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Numerical framework for modeling quantum electromagnetic systems involving
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The modified Langevin noise formalism [A. Drezet, Phys. Rev. A 95, 023831 (2017); O. D. Stefano, S.
Savasta, and R. Girlanda, J. Mod. Opt. 48, 67 (2001)] has been proposed for the correct characterization of
quantum electromagnetic fields in the presence of finite-size lossy dielectric objects in free space. The main
modification to the original one [T. Gruner and D.-G. Welsch, Phys. Rev. A 53, 1818 (1996); H. T. Dung, L.
Knöll, and D.-G. Welsch, Phys. Rev. A 57, 3931 (1998)] (also known as the Green’s function approach for a
bulk inhomogeneous lossy dielectric medium) was to introduce another fluctuating source in reaction to the
radiation loss. Consequently, the resulting electric field operator is now determined by (i) boundary-assisted and
(ii) medium-assisted fields on an equal footing, which originate from radiation and medium losses, respectively.
However, due to the lengthy mathematical manipulation and complicated concepts, the validity of the modified
Langevin noise formalism has not been clearly confirmed yet. In this work, we propose and develop a numerical
framework for the modified Langevin noise formalism by exploiting computational electromagnetic methods.
Specifically, we present utilization of the finite-element method to numerically solve plane-wave-scattering and
point-source-radiation problems whose solutions are boundary-assisted and medium-assisted fields, respectively.
We numerically validated the modified Langevin noise model calculating the Purcell factor of a two-level atom
inside or outside a lossy dielectric slab. The proposed numerical framework is particularly useful for analyzing
the dynamics of multilevel atoms near plasmonic structures or metasurfaces in the open space.
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I. INTRODUCTION

Handling quantum electromagnetic systems involving a
lossy dielectric object in free space (or with open boundary
conditions) is challenging. This is because of the non-
Hermiticity caused by radiation and medium losses. As a re-
sult, the most fundamental properties in quantum physics, for
example, equal-time commutator relations for conjugate vari-
ables [1], may not be preserved. Furthermore, one cannot find
eigenmodes with real eigenfrequencies and nice orthonormal
properties since a generalized Hermitian eigenvalue problem
cannot be derived from such non-Hermitian electromagnetic
(EM) systems. Consequently, it is not straightforward to apply
the classical phenomenological EM theory on the standard
second quantization procedure unlike lossless cases, e.g., in-
homogeneous or anisotropic media [2–4].

To resolve this critical issue, the microscopic model based
on the rigorous Hamiltonian description has been first shown
by Huttner and Barnett [5] in an attempt to model a lossy
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bulk dielectric medium, and a number of subsequent variants
[6,7] have been also proposed for the sake of extending the
prototype work into more generic cases including medium
inhomogeneity and magnetic polarization effects. The core
idea behind the microscopic model is to introduce the infi-
nite number of harmonic oscillators, called bath oscillators,
at every single point in the medium region and accounts for
couplings between vacuum EM fields and bath oscillators.
Such couplings could explain mechanisms of the EM energy
loss as well as predict the existence of Langevin noise current
sources, i.e., fluctuations to the medium loss, while the whole
system still remains to be Hermitian. Thus, the microscopic
model is quantizable in principle; for example, most previ-
ous works diagonalized the total Hamiltonian, composed of
dynamical variables associated with vacuum EM fields and
bath oscillators, utilizing the Fano diagonalization method.
Notably, two recent works [8,9] have shown exact diago-
nalization methods in the momentum and position spaces,
respectively, which are more suitable for numerical methods;
hence, large-scale numerical simulations could be performed.
However, the numerical diagonalization requires tremendous
computational costs, especially for the real bath which has
infinite degrees of freedom (DOFs) over both space and
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frequency. To deal with the infinite DOFs of bath oscillators,
one may take the coarse-graining strategy [10]. But the re-
sulting computation expenses are still costly to avoid or delay
the Poincaré recurrence; otherwise, incorrect energy feedback
from bath systems may alter the actual physics of the EM
energy loss and fluctuation.

As a great alternative to the microscopic model, a new
formalism, called the (previous) Langevin noise model, was
proposed by Welsch and coworkers [11,12] based on the
fluctuation-dissipation theorem (FDT), being computationally
much more efficient since it only keeps track of the EM
dynamics by lumping out the dynamics of infinite bath os-
cillators. According to the original Langevin noise formalism,
a monochromatic electric field operator is entirely determined
by Langevin noise current source operators, taking the form
of

Ê(+)(r, ω) = iωμ0

˚
Vm

dr′G(r, r′, ω) · Ĵ(+)
N (r′, ω), (1)

where Vm is a volume of lossy dielectric objects described
by ε(r, ω), G(r, r′, ω) is a dyadic Green’s function in the
presence of the lossy dielectric objects, and Ĵ(+)

N (r′, ω) is a
Langevin noise current operator given by

Ĵ(+)
N (r′, ω) = ω

μ0c2

√
h̄

πε0
χI (r′, ω)f̂ (r′, ω) (2)

for r′ ∈ Vm, where χI (r′, ω) denotes the imaginary part of the
electric susceptibility of the lossy dielectric medium. In other
words, electric fields are supported by fluctuations which
are in reaction to medium losses; thus, we can call these
“medium-assisted” fields. Vectorial bosonic ladder operators
f̂ (r′, ω) and f̂†(r′, ω) in (2) diagonalize the Hamiltonian oper-
ator by

Ĥ =
ˆ ∞

0
dω

˚
Vm

dr′h̄ωf̂†(r′, ω) · f̂ (r′, ω). (3)

Note that in the above we excluded the zero-point energy for
simplicity, and the same will apply to what follows throughout
the paper.

However, it was argued by two works by Drezet [13] and
Stefano [14] that the original Langevin noise model may be
an incomplete theory since it omitted the influence of fluctua-
tions reacting to radiation losses, which can be thought of as
thermal radiations coming from the infinite boundary S∞. This
missing contribution in the original Langevin noise formalism
obviously gets more important when it comes to finite-size
lossy dielectric objects, which represent typical layouts of
optical components. The modified Langevin noise formalism
added the missing term (we shall call this “boundary-assisted”
fields) into the original Langevin noise model; this will be
discussed in detail later. As such, the modified Langevin noise
formalism can fully agree with the FDT’s argument that the
EM dynamics is now determined by two different fluctuations
in reaction to radiation and medium losses. Especially, the
modified Langevin noise formalism would be useful in prac-
tical quantum optics problems, e.g., studying and engineering
quantum plasmonic devices or metasurface-based quantum
information science technologies. To do this, one should be
able to evaluate both boundary-assisted and medium-assisted

fields in the presence of arbitrary lossy dielectric objects in-
cluding geometric complexity and medium inhomogeneity.
However, their closed-form solutions are limited to very sim-
ple cases and unavailable for most cases.

Motivated by this, we have been dedicated over the
past years to building numerical frameworks for modeling
quantum optics and circuit quantum electrodynamics (QED)
phenomena based on classical computational electromagnet-
ics (CEM) methods by reinterpreting and refining the existing
math-physics models using various CEM methods [9,15–20].
We believe that our efforts of transplanting CEM methods
into quantum physics will become a stepping stone to further
advance the research paradigm in the existing quantum tech-
nology, which mostly relies on theory and experiments, and
accelerate the realization of quantum science and technology.

In this article, we present a numerical framework for quan-
titative analyses on quantum EM systems including lossy
dielectric objects with the open boundary by incorporating
computational electromagnetic methods into the modified
Langevin noise formalism. To our knowledge, however, no
previous works exist yet that incorporate numerical methods
into the modified Langevin noise formalism and perform fully
quantum-theoretic numerical simulations. We shall discuss
the modified Langevin noise formalism in detail and how the
electric field operator can be determined by both boundary-
assisted (BA) and medium-assisted (MA) fields on an equal
footing, which result from fluctuations in reaction to radia-
tion and medium losses. Numerical solutions to BA and MA
fields are found based on the finite-element method that solves
standard plane-wave-scattering problems and point-source-
radiation problems, respectively. Especially, we connect the
modified Langevin noise formalism to the spectral function
[21], deriving the thermal equilibrium condition from the use
of the correct dyadic-dyadic Green’s theorem [22] to show
that BA and MA fields can make open and lossy EM sys-
tems quasi-Hermitian or in the thermal equilibrium. Finally,
we shall consider a numerical example of Purcell factors
of a two-level system located inside or outside a lossy di-
electric slab. We compare the calculation results obtained
by various methods, such as the numerical diagonalization
method [8,9] for the microscopic model [7,23], spectral
function approach, and modified and original Langevin
noise models.

The contributions of the present work are twofold:
(i) We build a numerical framework for analyzing quan-

tum optics problems involving the radiation and medium
losses by incorporating the use of computational electromag-
netic methods into the modified Langevin noise formalism.
Especially, we provide specific numerical recipes in solving
plane-wave-scattering and point-source-radiation problems.
The former and latter are of boundary-assisted and medium-
assisted fields, respectively.

(ii) With the use of the developed numerical framework,
we prove that the use of modified Langevin noise formalism
can retrieve the conventional expression of the spontaneous
emission rate of a two-level atom inside or outside a lossy
dielectric object(s), viz., the imaginary part of the Green’s
function.

This implies that when analyzing interactions between
atoms and EM fields around plasmonic nanoparticles or
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FIG. 1. Illustration of monochromatic boundary-assisted and medium-assisted (BA/MA) fields. Each degenerate BA field is a total field
composed of an incident plane wave with (k ∈ Sk, λ ∈ {1, 2}) and resulting scattered fields by a lossy dielectric object. On the other hand, each
degenerate MA field is a radiating field by a point current source (r′ ∈ Vm, ξ ∈ {x, y, z}) embedded in the lossy dielectric object.

structures, one has to consider the effects of BA fields as
well as MA fields. Note that there are several previous works
that appreciated and recognized the importance of BA effects
in analyzing, for example, input-output relations for a lossy
beam splitter [24], an optical cavity made of lossy dielectric
slabs [25], and quantum antennas and scattering of nonclassi-
cal lights based on superoperator equations [26].

The paper is organized as follows. Section II presents the
essence and main features of the modified Langevin noise for-
malism. Specifically, it is shown that BA and MA fields, which
are the main ingredients of the theory, can be found from
plane-wave-scattering and point-source-radiation problems.
Section III presents the detailed numerical recipe to solve the
plane-wave-scattering and point-source-radiation problems in
modeling BA and MA fields. In particular, we utilize the
finite-element method in the frequency domain with the use
of perfectly matched layers to model the radiation loss prop-
erly. In Sec. IV, the modified Langevin noise formalism is
connected to the spectral function approach by considering
the field correlation. With the proper use of the dyadic-dyadic
Green’s theorem [22], we hypothesize the thermal equilib-
rium identity which is to be examined in Sec. V. In Sec. V,
one-dimensional simulation results of Purcell factors of a
two-level atom inside or outside a lossy dielectric slab are
discussed. Calculations based on Fermi’s golden rule were
performed by using four different methods: (i) the spectral
function approach, i.e., the imaginary part of the Green’s
function, (ii) the second quantization for the microscopic
model via numerical mode decomposition, (iii) the modified
Langevin noise formalism, and (iv) the original Langevin
noise formalism. A summary and conclusions are given in
Sec. VI. The procedure to extract numerical normal modes
from the microscopic model is expounded in Appendix A. The
operator-form dyadic-dyadic Green’s theorem is discussed in
detail in Appendix B.

II. MODIFIED LANGEVIN NOISE FORMALISM:
BOUNDARY- AND MEDIUM-ASSISTED FIELDS

Consider a lossy dielectric (nonmagnetic) object in the
vacuum background, as illustrated in Fig. 1. The effective
permittivity of the lossy dielectric object is given by

ε(r, ω) = ε0εr (r, ω) = ε0[1 + χ (r, ω)]

=
{
ε0[1 + χR(r, ω) + iχI (r, ω)], for r ∈ Vm,

ε0, elsewhere,
(4)

where Vm is the volume of the lossy dielectric object, and
εr (r, ω) is the relative dielectric constant. The lossy dielectric
object is assumed to be causal while satisfying the Kramers-
Kronig relation.

According to the modified Langevin noise formalism
[13,14], the complete solution to a monochromatic electric
field operator should include boundary-assisted (BA) and
medium-assisted (MA) fields, its positive-frequency part tak-
ing the form of

Ê(+)(r, ω) = Ê(+)
(B) (r, ω) + Ê(+)

(M)(r, ω), (5)

where

Ê(+)
(B) (r, ω) = i

(
√

2π )3

‹
Sk

dk
∑

λ∈{1,2}
�(tot)(r, k, λ, ω)

×
√

h̄ω

2
â(k, λ, ω), (6)

Ê(+)
(M)(r, ω) = iω2

c2

˚
Vm

dr′ ∑
ξ∈{x,y,z}

(G(r, r′, ω) · ξ̂ )

×
√

h̄χI (r′, ω)

πε0
f̂ (r′, ξ , ω). (7)
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In the above, k is a wave vector, k = |k| = ω/c is the wave
number, Sk is the surface of the radiation sphere in k space,
and λ denotes the polarization degeneracy index for an in-
cident plane wave coming from the infinity S∞. Note that
G(r, r′, ω) is the dyadic Green’s function in the presence of
the lossy dielectric object from which[

∇ × ∇ × −ω2

c2
εr (r, ω)

]
G(r, r′, ω) = Iδ(r − r′) (8)

for r′ ∈ Vm. It should be pointed out that (7) is the same as
(1) while explicitly writing the Langevin noise current source
operator in (2) in terms of f̂ (r′, ξ , ω) = ξ̂ · f̂ (r′, ω) for ξ ∈
{x, y, z}.

One can observe two important properties from the modi-
fied Langevin noise formalism with BA and MA fields in (5):
(i) a monochromatic electric field operator is expanded by the
infinite number of degenerate BA and MA fields originating
from two fluctuation sources due to radiation and medium
losses, respectively, and (ii) the degeneracy indices of BA and
MA fields are descended from original degrees of freedom
(DOFs) for (vacuum) photonic systems and reservoir oscil-
lator fields; i.e., BA fields take the degeneracy in terms of
(k ∈ Sk, λ) the same as that of plane waves in the vacuum,
and MA fields form the degeneracy with respect to (r ∈ Vm, ξ )
which are of bath oscillators.

A. Boundary-assisted fields

One can notice from (6) that the monochromatic BA field
is expanded by many different BA fields in terms of k and
λ. Hence, (k, λ) can be thought of as sort of the degeneracy
index of BA fields. Then, each degenerate BA field having
(k, λ) corresponds to a total field �tot(r, k, λ, ω) consisting
of (i) an incident plane wave with (k ∈ Sk , λ ∈ {1, 2}) and (ii)
resulting scattered fields by the lossy dielectric object; hence,

�(tot)(r, k, λ, ω) = �(inc)(r, k, λ, ω) + �(sca)(r, k, λ, ω),
(9)

satisfying[
∇ × ∇ × −ω2

c2
εr (r, ω)

]
�(tot)(r, k, λ, ω) = 0. (10)

When substituting (9) into (10) for the lossy dielectric medium
described in (4), one can derive a plane-wave-scattering prob-
lem, stated by[

∇ × ∇ × −ω2

c2
εr (r, ω)

]
�(sca)(r, k, λ, ω)

= ω2

c2
χ (r, ω)�(inc)(r, k, λ, ω). (11)

Bear in mind that the incident plane waves are a homogeneous
solution to the vector wave equation in the free space, that is,(

∇ × ∇ × −ω2

c2

)
�(inc)(r, k, λ, ω) = 0. (12)

Since the incident plane wave is known, for example,
�(inc)(r, k, λ, ω) = êλeik·r where êλ is a polarization unit vec-
tor, one can solve for the scattered fields �(sca)(r, k, λ, ω)
from (11).

B. Hamiltonian operator diagonalized by â and f̂

The monochromatic Hamiltonian operator in the modified
Langevin noise formalism is expressible in terms of two dif-
ferent diagonalizing ladder operators â and f̂ :

Ĥ (ω) =
‹

Sk

dk
∑

λ∈{1,2}
h̄ωâ†(k, λ, ω)â(k, λ, ω)

+
˚

Vm

dr′ ∑
ξ∈{x,y,z}

h̄ω f̂ †(r′, ξ , ω) f̂ (r′, ξ , ω). (13)

It should be mentioned that the above Hamiltonian does not
represent the EM energy only, but describes the total energy
of the whole system. Here, the whole system refers to EM
systems plus two thermal baths. This is because we introduced
the medium and radiation losses; there should be two different
thermal baths for the losses, respectively. And the EM systems
are in thermal equilibrium with these thermal baths. Hence,
the physical meaning of the above Hamiltonian operator is
total energy contained in the EM system as well as the two
thermal baths. The Hamiltonian is then the constant of motion;
hence, it is energy conserving. Furthermore, the Hamiltonian
operator is diagonalized by ladder operators â and f̂ associ-
ated with the medium and radiation fluctuations.

Eigenstates for the above Hamiltonian operator are two
different kinds of Fock states associated with the BA and MA
fields, i.e.,

n̂(k, λ, ω) |n〉k,λ,ω = n |n〉k,λ,ω , (14)

m̂(r′, ξ , ω) |m〉r′,ξ ,ω = m |m〉r′,ξ ,ω . (15)

In the above, n̂(k, λ, ω) = â†(k, λ, ω)â(k, λ, ω) is the num-
ber operator, |n〉k,λ,ω is the Fock state, and n is the number
of quanta for a BA field having (k, λ). On the other hand,
m̂(r′, ξ , ω) = f̂ †(r′, ξ , ω) f̂ (r′, ξ , ω) is the number operator,
|m〉k,λ,ω is the Fock state, and m is the number of quanta for
an MA field specified by (r′, ξ ).

The Fock states satisfy the following orthonormal proper-
ties:

k′,λ′,ω′ 〈n′| |n〉k,λ,ω = δn′,nδ(k′ − k)δλ′,λδ(ω′ − ω), (16)

r′,ξ ′,ω′ 〈m′| |m〉r,ξ ,ω = δm′,mδ(r′ − r)δξ ′,ξ δ(ω′ − ω), (17)

k,λ,ω 〈n′| |m〉r,ξ ,ω = 0, (18)

where a,b,c 〈n| � (|n〉a,b,c)†. The action of the bosonic ladder
operators on Fock states can be evaluated by

â(k, λ, ω) |n〉k,λ,ω = √
n |n − 1〉k,λ,ω , (19)

â†(k, λ, ω) |n〉k,λ,ω = √
n + 1 |n + 1〉k,λ,ω , (20)

f̂ (r′, ξ , ω) |m〉r′,ξ ,ω = √
m |m − 1〉r′,ξ ,ω , (21)

f̂ †(r′, ξ , ω) |m〉r′,ξ ,ω = √
m + 1 |m + 1〉r′,ξ ,ω . (22)
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FIG. 2. Finding a numerical solution of each degenerate BA field
per one FEM simulation modeling a plane-wave-scattering problem.

The diagonalizing ladder operators satisfy the following
standard bosonic commutator relations:

[â(k, λ, ω), â†(k′, λ′, ω′)] = Îδ(k − k′)δλ,λ′δ(ω − ω′),

[â(k, λ, ω), â(k′, λ′, ω′)] = 0

= [â†(k, λ, ω), â†(k′, λ′, ω′)],
(23)

[ f̂ (r, ξ , ω), f̂ †(r′, ξ ′, ω′)] = Îδ(r − r′)δξ,ξ ′δ(ω − ω′),

[ f̂ (r, ξ , ω), f̂ (r′, ξ ′, ω′)] = 0

= [ f̂ †(r, ξ , ω), f̂ †(r′, ξ ′, ω′)].
(24)

The total Hamiltonian and electric field operators are then
obtained by integrating the monochromatic terms over the
frequency domain:

Ĥ =
ˆ ∞

0
dωĤ (ω), (25)

Ê(+)(r, t ) =
ˆ ∞

0
dωÊ(+)(r, ω)e−iωt . (26)

III. NUMERICAL SOLUTIONS OF BA AND MA FIELDS
USING FINITE-ELEMENT METHOD

Here, we provide numerical recipes to find approximate
solutions of BA and MA fields based on the finite-element
method (FEM) [27]. The BA and MA fields can be found
by solving (i) plane-wave-scattering problems and (ii) point-
source-radiation problems, respectively.

A. Plane-wave-scattering problems for BA fields

Consider a lossy dielectric object in the vacuum back-
ground, and assume that a plane wave with (k ∈ Sk , λ ∈
{1, 2}) at ω is incident on the scatterer, as illustrated in Fig. 2.

One needs to first prepare unstructured meshes that re-
construct the original problem geometry. Unknown scattered
fields are then expanded by Whitney 1-forms (or edge ele-

ments) related to edges of the mesh, such as

�(sca)(r, k, λ, ω) ≈
N1∑

i=1

[
ϕ

(sca)
k,λ,ω

]
i
W(1)

i (r), (27)

where N1 is the number of edges, ϕ
(sca)
k,λ,ω

is a one-dimensional
vector array listing degrees of freedom for the scattered fields,
and W(1)

i (r) denotes the Whitney 1-form for the ith edge. Sub-
stituting (27) into (11) and performing the Galerkin testing,
one can find the following linear system which is the discrete
counterpart of (11) expressed by(

S − ω2

c2
M

)
· ϕ

(sca)
k,λ,ω

= f (inc)
k,λ,ω

, (28)

where S and M denote stiffness and mass matrices that encode
∇ × μ−1

0 ∇× and ε(r, ω), respectively, and f (inc)
k,λ,ω

is a force
vector whose ith element can be evaluated by

[
f (inc)
k,λ,ω

]
i
=

〈
W(1)

i (r),
ω2

c2
χ (r, ω)�(inc)(r, k, λ, ω)

〉
, (29)

where 〈A, B〉 denotes the projection process, i.e., the spatial
integral of the inner product of two vector fields A and B over
a certain finite support. Solving (28), one can find a numerical
solution for a degenerate BA field, such as

�(tot)(r, k, λ, ω) ≈ �(inc)(r, k, λ, ω) +
N1∑

i=1

[
ϕ

(sca)
k,λ,ω

]
i
W(1)

i (r).

(30)

As mentioned earlier, BA fields originate from the fluctua-
tion to the radiation loss; hence, one should incorporate open
boundary conditions in the above FEM simulations so that
the radiation loss can be properly taken into account. Here,
we employ perfectly matched layers (PMLs)—one kind of
absorbing boundary condition—based on the complex coor-
dinate stretching method incorporated into PML constitutive
tensors [28,29]. Figure 2 illustrates how to find numerical
solutions to BA fields via the FEM simulations.

B. Point-source-radiation problems for MA fields

Each degenerate MA field can be found by solving a
point-source-radiation problem, as illustrated in Fig. 3, viz.,
finding a numerical solution of the dyadic Green’s function
whose point source is embedded in the lossy dielectric object.
Taking the numerical dyadic Green’s function approach [30]
and using the similar FEM implementation with PMLs, one
can evaluate numerical dyadic Green’s functions by

G(r, r′, ω) ≈
N1∑

i=1

∑
j∈j

[L
−1

]i, jW
(1)
i (r) ⊗ W(1)

j (r′) (31)

for point sources located at r′ ∈ Vm where matrix operator
L = S − ω2M, ⊗ denotes the tensor product, and j denotes an
integer set whose elements are edge indices of a tetrahedron
(3D) or triangle (2D) which include the point source.
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FIG. 3. Finding a numerical solution of each degenerate MA
field per one FEM simulation modeling a point-source-radiation
problem.

IV. CONNECTING BA AND MA FIELD CORRELATION
TO SPECTRAL FUNCTION APPROACH

A. Spectral function

The spectral function approach (SFA) is often used to de-
scribe the quantum transport in solid-state physics [31]. Also,
the SFA is widely used to evaluate enhanced spontaneous
emission rates of atoms in optics. Here, we connect the modi-
fied Langevin noise formalism to the SFA with the use of the
correct dyadic-dyadic Green’s theorem [22] to show that BA
and MA fields can achieve the thermal equilibrium in open
and lossy EM systems.

The spectral function A(r, r′, ω) is defined to be the sum
of retarded and advanced dyadic Green’s functions [21]:

A(ra, rb, ω) = i(G(ra, rb, ω) − G
∗
(ra, rb, ω))

= −2Im{G(ra, rb, ω)}. (32)

Thus, the spectral function describes an EM system in ther-
mal equilibrium [21] at temperature T . In a lossy medium,
the first term of the spectral function describes a decaying
field (retarded), but the second term, a back-propagating field,
describes a growing field (advanced). This can be thought of
as a lossy EM system in equilibrium with a thermal bath.
More specifically, the loss in the EM system is accompanied
by Langevin sources induced by the thermal excitation of the
environment; hence, the EM system is in thermal equilibrium
with the Langevin sources due to the medium’s loss. On the
other hand, in the lossless case with open boundary condi-
tions, e.g., free space, the system is in thermal equilibrium
with sources at infinity.

The spectral function can be also related to the field corre-
lation function CT (ra, rb, ω) in such a way that

A(ra, rb, ω) = − π

ωμ0	(h̄ω)
CT (ra, rb, ω), (33)

where the field correlation function at temperature T is de-
fined to be [21]

CT (ra, rb, ω) = Tr[ρ̂thÊ(+)(ra, ω) ⊗ Ê(−)(rb, ω)]. (34)

Note that in the above ρ̂th denotes a density operator for the
thermal state, and the average photon energy density is given
by [21]

	(h̄ω) =
(

n̄ + 1

2

)
h̄ω, (35)

where the average photon number of the thermal field is cal-
culated as [32,33]

n̄ = 1

exp(h̄ω/kBT ) − 1
. (36)

When T = 0 such that n̄ is approaching zero, the average
photon energy density becomes a zero-point energy, i.e.,
	(h̄ω) = h̄ω/2. This implies that the quantum harmonic os-
cillator has nonzero energy even if it is in the ground state at
T = 0. As a result, the field correlation function at T = 0 now
becomes C0(ra, rb, ω) as defined in (38). And the spectral
function is associated with the quantum field correlator by

A(ra, rb, ω) = − 2π

h̄ω2μ0
C0(ra, rb, ω), (37)

where the quantum field correlator at T = 0 is given by

C0(ra, rb, ω) = 〈0|Ê(+)(ra, ω) ⊗ Ê(−)(rb, ω)|0〉 (38)

since the thermal state is reduced to the vacuum state at T = 0.

B. Field correlation of BA and MA fields at T = 0

We shall check the validity of the modified Langevin noise
formalism by back-substituting the electric BA and MA field
operators in (5) into (38) to see whether this retrieves the
original definition of spectral functions in (32). If so, we can
say that the modified Langevin noise formalism with BA and
MA fields makes an open and lossy EM system in thermal
equilibrium at every single point in V .

In what follows, we use 〈Ô〉 implicitly representing 〈0|Ô|0〉
for an operator Ô. Back-substituting (5) into (38), we can
rewrite the field correlation function in terms of BA and MA
fields by

〈Ê(+)(ra, ω) ⊗ Ê(−)(rb, ω)〉
= 〈Ê(+)

(B) (ra, ω) ⊗ Ê(−)
(B) (rb, ω)〉

+ 〈Ê(+)
(M)(ra, ω) ⊗ Ê(−)

(M)(rb, ω)〉. (39)

Note that in having (39) there are two cross terms which are
〈Ê(+)

(B) (ra, ω) ⊗ Ê(−)
(M)(rb, ω)〉 and 〈Ê(+)

(M)(ra, ω) ⊗ Ê(−)
(B) (rb, ω)〉.

But these become zero due to the orthonormal properties of
multimode Fock states described in (18). Substituting (7) into
the second term on the right-hand side of (39) yields

〈Ê(+)
(M)(ra, ω) ⊗ Ê(−)

(M)(rb, ω)〉

= h̄ω4

πε0c4

˚
Vm

drχI (r, ω)G(ra, r, ω) · G
∗
(r, rb, ω).

(40)
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Based on the dyadic-dyadic Green’s theorem [22], the integral
in (40) can be evaluated by˚

Vm

dr′χI (r′, ω)G(ra, r′, ω) · G
∗
(r′, rb, ω)

= c2

ω2
[Im{G(ra, rb, ω)} − F (ra, rb, ω)], (41)

where

F (ra, rb, ω)

= ω
√

ε0

c

‹
S∞

drG(ra, r, ω) · n̂ × n̂ × G
∗
(r, rb, ω),

(42)

and n̂ denotes the outward normal vector on S∞. Therefore,
one can rewrite (40) using the dyadic-dyadic Green’s theorem
by

〈Ê(+)
(M)(ra, ω) ⊗ Ê(−)

(M)(rb, ω)〉

= h̄ω2μ0

π
[Im{G(ra, rb, ω)} − F (ra, rb, ω)]. (43)

We now evaluate the first term on the right-hand side of (39)
with the substitution of (6) by

〈Ê(+)
(B) (ra, ω) ⊗ Ê(−)

(B) (rb, ω)〉

= h̄ω

2

1

(2π )3

‹
Sk

dk
∑

λ∈{1,2}
�(tot)(ra, k, λ, ω)

⊗�∗
(tot)(rb, k, λ, ω). (44)

Eventually, one can obtain the following expression for the
field correlation function,

〈Ê(+)(ra, ω) ⊗ Ê(−)(rb, ω)〉

= h̄ω2μ0

π

(
Im{G(ra, rb, ω)} − F (ra, rb, ω) + π

2ωμ0

× 1

(2π )3

‹
Sk

dk
∑

λ∈{1,2}
�(tot)(ra, k, λ, ω)

⊗ �∗
(tot)(rb, k, λ, ω)

)
. (45)

Hence, if the following condition,

F (ra, rb, ω) = π

2ωμ0(2π )3

‹
Sk

dk
∑

λ∈{1,2}
�(tot)(ra, k, λ, ω)

⊗ �∗
(tot)(rb, k, λ, ω), (46)

would hold, one can retrieve the original definition of the spec-
tral function from the field correlation function substituted by
the BA and MA fields, i.e.,

〈Ê(+)(ra, ω) ⊗ Ê(−)(rb, ω)〉 = h̄ω2μ0

π
Im{G(ra, rb, ω)}

= − h̄ω2μ0

2π
A(ra, rb, ω). (47)

In other words, the consideration of both BA and MA fields
can only ensure the system to be in thermal equilibrium. We

FIG. 4. Analyzing the spontaneous emission rate when a two-
level atom (TLA) is located either inside or outside a lossy dielectric
slab.

will numerically validate the thermal equilibrium condition
(46) by considering a spontaneous emission rate of a two-level
atom located at the inside or outside of a lossy dielectric slab.

V. SIMULATION RESULTS: PURCELL FACTOR OF A
TWO-LEVEL ATOM LOCATED EITHER INSIDE OR

OUTSIDE A LOSSY DIELECTRIC SLAB

A. Problem description

In this section, we present simulation results of the spon-
taneous emission rate (SER) of a two-level atom (TLA) when
the TLA is located either inside or outside a lossy dielectric
slab. Figure 4 illustrates the relevant problem geometry.

The lossy dielectric slab is assumed to be spatially homo-
geneous and have the following electric susceptibility based
on the Drude-Lorentz-Sommerfeld (DLS) model [34]:

χ (x, ω) = χ (ω) =
{

ω2
p

ω2
0−ω2+iωγ

, for − Ls
2 � x � Ls

2 ,

0, elsewhere,
(48)

where thickness of the slab Ls = 62.5 mm, plasma frequency
ωp = 100c, and resonant frequency ω0 = 500c in the DLS
model. We consider two different damping ratios γ = 50
(high loss for case 1) and γ = 5 (low loss for case 2). Figure 5
compares real and imaginary parts of the electric susceptibil-
ity of cases 1 and 2. It can be observed in Fig. 5 that Im(χslab)
(equivalently, dielectric medium loss) for both cases becomes
maximized at ω = 500c but different quality factors.

Assume that a TLA is located at xa with a transition fre-
quency ωa. We consider two different TLA locations, i.e.,
xa = xA = 0 (inside the slab for case A) and xa = xB = Ls

(outside the slab for case B), as illustrated in Fig. 4.

B. Spontaneous emission rate based on Fermi’s golden rule

In this one-dimensional simulation setup, we shall assume
that electric field operators are polarized along the y axis. One
can then evaluate the SER, denoted by �, based on Fermi’s
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FIG. 5. Real and imaginary parts of the electric susceptibility
χ (ω) of the lossy dielectric slab for case 1 (γ = 50) and case 2
(γ = 5).

golden rule (Eq. (339) in [35]) as follows:

�(ωa) = 2π

h̄2

ˆ ∞

0
dωd · 〈0|Ê(+)(r, ω) ⊗ Ê(−)(ra, ωa)|0〉 · d∗

= 2π |d · ŷ|2
h̄2 〈0|Ê (+)

y (xa, ωa)Ê (−)
y (xa, ωa)|0〉, (49)

where d is a dipole moment of a TLA. Note that in the second
equality of (49) the reason for |d · ŷ|2 to be factored out is that
the electric field operator is polarized on the y axis only in this
particular 1D example.

Based on Fermi’s golden rule, we evaluate the SER using
four different methods.

1. Method 1: Spectral function approach

The field correlation in the SER expression (49) can be
related by the spectral function. And the spectral function
takes the imaginary part of the Green’s function [see (32)].
Thus, based on the SFA the SER takes the following form:

�(SFA)(ωa) = 2ω2
a

h̄c2ε0
d · Im{G(ra, ra, ωa)} · d∗

= 2ω2
a|d · ŷ|2
h̄c2ε0

Im{G(xa, xa, ωa)}, (50)

where the scalar Green’s function G(x, x′, ω) satisfies[
d2

dx2
+ ω2

c2
εr (x, ω)

]
G(x, x′, ω) = −δ(x − x′). (51)

It should be also mentioned that in this 1D example, we
assumed that the electric field operator is polarized on the
y axis (EM waves are propagating toward ±x directions so
magnetic field operator would be polarized on z axis). Thus,
the corresponding Green’s tensor can be written explicitly by

G(ra, ra, ωa) = ŷŷG(xa, xa, ωa). (52)

Thus, the term d · Im{G} · d∗ can be simplified by

d · Im{G} · d∗ = (d · ŷ)Im{G}(ŷ · d∗)

= |d · ŷ|2Im{G}. (53)

Note that the formulation (50) includes the imaginary part of
the dyadic Green’s function that can be associated with local
density of states (LDOS) for the electric field produced by the
TLA, and is commonly used to estimate the SER of a TLA in
quantum optics [36–39].

In this work, we have performed one-dimensional FEM
numerical simulations of point-source-radiation problems in
(51) to evaluate the SER in (50).

2. Method 2: Second quantization of the microscopic model via
numerical mode decomposition

As another ground truth, we calculate the SER based on the
second quantization of the microscopic model via numerical
mode decomposition (MM-NMD). In the microscopic model,
we fill the infinite number of matter oscillator fields in place
of the lossy dielectrics, described by the effective permittivity
ε(r, ω), and let them interact with EM fields collectively in the
vacuum background. Their explicit interactions can model the
EM energy loss by the lossy slab. Furthermore, random initial
conditions of the reservoir oscillator fields are associated with
Langevin noise current sources.

One can derive the continuum generalized Hermitian
eigenvalue problem (GH-EVP) [8,9] for the microscopic
model [7,23]. And it is possible to extract eigenmodes from
the GH-EVP so as to perform the second quantization of the
microscopic model. However, it is difficult to account for the
infinite degrees of freedom of the reservoir oscillator fields
when extracting numerical eigenmodes. To resolve this issue,
we properly coarse-grained reservoir oscillator fields. Extrac-
tion of numerical eigenmodes from the microscopic model are
expounded in Appendix A.

Using extracted numerical eigenmodes, one can represent
an electric field operator by

Ê (+)
y (xa, t ) ≈ i

∑
m

Ẽm(xa)

√
h̄ωm

2
e−iωmt ĉm (54)

where, for the mth numerical eigenmode in the above series,
Ẽm(x) denotes the electric field part of the eigenmode, ωm is
eigenfrequency, and ĉm (ĉ†

m) is an annihilation (creation) op-
erator satisfying the standard bosonic commutator relations.
Note that, with numerical eigenmodes, one can formally rep-
resent the Hamiltonian operator by

Ĥ =
∑

m

h̄ωmĉ†
mĉm. (55)

By substituting (54) into (49), the SER can be derived by

�(MM-NMD)(ωa) ≈ |d · ŷ|2
h̄

∑
m

ηωmẼ∗
m(xa)Ẽm(xa)

(ωa − ωm)2 + η2
(56)

for a small η where the delta function is approximated by
(Eq. (28) in [21])

δ(ωa − ω) = 1

π
lim
η→0

η

(ωa − ω)2 + η2
. (57)
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The reason why the delta function was approximated by the
above bandpass filter is due to the fact that numerical eigen-
modes form a countably finite eigenspectrum owing to the
discretization. The quality factor of the bandpass filter can be
controlled by η; i.e., the smaller η is, the higher the quality
factor is. With a larger problem domain size, finer mesh, in-
creasing the extent of coarse-graining bath oscillators, one can
have denser eigenfrequencies so that η can be much smaller
converging to a real delta function.

3. Method 3: Original Langevin noise formalism (MA fields)

In the original Langevin noise model, the electric field
operator is determined by MA fields only, as observed in (1)
[or (7)], which is simplified in this 1D case into

Ê (+)
y,(M)(xa, ω) = iω2

c2

ˆ Ls
2

− Ls
2

dx′
√

h̄χI (x′, ω)

πε0

× G(xa, x′, ω) f̂ (x′, ŷ, ω). (58)

Substituting the above electric field operator into Fermi’s
golden rule in Eq. (49), one can have the following expression
for the SER:

�(M)(ωa) = 2ω2
a|d · ŷ|2
h̄c2ε0

(
ω2

a

c2

ˆ Ls
2

− Ls
2

dx′χI (x′, ωa)

× G(xa, x′, ωa)G∗(x′, xa, ωa)

)
. (59)

Note that the scalar Green’s function in the above can be
obtained by performing the FEM numerical analysis of point-
source-radiation problems.

It should be mentioned that one can also derive MA fields
and the same result in (59) by adopting the different approach
shown in [23]. This work rigorously analyzed the microscopic
model without making the ansatz in the first place [i.e., the
Hamiltonian operator in (3)]. It effectively lumped out DOFs
of the bath oscillators by applying the ensemble average tech-
nique. Consequently, the coupling to the bath systems was
effectively replaced by dissipation effects and Langevin noise
currents. This approach gives the clearer understanding of
physics involved in modeling macroscopic quantum loss and
fluctuation effects.

4. Method 4: Modified Langevin noise formalism
(BA and MA fields)

We also calculate the SER based on the modified Langevin
noise formalism. In this 1D case, the monochromatic electric
field operator in (5) can be simplified into

Êy,(BM)(xa, ω) = Êy,(B)(xa, ω) + Êy,(M)(xa, ω), (60)

where MA fields are given in (58) and BA fields are written
by

Êy,(B)(xa, ω) = i

2

√
h̄ω

π

∑
kx∈{±k}

�(tot)(xa, kx, ω)â(kx, ω), (61)

where wave number in free space k = ω/c. Substituting the
above electric field operator (60) into (49) and using the

bosonic commutators in (23) and (24), one can have the fol-
lowing expression for the SER:

�(BM)(ωa) = �(B)(ωa) + �(M)(ωa), (62)

where �(B) and �(M) are the SERs resulting from BA and MA
fields, respectively. �(M) is given in (59), and �(B) takes the
form of

�(B)(ωa) = ωa|d · ŷ|2
2h̄

∑
kx∈{±k}

|�(tot)(xa, kx, ω)|2. (63)

Similarly, the total field in the BA fields can be obtained by
solving a plane-wave-scattering problem with the use of FEM
numerical simulations.

C. Comparison of Purcell factors calculated
by four different methods

Since the one-dimensional free space SER is given by

�0(ωa) = ωa|d · ŷ|2
h̄ε0c

, (64)

the Purcell factor can be evaluated by

Purcell factor(ωa) = �(ωa)/�0(ωa). (65)

We now compare Purcell factors calculated by using meth-
ods 1, 2, 3, and 4 for two different loss factors (case 1 and
case 2) and two different locations of TLA (case A and case
B). In total, four possible cases are labeled by 1-A, 1-B, 2-A,
and 2-B. Case 1-A and case 1-B are illustrated in Figs. 6(a)
and 6(b), respectively. First of all, it is observed that the mod-
ified Langevin noise formalism (method 3 illustrated by green
∗ markers) has an excellent agreement with the two reference
cases whereas the original Langevin noise formalism exhibits
significant deviations from them in general. This numerical
experiment proves the validity of the modified Langevin noise
formalism.

Let us further observe BA and MA contributions sepa-
rately. When the TLA is located inside the slab (case 1-A),
MA contributions become dominant as the loss of the slab
is maximized around ωa ≈ 500c (see Fig. 5). On the other
hand, BA contributions are subtle around ωa ≈ 500c. This
can be explained as follows: Incident plane waves, which
produce BA fields, cannot penetrate deep into the lossy slab
and reach the TLA’s location. Consequently, BA fields would
have extremely small contributions to the formation of LDOS
at the TLA’s location. On the other hand, Langevin noise
current operators (2) are proportional to the loss of the di-
electric medium; therefore, the higher the medium loss, the
stronger the MA fields that can be produced. These strong
MA (near) fields would contribute to the formation of the
LDOS at the TLA’s location [40]. This may explain why the
use of the previous LN model considering effects of MA
fields only was so popular in quantum optics, especially,
when a TLA is buried deep inside lossy dielectric objects
or some places where BA fields barely affect the formation
of LDOS.

Consider now case 1-B [see Fig. 6(b)] where the TLA
is now located outside the slab. BA fields now start having
contributions to the net Purcell factors. We can further deduce
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FIG. 6. Purcell factors of a two-level atom versus an atomic transition frequency ωa for case 1 (lossy factor γ = 50, i.e., high loss) and
(a) case 1-A, xa = xA = 0 (inside the lossy slab), and (b) case 1-B, xa = xB = Ls (outside the lossy slab). Note that LN is the abbreviation of
Langevin noise.

that the formation of LDOSs is mainly contributed by (i) MA
fields escaping from the slab toward the right and (ii) BA
fields whose incident plane waves come from the right side.
From these observations, we can figure out that both BA and
MA fields should be taken into account on an equal footing in
general cases; especially, BA fields can affect the formation of
LDOSs at the TLA’s location.

Simulation results for case 2 (loss factor γ = 5) are il-
lustrated in Fig. 7 for two TLA locations again. A similar
tendency can be observed that (i) when the TLA is buried
inside the lossy slab, MA effects are dominant, and (ii) when
the TLA is outside the slab, both BA and MA fields contribute
to the net SER.

It is worth noting that when an atom is placed inside a
dielectric medium, it does not feel the macroscopic field,
satisfying Maxwell’s equations prescribed by relative permit-
tivity, but the microscopic one [41]. Therefore, a local-field

correction is required. One approach for the local-field cor-
rection is to introduce a spherical vacuum cavity surrounding
an atom, which is known as the real-cavity model [35,42],
and find the resulting local-field corrected one to account for
the atom-field interaction analysis. In the proposed numerical
framework, the consideration of the local-field correction is
straightforward; i.e., one can freely introduce a small spher-
ical vacuum cavity centered on the location of the atom in
a problem geometry and run EM simulations solving for
plane-wave-scattering and point-source-radiating problems;
consequently, the resulting BA and MA fields can be local-
field corrected. Note that the local-field correction is important
when electric fields produce surface charges on the surface of
the real-cavity in general 3D space. But in our 1D simulations
to calculate the SER of a two-level atom inside the lossy
dielectric slab, electric fields are polarized along the y axis,
which exhibits the purely transverse physics, such that no

FIG. 7. Purcell factors of a two-level atom versus an atomic transition frequency ωa for case 2 (lossy factor γ = 5, i.e., low loss) and
(a) case 2-A, xa = xA = 0 (inside the lossy slab), and (b) case 2-B, xa = xB = Ls (outside the lossy slab).
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FIG. 8. Numerical validation of the thermal equilibrium condition in (66) for (a) case 1 (γ = 50) and (b) case 2 (γ = 5), where xα = xβ =
xB = Ls. The surface integral term [left-hand side in (66)] is evaluated by using the analytic expression given in [43] whereas the BA term
[right-hand side in (66)] is numerically calculated by FEM simulation.

surface charges are induced on the real cavity. Hence, the
local-field correction is not necessary.

D. Numerical validation of thermal equilibrium condition (46)

Here, we numerically validate the thermal equilibrium con-
dition (46). For the one-dimensional case, we can simplify the
thermal equilibrium condition into

F (xα, xβ, ω)︸ ︷︷ ︸
surface integral term

= 1

4ωμ0

∑
kx=± ωa

c

�(tot)(xα, kx, ω)�∗
(tot)(xβ, kx, ω)

︸ ︷︷ ︸
BA term

. (66)

The left-hand side (the surface integral term) can be an-
alytically calculated by the formula [43]. We numerically
evaluate the right-hand side (BA term) using the FEM sim-
ulations and compare the two terms. We assume that xα =
xβ = xB = Ls. The results for case 1 and case 2 are illus-
trated in Fig. 8. It can be observed that the two terms
show great agreement with very small residuals (normalized
residuals were less than 0.6%). Hence, our numerical ex-
periment validates the thermal equilibrium condition, which
strongly supports that BA and MA fields together can make
open and lossy EM systems quasi-Hermitian or in thermal
equilibrium.

VI. CONCLUSION

We have proposed the numerical framework by incorporat-
ing the use of numerical methods into the modified Langevin
formalism with boundary-assisted (BA) and medium-assisted
(MA) fields for quantization of electromagnetic systems
involving both radiation and dielectric losses. For this demon-
stration, we have used the finite-element method to solve
plane-wave-scattering and point-source-radiation problems

for obtaining BA and MA fields, respectively. But other
computational electromagnetic methods are also available.
Importantly, we have numerically validated the modified
Langevin formalism with BA and MA fields by calculating the
spontaneous emission rate of a two-level atom either inside or
outside a lossy dielectric slab. The numerical evaluation of
substituting the BA and MA fields into Fermi’s golden rule
in (49) agreed with the typical expression for the spontaneous
emission rate in (50), which is proportional to the imaginary
part of the Green’s function derivable through the spectral
function approach. Our observation indicates that the con-
sideration of BA fields is essential whenever the radiation
loss is present, for example, finite-size lossy dielectrics. The
proposed numerical framework for the modified Langevin
noise formalism with BA and MA fields can be utilized for
modeling arbitrary quantized lossy electromagnetic systems
and quantification of various practical quantum optics prob-
lems associated with plasmonic structures, metasurfaces, and
nanoparticles. It should be mentioned that the proposed frame-
work can model the expectation value of arbitrary operators
or observables (e.g., higher-order correlation) with respect to
various initial quantum states (e.g., entangled states). This
cannot be done by using spectral function approach which can
only provide the first-order correlation for thermal or ground
states.

As shown in this study, the radiation loss and fluctuation,
which are independent of the medium loss and fluctuation,
were modeled by the BA fields. This resulted in the addition
of a new Hamiltonian to that of the MA fields, as shown in
(13). In other words, when investigating a system that involves
new physics, the resulting Hamiltonian should be modified
accordingly. If we introduce a quantum dipole into the system,
there should be a Hamiltonian that describes that particular
aspect of the physics. Specifically, we can include a Hamil-
tonian for impressed sources, which describes the radiation
by the quantum dipoles and their interaction with the host
quantum system [44]. As a result, we can study the behavior
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of quantum dipoles in a lossy dielectric environment, which
will be explored in future work.
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APPENDIX A: EXTRACTION OF NUMERICAL NORMAL
MODES FROM THE MICROSCOPIC MODEL

The vector wave equation for classical electromagnetic
(EM) fields in absorbing, dispersive, and inhomogeneous di-
electric media cannot be converted into a standard Hermitian
eigenvalue problem; as a result, normal modes (or eigen-
modes) have neither the nice orthonormal property nor real
eigenfrequencies.

The behaviors of such EM fields (i.e., in the presence of
lossy and dispersive media) can be modeled in the exactly
Hermitian fashion by using the microscopic model [7]. In
the microscopic model, we fill the infinite number of matter
oscillator fields in place of the lossy and dispersive dielectrics
and let them interact with EM fields collectively in the vacuum
background. By properly engineering coupling coefficients
between matter oscillator and EM fields, one can mimic both
the EM energy loss and fluctuation effects, which correspond
to two energy flows between the two subsystems in opposite
directions, respectively, while the whole system remains ex-
actly Hermitian.

Here we present a numerical framework for modeling the
microscopic model in 1D space for simplicity. The main idea
is to (i) coarse-grain infinite matter oscillator fields appropri-
ately, (ii) derive a generalized Hermitian eigenvalue problem
for a canonical position variable which includes vector poten-
tial and matter oscillator fields [9], and (iii) apply numerical
methods in computational electromagnetics to extract normal
modes numerically.

1. Details about the microscopic model

Below are several remarks on the microscopic model [7]:
(i) Vector potential field, denoted by A, is defined over 1D

space x.
(ii) Matter oscillator field, denoted by X , is defined over

1D space x and resonant frequency ν, that is, X = X (x, ν, t ).
(iii) Matter oscillator fields are coupled to EM fields with

coupling coefficient α(x, ν) =
√

2
π
ε0νχI (x, ν) where χI (x, ν)

is the imaginary part of susceptibility.
(iv) And we define conjugate variables as follows:

�A(x, t ) = Ȧ(x, t ) −
ˆ ∞

0
dνα(x, ν)X (x, ν, t ),

�X (x, ν, t ) = Ẋ (x, ν, t ),

where �A and �X are canonical momenta of vector potential
and matter oscillator fields, respectively.

(v) All of the above field variables are polarized along the
y axis.

(vi) The corresponding Hamiltonian is given by

H = 1

2

ˆ
V

dx

[
1

ε0
�2

A(x, t ) + 1

μ0

(
∂

∂x
A(x, t )

)2
]

+ 1

2

ˆ
Vm

dx
ˆ ∞

0
dν

[
�2

X (x, ν, t ) + ν2X 2(x, ν, t )
]

+ 1

ε0

ˆ
Vm

dx

[
�A(x, t )

ˆ ∞

0
dνα(x, ν)X (x, ν, t )

]

+ 1

2ε0

ˆ
Vm

dx

[(ˆ ∞

0
dνα(x, ν)X (x, ν, t )

)

×
(ˆ ∞

0
dν ′α(x, ν ′)X (x, ν ′, t )

)]
, (A1)

where V and Vm denote the volumes of the entire problem
geometry and the region where the matter oscillator fields are
filled (to be modeled as lossy dielectrics), respectively.

Figure 9 illustrates a schematic of the microscopic model in
which vector potential fields are interacting with matter oscil-
lator fields. The coupling map between dynamical variables at
each location (e.g., the ith grid point xi) is easily confirmed
in the corresponding Hamilton equations of motion and is
depicted in the figure inserted at the bottom left.

2. Discretization of dynamical variables
via the finite-difference method

We define the following field quantities sampled at xi and
ν j :

A(i)(t ) � A(xi, t )
√

�x, (A2)

�A(i)(t ) � �A(xi, t )
√

�x, (A3)

for i = 1, 2, . . . , Nx where Nx is the total number of grid
points over V , and

X(i, j)(t ) � X (x′
i, ν j, t )

√
�x

√
�ν, (A4)

�X (i, j)(t ) � �X (x′
i, ν j, t )

√
�x

√
�ν, (A5)

for i ∈ Nm and j ∈ 1, 2, . . . , Nν , where x′
i denotes a grid point

inside the lossy slab (i.e., x′ ∈ Vm); Nm is the total number of
grid points over Vm. �x and �ν are grid spacing for the 1D
space x and resonant frequency ν.

One can represent the above discrete vector potential vari-
ables in simpler form, such as

Ad (t ) = [
A(1)(t ), A(2)(t ), . . . , A(Nx )(t )

]T
. (A6)

Similarly, one can express the matter oscillator field by

Xd (t ) = [
X(:,1)(t ), X(:,2)(t ), . . . , X(:,Nν )(t )

]T
, (A7)

where

X(:, j)(t ) = [
X(1, j)(t ), X(2, j)(t ), . . . , X(Nm, j)(t )

]
. (A8)
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FIG. 9. Schematic of the microscopic model in which vector potential fields are interacting with matter oscillator fields. The coupling map
at each site, e.g., ith grid point xi, is depicted in the panel inserted at the bottom left. By properly engineering the coupling strength, one can
model the extent of loss of electromagnetic fields.

�A,d (t ) �X,d (t ) are expressed in the same way as described
above.

The Hamiltonian Hd with the discrete field quantities is
given by

Hd = 1

2
�†

A,d · M�A,d · �A,d + 1

2
A†

d · KA,d · Ad

+ 1

2
�†

X,d · K�X ,d · �X,d + 1

2
(−X†

d ) · M
(1)
X,d · (−Xd )

+ 1

2
�†

A,d · Mint,d · (−Xd ) + 1

2
(−Xd )† · M

†
int,d · �A,d

+ 1

2
(−Xd )† · M

(2)
X,d · (−Xd ), (A9)

where

[KA,d ](i, j) =
{−2μ−1

0 �x−2, if j = i,

μ−1
0 �x−2, if j = ±i,

(A10)

[M�A,d ](i, j) = 1, if j = i, (A11)

for i, j = 1, 2, . . . , Nx,

[K�X ,d ](Nm ( j−1)+i,Nm (n−1)+m) = 1, (A12)[
M

(1)
X,d

]
(Nm ( j−1)+i,Nm (n−1)+m) = ν jνn, (A13)

if i = m and j = n for i, m = 1, 2, . . . , Nm and j, n =
1, 2, . . . , Nν ,[

M
(2)
X,d

]
(Nm ( j−1)+i,Nm (n−1)+m) = ε−1

0 αi, jαm,n, (A14)

if i = m for i, m = 1, 2, . . . , Nm and j, n = 1, 2, . . . , Nν , and

[Mint,d ](i,Nm (n−1)+m) = αm,n

√
�ν, (A15)

if xi = x′
m for i, m = 1, 2, . . . , Nx and m = 1, 2, . . . , Nm, n =

1, 2, . . . , Nν .
One can rewrite the above Hamiltonian compactly in the

block matrix form. To do this, the generalized position and
momentum are defined by

qd (t ) �
[

Ad (t )

�X,d (t )

]
, pd (t ) �

[
�A,d (t )

−XX,d (t )

]
, (A16)

such that one can write the Hamiltonian more compactly by

Hd = 1

2

[
qd

pd

]†

·
[

Kd 0

0 Md

]
·
[

qd

pd

]
. (A17)

Note that the integration with respect to ν can be automatically
performed when the matrix-vector multiplication is done in
the above Hamiltonian density since the generalized position
and momentum include matter oscillators over all resonant
frequencies. Thus, the “spring constant” and “mass” matrices
take the form of

Kd =
[

KA,d 0

0 K�X ,d

]
, (A18)

Md =
⎡
⎣M�A,d Mint,d

M
†
int,d M

(1)
X,d + M

(2)
X,d

⎤
⎦. (A19)

The Hamilton’s equations of motion can be also compactly
rewritten by

d

dt

[
qd (t )

pd (t )

]
=

[
0 Md

−Kd 0

]
·
[

qd (t )

pd (t )

]
. (A20)

From the above, one can arrive at the second-order derivative
equations of motion for generalized position, i.e.,

d2

dt2
qd (t ) = Md · (−Kd ) · qd (t ). (A21)

Moving the above time-domain equation to that in the
frequency domain, one can have a following generalized
Hermitian eigenvalue problem (GH-EVP) which becomes a
finite-dimensional linear system:

Kd · Qd = M
−1
d · Qd · ω2, (A22)

where Qd is unitary matrix of which the pth column vector
corresponds to the pth normal mode used in the expansion
of qd (t ). The total number of degrees of freedom (DOFs) in
(A22) corresponds to Ndof = Nx + Nm × Nν ; hence, the size
of Qd is Ndof × Ndof as well as the total number of numerical
normal modes and eigenfrequencies is Ndof . Since Kd is Her-

mitian and M
−1
d is Hermitian and positive-definite, the above
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GH-EVP always returns a countably finite number of (com-
plete) eigenmodes with real eigenfrequencies. Consequently,[

Ad (t )
�d (t )

]
= qd (t ) = Qd · e−iωt · c + H.c.

=
[

QA,d

Q�X ,d

]
· e−iωt · c + H.c., (A23)

where modal amplitudes are stored in

c = [
c1, c2, . . . , cNdof

]T
. (A24)

For example, the vector potential of our interest can be found
by

Ad (t ) = QA,d · e−iωt · c + H.c. (A25)

Finally, it can be easily shown that the Hamiltonian is diago-
nalized by

Hd = 1

2
[c† · ω2 · c + cT · ω2 · c∗]. (A26)

3. Canonical quantization via numerical mode decomposition

We proceed to the subsequent canonical quantization with
numerical mode-decomposition. First, let us elevate conjugate
variables to operators as

q → q̂, p → p̂, (A27)

while satisfying the canonical commutator relations

[[q̂]i, [p̂] j] = ih̄δi, j,

[[q̂]i, [q̂] j] = 0 = [[p̂]i, [p̂] j], (A28)

for i = 1, . . . , Ndof . Quantization by elevating modal ampli-
tudes to bosonic ladder operators is as follows:

cm(t ) →
√

h̄

2ωm
ĉm(t ). (A29)

The resulting Hamiltonian operator without the zero-point
energy is given by

Ĥd = h̄ĉ† · ω · ĉ, (A30)

where

ĉ = [
ĉ1, ĉ2, . . . , ĉNdof

]T
, (A31)

ĉ† = [
ĉ†

1, ĉ†
2, . . . , ĉ†

Ndof

]
, (A32)

Âd (t ) = QA,d ·
√

h̄

2ω
· e−iωt · ĉ + H.c., (A33)

Êd (t ) = − d

dt
Âd (t ) = iQA,d ·

√
h̄ω

2
· e−iωt · ĉ + H.c. (A34)

When writing the above explicitly, one have the same expres-
sion as (54):

Ê (x, t ) ≈ i
Ndof∑
m=1

Ẽm(x)

√
h̄ωm

2
ĉme−iωmt + H.c., (A35)

where

Ẽm(xi ) = [QA,d ](i,m), (A36)

ωm = [ω](m,m). (A37)

APPENDIX B: OPERATOR-FORM DYADIC-DYADIC
GREEN THEOREM

One can formally prove the dyadic-dyadic Green’s theorem
(41), as shown by our recent work [21], by writing (8) in an
operator form as (

Ŝ − ω2

c2
M̂

)
Ĝ = Î, (B1)

where Ŝ and M̂ are operator forms of ∇ × μ−1
r (r)∇×

and εr (r, ω), respectively, Ĝ is an operator form of the
dyadic Green’s function G(r, r′, ω), and Î is an opera-
tor form of δ(r − r′)I. When (Ŝ − ω2

c2 M̂) is nonsingular
or invertible,

Ĝ−1 = Ŝ − ω2

c2
M̂. (B2)

Thus, one can derive an interesting expression for a spectral
function operator Â similar to [21,31] such as

Â−1 = i[(Ĝa)−1 − Ĝ−1]

= i

[
(Ŝa − Ŝ ) − ω2

c2
(M̂a − M̂)

]

= 2Im(Ŝ ) − 2
ω2

c2
Im(M̂), (B3)

where superscript a denotes the adjoint operator. It should be
emphasized that

Im(Ŝ ) �= 0 (B4)

due to open boundary conditions even if there is no magnetic
loss. Multiplying (B3) by Ĝ and Ĝa from the left and right,
respectively, one can have

i[Ĝ − Ĝa] = 2ĜIm(Ŝ )Ĝa − 2
ω2

c2
ĜIm(M̂)Ĝa. (B5)

Since i[Ĝ − Ĝa] = −2Im(Ĝ), one can retrieve (41) in an op-
erator form as

Im(Ĝ) = −ĜIm(Ŝ )Ĝa + ω2

c2
ĜIm(M̂)Ĝa, (B6)

which is the correct dyadic-dyadic Green’s theorem when
dielectric medium and radiation losses are present.

Previous works [11,12] assumed Im(Ŝ) = 0 such that

Im(Ĝ) = ω2

c2
ĜIm(M̂)Ĝa. (B7)

This identity has been then accepted without reasonable ar-
guments or specification of boundary conditions. As clearly
shown, when radiation boundary conditions (causing radiation
losses) are used, (B7) should be modified into (B6). This
also implies that the previous electric field operators in (1)
should be modified by including the boundary-assisted fields
as in (5).
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