g/� = 1 (blue dashed curve), g/� =
3 (yellow dot-dashed curve), and g/� = 5 (green dotted curve). In all
panels, we choose θl = θd = θ = 0.5π .

which means that the incident photon cannot be transmitted
from waveguides M to N. This is because the giant molecule
decouples from waveguide N. The above discussion indicates
that the phase shifts between the coupling points of the gi-
ant atoms affect the scattering of the incident photon in the
waveguide.

In addition to the effect of the phase factors on the single-
photon scattering, we are also interested in the effect of the
coupling strength between the two giant atoms on the single-
photon scattering. We plot the transmission coefficients TN

and TM as functions of �/� and g/� with θl = θd = θ =
0.5π in Figs. 4(a) and 4(c), respectively. One can see that
the transmission spectra (TN and TM) are symmetric about
�2 = 2�. As g increases, there appear two transmission peaks
(valleys) in TN (TM). To show more details, we plot TN and
TM at different g in Figs. 4(b) and 4(d). When g/� = 0, the
two giant atoms are decoupled, so the injected photon will
have no channel to be transmitted from waveguides M to N.
The scattering coefficients TN = RN = 0 [the red solid curve
in Fig. 4(b)] and TM + RM = 1. When g/� ∈ (0, 2), the dis-
tance between the two peaks is 0. As a result, TN has one
transmission peak locked at �2 = 2� [the blue dashed curve
for g/� = 1 in Fig. 4(b)]. When g/� > 2, two transmission
peaks appear in TN [the yellow dot-dashed curve for g/� = 3
and the green dotted curve for g/� = 5 in Fig. 4(b)]. For the
transmission spectra of TM , we find similar features with that
of TN . However, we point out that although the spectra of TM

and TN are symmetric about �2 = 2�, the locations of the
peaks of TN and the valleys of TM are slightly offset. As g
increases, the number of the valleys in TN increases from 1 to
2, the distance and depth of the valleys increase accordingly.
From the above analysis, we know that the scattering of the
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FIG. 5. Chiralities (a) IN vs the scaled detuning �/� and the
decay ratio �L/�R when θl = θd = θ = 0.5π . Scattering coefficients
(b) TN and T̃N vs the scaled detuning �/� at different values of
�L/�R. IM vs the scaled detuning �/� and the decay ratio �L/�R

when (c) θ = 0.5π and (e) 0.1π . Scattering coefficients TM and
T̃M vs the scaled detuning �/� at different values of �L/�R when
(d) θ = 0.5π and (f) 0.1π . In all panels, we choose g/� = 3.

single photon can be adjusted by tuning the coupling strength
between the two giant atoms.

C. Chiral-coupling case

We now turn to the chiral-coupling case, in which the
coupling strengths of the giant atoms with the left- and
right-propagating waveguide modes are different, which leads
to asymmetric scattering, including chiral and nonreciprocal
scattering. Below, we first consider the chiral single-photon
scattering [59]. To quantitatively describe the chirality in this
system, we define the contrast ratio of the scattering co-
efficients for two opposite directions (port 1 → port 4 and
port 2 → port 3) as

IN = TN − T̃N

TN + T̃N
= 1 − 2�ηL�λL

�ηL�λL + �ηR�λR
, (16)

where we used Eqs. (10b) and (12b). It can be seen from
Eq. (16) that this chiral transmission behavior completely
depends on the coupling strength between the giant atoms
and the waveguides. Considering a special case, we set �ηR =
�λR = �R and �ηL = �λL = �L. Figure 5(a) shows the con-
trast ratio IN as a decreasing function of the decay ratio �L/�R.
According to Eq. (16), the contrast ratio IN = 0 only holds
for the symmetric-coupling case, i.e., �L/�R = 1, which has
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TABLE I. Four ideal chiral-coupling cases in the giant-molecular
waveguide-QED system.

\Coefficients port 1 incident port 2 incident
Cases RN TN RM TM R̃N T̃N R̃M T̃M

�ηR = �λR = �

�ηL = �λL = 0
0 C1 0 C2 0 0 0 1

�ηR = �λR = 0
�ηL = �λL = �

0 0 0 1 0 C1 0 C2

�ηR = �λL = �

�ηL = �λR = 0
0 0 0 1 C1 0 0 C2

�ηR = �λL = 0
�ηL = �λR = �

C1 0 0 C2 0 0 0 1

been discussed in Sec. III B. The cases IN = 1 and IN = −1,
corresponding to �L/�R = 0 and �L/�R → ∞, imply that the
chiral scattering reaches its strongest.

Next we consider the case of the nonreciprocal single-
photon scattering. Similarly, we also introduce contrast ratio
IM of the scattering coefficients for two opposite directions
(port 1 → port 2 and port 2 → port 1) to quantitatively de-
scribe the nonreciprocity in this system. The expression of IM

is given by

IM = TM − T̃M

TM + T̃M
. (17)

In Fig. 5(c), we plot the contrast ratio IM as a function of the
scaled detuning �/� and the decay ratio �L/�R. In order to
illustrate the effects of the chiral-coupling conditions on chiral
and asymmetric scattering more clearly, in Figs. 5(b) and 5(d),
we plot the profiles of TN , T̃N , TM , and T̃M in the ideal chiral-
coupling case (�L/�R = 0) and the nonideal chiral-coupling
case (�L/�R = 2), respectively. We can see that, in the ideal
chiral-coupling case, when a single photon is injected from
port 1, the scattering coefficients TN and TM exhibit double-
peak and double-valley line shapes. When a single photon
is injected from port 2, the photon is expected to appear at
port 1 with an almost 100% probability since the giant atom is
decoupled from the left-propagating waveguide mode. In the
nonideal chiral-coupling case, the single photon can still be
asymmetrically scattered, yet the scattering contrast ratio and
the asymmetrical effect are degraded in this case.

Contrast to the chiral scattering described by IN , the nonre-
ciprocal scattering that described by IM can also be modulated
by the phase shift. As shown in Figs. 5(c) and 5(e), when
the phase shift is changed, the coupling conditions required
to achieve a perfect nonreciprocal scattering will change. It
can be seen that all the IM , TM , and T̃M are modulated by
the phase shift. Therefore, for the nonreciprocal single-photon
scattering that described by IM , we can tune both the decay
ratio �L/�R and the phase shift θ to obtain the most efficient
realization of the quantum device. However, for the contrast
ratio IN , it can only be adjusted by changing the decay ratio
�L/�R.

In view of the above discussions, we next focus on the
ideal chirality case. To clearly see the influence of chiral
coupling on single-photon scattering, we summarize in Table I
the transmission and reflection coefficients of a single photon
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FIG. 6. Scattering coefficients RN (red solid curve), TN (yellow
dot-dashed curve), and TM (blue dashed curve) vs the scaled detuning
�/� for (a) �ηR = �λR = 0, �ηL = �λL = �; (b) �ηR = �λR = �,
�ηL = �λL = 0; and (c) �ηR = �λL = 0, �ηL = �λR = �. In all pan-
els, we choose θl = θd = θ = 0.5π and g/� = 3.

injected from ports 1 and port 2 in four specific ideal chiral-
coupling cases. In Table I, we introduce

C1 =
∣∣∣∣ i(1 + e±iθd )(1 + e±iθl )g�

g2 − [� + i(1 + eiθd )�][� + i(1 + eiθl )�]

∣∣∣∣
2

,

(18a)

C2 =
∣∣∣∣g2 − [� + i(1 + eiθd )�][� − i(1 + e−iθl )�]

g2 − [� + i(1 + eiθd )�][� + i(1 + eiθl )�]

∣∣∣∣
2

.

(18b)

We find that in the four chiral-coupling cases summa-
rized in Table I, the giant molecule can exhibit chiral and
nonreciprocal transmissions. It can be proved that C1 and
C2 satisfy the relation C1 + C2 = 1, and hence we can make
C1 = 1, C2 = 0 or C1 = 0, C2 = 1 (see the yellow dot-dashed
curve and the red solid curve in Fig. 6) by selecting some
special parameters. This means that, perfect chiral and nonre-
ciprocal scattering can be achieved in the ideal chiral-coupling
case. When a single photon is injected from a certain port
of waveguide M, the probability for detecting the photon at
a specified port (the other three ports) can reach 100%, by
adjusting the coupling condition of the system. This issue has
received a lot of attention, and we will focus on it in the next
subsection.

D. Targeted routing in the Markovian regime

Based on several ideal chiral-coupling cases summarized
in Table I, in this section, we demonstrate how to achieve
directional routing of a single photon in this system. That is,
when a photon is injected from one port, we can route it to
other three ports on demand.

We plot in Fig. 6 the profiles of TM (the blue dashed
curve), TN (the yellow dot-dashed curve), and RN (the red
solid curve) versus the scaled detuning �/� for different
ideal chiral-coupling cases. As shown in Fig. 6(a), when
�ηR = �λR = 0 and �ηL = �λL = �, we have TM = 1, TN =
0, and RN = 0, which means that the single photon can
only be routed to port 2 of waveguide M. As shown in
Fig. 6(b), when �ηR = �λR = � and �ηL = �λL = 0, the scat-
tering coefficient TN has two peaks located at � = � sin θ ±√

g2 − 3�2/2 − 2�2 cos θ − �2 cos(2θ )/2. In this case, we
have TM = 0, TN = 1, and RN = 0. Namely, the single photon
can only be routed to port 4 of waveguide N. As shown in

063703-7



JUAN ZHOU, XIAN-LI YIN, AND JIE-QIAO LIAO PHYSICAL REVIEW A 107, 063703 (2023)

Fig. 6(c), for �ηR = �λL = 0 and �ηL = �λR = �, we know
that the scattering coefficient RN with two peaks located
at � = � sin θ ±

√
g2 − 3�2/2 − 2�2 cos θ − �2 cos(2θ )/2,

where TM = 0, TN = 0, and RN = 1. Hence the photon can be
routed to port 3 of waveguide N totally. The above discussions
demonstrate that it is possible to realize directional single-
photon routing. Our system is a good platform for realizing
a single-photon router.

IV. SINGLE PHOTON SCATTERING
IN THE NON-MARKOVIAN REGIME

In the previous discussions, we have analyzed the chi-
ral and nonreciprocal single-photon scattering by neglecting
the propagating time of photons in the waveguides. For
the giant molecule with multiple coupling points, however,
the investigation of the influence of the non-Markovian re-
tarded effect on the scattering behaviors is also interesting.
When the propagating time τl (τd ) is comparable to or larger
than the atomic lifetime, i.e., {τl�λR, τl�λL, τd�ηR, τd�ηL} ≈
1 or {τl�λR, τl�λL, τd�ηR, τd�ηL} > 1, the non-Markovian re-
tarded effect induced by τl (τd ) cannot be neglected. In this
case, the giant atoms enter the non-Markovian regime and
then the phases ϕl = τl� + θl and ϕd = τd� + θd are both
sensitive to the detuning �. Hence we can expect the transmis-
sion spectra to be more complex. In realistic systems, when a
transmon qubit couples with surface acoustic waves or when
the distance between the coupling points is large enough, the
non-Markovian effect should be taken into account [29,62].

A. Symmetric- and Chiral-coupling cases

We first focus on the symmetric-coupling case and ϕl =
ϕd = ϕ = τ� + θ . Figure 7(a) [Fig. 7(b)] shows the transmis-
sion coefficient TN (TM) as a function of the scaled detuning
�/� at phases θ = 80π , θ = 80.5π , and θ = 81π . When
θ = nπ with n an integer, both the transmission spectra TN and
TM are symmetric to � = 0 due to the relation TN/M (�, θ ) =
TN/M (−�, θ ). When θ 	= nπ , the transmission spectra be-
come asymmetric. In both cases, the transmission coefficients
are characterized by the complicated line shapes with stag-
gered peaks (valleys) and multiple dips. In particular, when
the phase shift satisfies ϕ = τ� + θ = (2m + 1)π with m an
integer, we can see that many transmission dips with TN = 0
appear. This is because at ϕ = (2m + 1)π , the giant atoms
are decoupled from the waveguides, and hence the incident
photon cannot be transmitted to waveguide N. The moving
dips in these three cases arise from the fact that � satisfies the
relation ϕ = τ� + θ = (2m + 1)π and the value of � varies
with the change of ϕ. These characteristics are quite different
from those in the Markovian regime.

We point out that, there is no determined boundary between
the Markovian and non-Markovian regimes. The behavior of
the single-photon scattering changes continuously when the
system transits from the Markovian regime to non-Markovian
regime. To better see this transition process, we plot the trans-
mission coefficient TN (TM) as a function of �/� and τ�

in Fig. 7(c) [Fig. 7(d)] when the coupling is symmetric. It
shows a significant difference between the two regimes. In the
Markovian regime, the single photon is completely routed to

FIG. 7. Transmission coefficients (a) TN and (b) TM as functions
of the scaled detuning �/� at θ = 80π (the red dotted curve),
θ = 80.5π (the blue solid curve), and θ = 81π (the yellow dot-
dashed curve). The other parameter in panels (a) and (b) is τ� = 1.
Transmission coefficients (c) TN and (d) TM as functions of �/� and
τ� with θ = 81π . In all panels, we consider the symmetric-coupling
case, i.e., �L = �R = �. In all panels, we choose g/� = 2.

port 2 when θ = nπ . However, as the propagating time τ�

increases from zero to a larger value, the system enters the
non-Markovian regime. It can be seen that the spectra exhibit
continuous changing process. In particular, the spectra are
characterized by a more abundant and multiple-peak structure
due to the stronger non-Markovian retarded effect. Comparing
the profiles of TN (TM) at τ� = 0.1, 1, and 2 [see the while
dashed lines in Figs. 7(c) and 7(d)], the spectra are more
sensitive to the change of the scaled detuning �.

Below, we study the effect of the coupling strength be-
tween the two giant atoms on the single-photon scattering
during the transition of the system from the Markovian to
non-Markovian regimes. In Fig. 8, we plot the transmission
coefficients TN and TM as functions of the scaled detuning
�/� and the scaled propagating time τ� when g/� = 1,
3, and 5, respectively. It can be seen that the locations of
the peaks and the width of the scattering spectra become
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FIG. 8. Scattering coefficients TN and TM vs the scaled detun-
ing �/� and the scaled propagating time τ� at different coupling
strengths. The left and right columns represent TN and TM , respec-
tively. The first, second, and third rows correspond to g/� = 1,
3, and 5, respectively. In all panels, we choose �L = �R = � and
θl = θd = θ = 81π .

different. As g/� increases, the parameter range of im-
plementing quantum routing of the single photon from
waveguides M to N is widened [see Figs. 8(a), 8(c), and 8(e)].
For example, we can take a small value of propagating time
τ� = 0.5 to realize the quantum routing in a wide range of
�/�, as shown by the white dashed lines in Figs. 8(a), 8(c),
and 8(e). For the scattering coefficient TM , however, the trans-
mission of the single photon from ports 1 to 2 in waveguide M
is suppressed in a wide range of �/� with the increase of g/�
[see Figs. 8(b), 8(d), and 8(f)]. The above analyses suggest
that the inner coupling strength of the two giant atoms also
plays an important role in the single-photon scattering when
the system transits from the Markovian to non-Makrovian
regimes.

We now turn to the chiral and nonreciprocal scattering in
both the Markovian and non-Markovian regimes. In Fig. 9(a)
[Fig. 9(b)], we plot the transmission contrast ratio IN (IM) as a
function of the scaled detuning �/�. For a given decay ratio
�L/�R = 0.5, the value of IN is independent of the propaga-
tion time. This feature can be seen from Eq. (16), which is
valid in both two regimes [see the red solid, green dashed, and
yellow dotted curves in Fig. 9(a)]. For the contrast ratio IM ,
as shown the red solid curve in Fig. 9(b), the transmission
behavior is always reciprocal in the Markovian limit, even
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FIG. 9. Transmission contrast ratios (a) IN and (b) IM as func-
tions of �/� with different values of τ�R and �L/�R in the cases
of τ�R = 0 and �L/�R = 0.5 (the red solid curve), τ�R = 1 and
�L/�R = 0.5 (the green dashed curve), τ�R = 2 and �L/�R = 0.5
(the yellow dotted curve), and τ�R = 2 and �L/�R = 0 (the blue
dot-dashed curve). In all panels, we assume θl = θd = θ = 81π and
g/� = 2.

when the giant molecule is chirally coupled to the waveguides.
However, in the non-Markovian limit, the IM is characterized
by more complex line shapes. As the propagating time τ�

increases from zero to a larger value, the maximal value
of |IM | can be gradually enhanced until it approaches one.
Therefore the non-Markovian retarded effect induced by τ�

provides us an extra choice to improve the nonreciprocity
when the system is in the non-Markovian regime [see the
green dashed and yellow dotted curves in Fig. 9(b)]. Note that
the chiral/nonreciprocal scattering is not perfect at �L/�R =
0.5 (|IN/M < 1|). To realize a perfect chiral/nonreciprocal
scattering in the non-Markovian regimes, we also need to
consider the ideal chiral-coupling case, as shown the blue
dot-dashed curve in Fig. 9

B. Targeted routing in the non-Markovian regime

In the following, we show that the single-photon di-
rectional routing can also be realized when the system is
in the non-Markovian regime. Figure 10 shows the scat-
tering coefficients from port 1 to other three ports versus
the scaled detuning �/�. Here, we choose θl = θd = θ =
80.5π and τ� = 1. It can be seen that, by adjusting the
coupling strengths of the giant molecule to the left- and
right-propagating fields in the waveguides, the single photon
injected from port 1 can be sent to ports 2, 3, and 4 on
demand, respectively. For the parameters �ηR = �λR = 0 and
�ηL = �λL = �, as shown in Fig. 10(a), the scattering spectra
have the same line shapes with those in the Markovian regime
[see in Fig. 6(a)]. However, when we take �ηR = �λR = �

and �ηL = �λL = 0 [�ηR = �λL = 0 and �ηL = �λR = �], as
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FIG. 10. Scattering coefficients RN (red solid curve), TN (yellow
dot-dashed curve), and TM (blue dashed curve) vs the scaled detuning
�/� for (a) �ηR = �λR = 0, �ηL = �λL = �; (b) �ηR = �λR = �,
�ηL = �λL = 0; and (c) �ηR = �λL = 0, �ηL = �λR = �. In all pan-
els, we choose θl = θd = θ = 80.5π , g/� = 3, and τ� = 1.

shown in Fig. 10(b) [Fig. 10(c)], the scattering spectra are
asymmetric to �/� = 0 and exhibit more complicated line
shapes. In particular, the single photon can not only be sent to
port 2 but also to port 3 (4), as shown by the blue dashed curve
in Fig. 10(b) [Fig. 10(c)], which are different from the cases of
the Markovian limit. Since this phenomenon arises from the
non-Markovian retarded effect, we would like to refer to it as
non-Markovian-induced directional single photon routing.

V. DISCUSSIONS ON THE EXPERIMENTAL
IMPLEMENTATION OF THIS SCHEME

In this section, we present some discussions on the possi-
ble experimental implementation of the chiral-giant-molecule
waveguide-QED system. The key element for the experi-
mental implementation of this device is to realize the chiral
coupling between the giant atoms with the waveguides at
each coupling point and the inner coupling between the two
giant atoms. In the case of small atoms chirally coupled to
a 1D waveguide, the chiral system-reservoir interaction has
been realized in various experimental platforms by using
circularly polarized light modes, such as a gold nanopar-
ticle [50] or cesium atoms [49] interacting with a tapered
nanofiber, and semiconducting quantum dots coupled to pho-
tonic crystal waveguides [51]. In addition, it can be realized in
other platforms, such as phononic waveguides made of Bose-
Einstein quasicondensates [13,65,66], magnonic waveguides
consisting of spin chains [67,68] or yttrium iron garnet [69].
However, the implementation of the chiral coupling between
the giant atom and the waveguide at multiple coupling points
is not a trivial task [32]. Though some theoretical works have
studied the chiral coupling of the giant atoms between the
waveguide modes [37,38,58], to our best knowledge, there is
no experimental demonstration of the chiral coupling in our
proposal model. Recently, some proposals for the possible
realization of the chiral couplings have been proposed, for
example, utilizing superconducting qubits coupled to a trans-
mission line with circulators inserted to provide the chirality
[3]. Nevertheless, the detailed investigation concerning the ex-
perimental implementation of the chiral coupling between the
giant atoms and waveguides is not sufficient, and it deserves
to be studied in specific works.

To realize the coupling between the giant molecule with
the waveguide at four points, we can use two Xmon qubits

with inner coupling strength to couple to two individual me-
andering transmission lines [30]. Note that the inner coupling
between the two qubits can be implemented by coupling them
to a tunable inductor, with accessible coupling strength up to
tens of MHz [70]. Each qubit interacts with its transmission
line at two well separated locations. The distance l (d) be-
tween the two coupling points of the qubits a (b) can be set
precisely by changing the transmission line length [34]. In
the Markovian regime, photons in the waveguide M (N) will
experience a phase shift ϕl ≈ θl = ω0l/υg = 2π l/λ(ω) [ϕd ≈
θd = ω0d/υg = 2πd/λ(ω)], which depends on the distance
between the coupling points and the wavelength λ(ω) for
modes at frequency ω = ω0 of the two Xmon qubits. Experi-
mentally, the phase shift ϕl (ϕd ) can be adjusted by changing
the frequencies of the qubits, and thereby the wavelength
λ(ω) = 2πυg/ω. In addition, we can obtain the corresponding
relation between the typical distance and wavelength when
the phase shift is fixed. For example, if we take θl = θd =
0.5π , the distances between the coupling points can be ob-
tained as l = d = λ(ω)/4. In the non-Markovian regime, the
phase shift includes a �-dependent term and then becomes
ϕl = τl� + θl (ϕd = τd� + θd ), with the propagating time of
the photons in the waveguide being τl = l/υg (τd = d/υg).
To work in the non-Markovian regime, we can increase
the distances between two coupling points to meet τl ≈ 1
(τd ≈ 1) [30], and hence the single-photon scattering in the
non-Markovian regime can be realized.

VI. CONCLUSION

In conclusion, we have studied the single-photon scattering
in a chiral-giant-molecule waveguide-QED system under the
Markovian and non-Markovian limits, in which the phase
shifts are detuning-independent and detuning-dependent, re-
spectively. We have found that it is possible to control the
single-photon scattering behavior by tuning the phase shifts
between the coupling points, the coupling strength between
the two giant atoms, and the coupling strength between
the giant molecule and the waveguides. In the Markovian
regime, we have studied the single-photon scattering in both
the symmetric-coupling and chiral-coupling cases. In the
symmetric-coupling case, the single-photon scattering is achi-
ral and reciprocal, whereas, in the chiral-coupling case, chiral
and nonreciprocal single-photon scattering is achieved. To
realize perfect chirality and nonreciprocity, we have further
investigated the single-photon scattering in the ideal chiral-
coupling case, where the single-photon directional router is
realized. In the non-Markovian regime, the scattering spec-
tra with multiple peaks and staggered dips become more
abundant. These results are expected to be applied in quan-
tum information processing and quantum device design at
the single-photon level. This work will pave the way to the
study of single-photon quantum devices in giant-molecular
waveguide-QED systems. In the future research, it is an in-
teresting topic to study the chiral coupling of the giant atom
or molecule with the topological waveguides, which could
be regarded as a good platform to analyze the topological
properties of the fields coupled to the giant atoms, such as the
relation between the positions of the scattering matrix poles
with the nontrivial Chern numbers.
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