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Simultaneous nonreciprocal conventional photon blockades of two independent optical
modes by a two-level system
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We propose a scheme to achieve nonreciprocal conventional photon blockades simultaneously in two inde-
pendent optical modes, which are connected by a two-level system. In the case that only one optical mode is
weakly driven, we find that strong nonreciprocal photon blockades of both optical modes can be observed. We
show that, for both optical modes, the single-photon blockades happens by driving the nonlinear device from one
side, while photon-induced tunneling appears when driving the system from the other side, which is attributed to
the anharmonic eigenenergy spectrum constructed by resonantly coupling to a two-level system. According to
photon resonance transition processes under different driving directions, the four optimal Fizeau-Sagnac shifts
can be obtained to generate perfect nonreciprocal conventional photon blockades of both optical modes. Our
study opens an avenue to simultaneously manipulate multiple nonreciprocal single-photon devices and may
have potential applications in chiral quantum information processing.
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I. INTRODUCTION

In recent years, significant progress has been made in
creating and manipulating single-photon sources utilizing op-
tical nonlinearity for their importance in quantum information
processing, which has a profound impact on future optical
devices [1,2]. Realizing high-purity single-photon sources is
essential in the field of modern optical technologies such as
single-photon transistors [3,4], quantum repeaters [5], quan-
tum optical Josephson interferometers [6], and nonclassical
optical isolators and circulators [7].

Researchers recently found that the single-photon source
can be generated by optical nonlinearity, such as the photon
blockade effect [8–11], which opens up a completely new
route toward nonlinear quantum optics. It is a purely quantum
phenomenon, where the absorption of the first photon will
block the transmission of subsequent photons. This effect
can be used for realizing quantum information processing,
including the development of single-photon transistors [12],
which is one of the long-term goals of quantum optics. So
far, many schemes based on the photon blockade effect have
been studied by utilizing different physical devices, including
cavity quantum electrodynamics (QED) systems [10,13,14],
coupled cavities [15], the Rydberg atom [16,17], optomechan-
ical system [18,19], and so on. Among them, according to
the underlying physical mechanism, photon blockade can be
roughly divided into two types: conventional photon block-
ade [20–22] and unconventional photon blockade [23–26].
The first depends on the anharmonicity between the en-
ergy levels of the system, while the second relies on the
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destructive quantum interference between distinct driven-
dissipative pathways. By far, the conventional photon block-
ade is studied in an optical cavity coupled to a single trapped
atom [8], circuit quantum electrodynamical systems [13,27],
and photonic crystal systems [28]. In addition, a more sig-
nificant energy-level splitting induced by the nonlinearity of
the system can be constructed via the dispersive coupling
between the optical field and the qubit to realize the con-
ventional photon blockade effect [29,30]. On the other hand,
by constructing multiple interference paths via the auxiliary
cavity [25,31,32], unconventional photon blockade has also
been widely reported in which weak nonlinearity is required.
According to the authors of Ref. [33], although strong optical
nonlinearity of the system is not required in the unconven-
tional photon blockade effect, it exhibits higher-order bunched
photons, which may not be an excellent way to generate
single-photon sources [34].

Optical reciprocity is required for the function and analysis
of physical systems [35,36], but with the rise of nonreciprocal
devices [37–39], breaking it can also be beneficial in quantum
optics. For example, nonreciprocal devices play an essential
role in signal processing and invisible sensing [40] and can
protect laser sources from noise, which are core components
in an integrated photonic circuit [41,42]. Thus, as one of
the effective means of generating nonreciprocal single-photon
sources [43], the nonreciprocal photon blockade effect [44]
has been studied by using rotating resonators. So far, most
studies on nonreciprocal photon blockade were focused on
photon nonreciprocal statistical properties in a single optical
mode [44–47], however, simultaneous nonreciprocal photon
blockades of both independent optical modes have not been
reported.

In this paper, we study the possibility of achieving simul-
taneous nonreciprocal photon blockades of both independent
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optical modes via a rotating optical device and a two-level
system. The two-level system acts as the nonlinear medium
that mediates the transformation of the photons between the
two uncoupled optical modes. The four optimal solutions
for Fizeau-Sagnac shifts can be analytically obtained based
on single-photon and two-photon resonance transition pro-
cesses under different driving directions. By calculating the
equal-time second-order correlation function analytically and
numerically, we find that simultaneous single-photon block-
ade and photon-induced tunneling for both optical modes can
occur in the spinning resonator, that is, simultaneous nonre-
ciprocal photon blockades can be found. According to the
energy spectrum of the system, the physical origins behind
the observed phenomena are well discussed. Compared with
the previous photon blockade schemes, our scheme has the
following distinct advantages.

(i) There is no need to drive the two-level system but the
strong photon blockade and nonreciprocal photon blockades
can still be observed in the both optical modes.

(ii) Even though the two optical modes are uncoupled from
each other directly, excellent nonreciprocal conventional pho-
ton blockades can be observed simultaneously in both optical
modes.

Here we should point out that, compared with the pre-
vious nonreciprocal photon blockade schemes [34,44–48],
the present scheme has the distinct advantage of achiev-
ing nonreciprocal photon blockade in multiple independent
optical modes simultaneously, which has practical research
significance in many-body quantum information processing,
complex quantum communication, and quantum computing.

The paper is organized as follows. In Sec. II, we introduce
the physical model and present the Hamiltonian in a rotating
optical cavity and a two-level system. In Sec. III, we derive
the four optimal Fizeau shifts for the nonreciprocal conven-
tional photon blockade and analytically solve the equal-time
second-order correlation function of both independent optical
modes in detail. In Sec. IV, by calculating the equal-time
second-order correlation function, we discuss the simultane-
ous nonreciprocal conventional photon blockades effect of
both independent optical modes and explain the physical ori-
gin behind the observed phenomena. Finally, we give a brief
conclusion in Sec. V.

II. PHYSICAL MODEL

Figure 1 shows our setup, a two-level system with an
excited state |e〉 and a ground state |g〉 is coupled to the
two independent optical modes a1 and a2 simultaneously. An
external classical light with frequency ωl and amplitude E can
be coupled into and out of the rotating cavity by using an
optical fiber. The total Hamiltonian of the entire hybrid system
is (h̄ = 1)

Htot = Hsys + Hprobe, (1)

with

Hsys = (ωc1 + �F1)a†
1a1 + (ωc2 + �F2)a†

2a2

+ ω0σ+σ− + J (a1σ+ + a2σ+ + H.c.),

Hprobe = E (a†
1e−iωl t + a1eiωl t ), (2)

l

(a)

Ω

(b)

l

Ω

0F0F

e

g

1 1( )ca
1 1( )ca

2 2( )ca 2 2( )ca

optical  fiber optical  fiber

FIG. 1. Schematic diagram of a two-level system with a ground
state |g〉 and an excited state |e〉 coupled to a rotating optical cavity.
There are two independent optical modes a1 with frequency ωc1 and
a2 with frequency ωc2 in the rotating optical cavity, which are rotating
in the same direction. The external driving field with frequency ωl is
coupled in and out of the optical mode a1 with frequency ωc1 through
a tapered optical fiber. The rotating optical cavity spins at a certain
angular velocity �. (a) The device is driven from the left side (�F >

0). (b) In the case of driving the device from the right side (�F < 0).

where a j (a†
j ) represents the annihilation (creation) operator

of the jth optical mode with frequency ωc j ( j = 1, 2). σ+ =
|e〉〈g| (σ− = |g〉〈e|) refers to the raising (lowering) operators
of the two-level system with resonant transition frequency
ω0. The parameter J signifies the coupling strength between
the two-level system and optical modes, which results in an
anharmonic energy-level structure. E = √

2Pκ1/h̄ωl is the
coupling between the optical mode a1 with dissipation rate κ1

and the external driving laser with frequency ωl and power P.
As a result of the cavity rotating at a fixed angular velocity �,
both optical modes experience a Fizeau shift �Fj, which leads
to ωc j → ωc j + �Fj. According to the authors of Ref. [44],
the concrete expression form of �Fj is determined by

�Fj = ±nr�ωc j

c

(
1 − 1

n2
− λ

n

dn

dλ

)
, (3)

where n represents the refractive index experienced by clock-
wise or counterclockwise optical modes and r is the radius of
the cavity. c and λ are the speed and wavelength of light in
a vacuum, respectively. The Lorentz corrections are applied
to Fresnel-Fizeau drag coefficients by the dispersion term
(λ/n)(dn/dλ), which is usually negligible in typical materials
[49]. The rotation direction of the resonator can be fixed
counterclockwise for convenience, the sign of Fizeau shift �Fj

is determined by the direction of light propagation, that is,
the propagation direction of light along (�Fj < 0) or against
(�Fj > 0) the rotation direction of the spinning resonator. For
simplicity, we set the frequencies of both optical modes to be
identical later (ωc1 = ωc2 = ωc), i.e., �F1 = �F2 = �F.

In a frame rotating at driving frequency ωl , the total
Hamiltonian of the system becomes time independent

H ′
tot = (�c + �F)a†

1a1 + (�c + �F)a†
2a2 + �0σ+σ−

+ J (a1σ+ + a2σ+ + H.c.) + E (a†
1 + a1), (4)

�c = ωc − ωl (�0 = ω0 − ωl ) is the corresponding cavity
(two-level system)-driven laser detuning. Next, we examine
the statistical properties of both independent optical modes
and explore their nonreciprocal properties separately.
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III. PHOTON STATISTIC

In this section, we obtain the optimal Fizeau shifts for
simultaneous nonreciprocal photon blockades of the both op-
tical modes by analyzing the eigenenergy spectrum of the
system in detail. The second-order correlation function for
quantifying the statistical properties of the photons can be an-
alytically obtained by solving the non-Hermitian Schrödinger
equation.

A. Optimal Fizeau-Sagnac shifts

To obtain the optimal Fizeau shifts for nonreciprocal con-
ventional photon blockades, the eigenequation of the system
is introduced as follows [50]:

Hk|ψk〉 = Ek|ψk〉, (5)

where |ψk〉 represents the eigenstate of the system and Ek

denotes the eigenenergies (k = 0, 1, 2,..., ). The Fock-state
basis of the multimodes system can be described by |mng〉
(|mne〉), with the number m (n) denoting the photon number
in the optical mode a1 (a2) and g (e) denoting the two-level
system in the ground (excited) state. It can be clearly seen
that the excitation number operator N = a†

1a1 + a†
2a2 + σ+σ−

is a conserved quantity because of the commutative relation
[Hsys, N] = 0 [21]. The subspaces corresponding to different
weighted excitation number N are separated from each other
so that one can obtain the k-photon resonance conditions
in different subspaces [51]. In the weak driving limit, the
Hamiltonian can be expanded with one-excitation subspace
bases {|10g〉, |01g〉, |00e〉} in the following matrix form:

H1 =
⎡
⎣ωc + �F 0 J

0 ωc + �F J
J J ω0

⎤
⎦. (6)

Here the subscript 1 indicates the one-photon excitation sub-
space. For simplicity, we assume ωc = ω0 in the following
discussion, i.e., �c = �0 = �. The eigenvalues E1 of the
Hamiltonian H1 can be obtained by |H1 − E1I| = 0, where
I is the identity matrix. When the driving field frequency ωl

is equal to the eigenvalue E1 (ωl = E1), the single-photon
resonance condition is satisfied. Thus, the cavity detunings
�

(k)
1 with respect to the driving frequency ωl in one-photon

transition processes can be obtained as follows:

�
(1)
1 = −�F,

�
(2,3)
1 =

−�F ∓
√

8J2 + �2
F

2
, (7)

and the corresponding normalization eigenstates are

∣∣ψ (1)
1

〉 = 1√
2

(−|10g〉 + |01g〉),

∣∣ψ (2)
1

〉 = 1√
B1

(−2J

B2
|10g〉 − 2J

B2
|01g〉 + |00e〉

)
, (8)

∣∣ψ (3)
1

〉 = 1√
B3

(
B2

2
|10g〉 + B2

2
|01g〉 + 2J|00e〉

)
,

with

B1 = 1 + 8J2

B2
2

,

B2 = �F +
√

�2
F + 8J2, (9)

B3 = 8J2 + �FB2,

where the subscript 1 of the cavity detunings �
(k)
1 denotes

single-photon resonance excitation for both optical modes,
which is one of the conditions for achieving conventional
photon blockade. In other words, once a specific single-
photon resonance condition is satisfied, the photons have
an excellent probability of occupying the corresponding
eigenstates |ψ (k)

1 〉, which can give rise to the conventional
photon blockade phenomenon. However, the photon blockade
phenomenon disappears when �1 = −�F, which will be
analyzed after solving the two-photon resonance excitation
conditions.

Similarly, in the two-excitation subspace with bases
{|20g〉, |02g〉, |11g〉, |10e〉, |01e〉}, the Hamiltonian can be
written in the following matrix form:

H2 =

⎡
⎢⎢⎢⎢⎢⎣

D1 0 0
√

2J 0
0 D1 0 0

√
2J

0 0 D1 J J√
2J 0 J D2 0
0

√
2J J 0 D2

⎤
⎥⎥⎥⎥⎥⎦, (10)

with

D1 = 2(ωc + �F),

D2 = 2ωc + �F. (11)

Here the subscript 2 indicates the two-photon excitation sub-
space. The eigenvalues E2 of the Hamiltonian H2 can be
obtained by |H2 − E2I| = 0. When the frequency of the drive
field ωl equals one-half of the eigenvalues E2 (2ωl = E2), the
two photon resonance condition is satisfied. Thus, the cavity
detunings �

(k)
2 with respect to the driving frequency ωl in

two-photon transition processes can be obtained as follows:

�
(1)
2 = −�F,

�
(2,3)
2 =

−3�F ∓
√

8J2 + �2
F

4
, (12)

�
(4,5)
2 =

−3�F ∓
√

16J2 + �2
F

4
,

where the subscript 2 of the cavity detunings �
(k)
2 denotes

two-photon excitation. Equation (12) also represents the pro-
cesses of the two-photon resonance excitation, that is, the
photons have a great probability of being located in the two-
photon state, which leads to the emergence of photon-induced
tunneling. Notably, by comparing Eqs. (7) and (12), we find
that �

(1)
1 = �

(1)
2 , which implies the disappearance of the ef-

fect of the single-photon blockade because of the two-photon
resonance transition.

It can be easily found that �
(2,3)
1 �= �

(2,3)
2 �= �

(4,5)
2 in the

real space by Eqs. (7) and (12), which means that the one-
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and two-photon resonance conditions cannot be satisfied si-
multaneously, that is, the optimal nonreciprocal conventional
photon blockade cannot be achieved. In other words, the
optimal nonreciprocal conventional photon blockade requires
�

(2,3)
1 = �

(4,5)
2 when driving devices from different direc-

tions. More importantly, in the present scheme, the sign of
the �F can be changed due to the different directions of the
propagation of the light, which makes �

(2,3)
1 = �

(4,5)
2 pos-

sible in the real space. Concretely, assuming that a certain
one-photon resonance process is satisfied when the device
is driven from the left-hand side (�F > 0), for example,

�L = �
(2)
1 = −�F−

√
8J2+�2

F

2 , where the subscript L represents
the system driven from the left-hand side. One can set �F =
y × J (y ∈ R), so that �L = �

(2)
1 = −(y×J )−

√
8J2+(y×J )2

2 . At
the same time, it is assumed that a certain two-photon
resonance process is satisfied when the device is driven
from the right-hand side (�F < 0), for example, �R =
�

(4)
2 = −3�F−

√
16J2+�2

F

4 , where the subscript R represents
the driving system from the right-hand side. In this case,
one can set �F = −y × J (y ∈ R), so that �R = �

(4)
2 =

−3(−y×J )−
√

16J2+(−y×J )2

4 . It should be emphasized that the dif-
ference in the sign of �F results from the difference in the
driving direction.

To observe the nonreciprocal photon blockade under the
same optical detuning, one can set �L = �R. Then we can
obtain optimal Sagnac-Fizeau shifts by solving the equa-
tion about y,

�
(1)
Fopt = ±

√
3 − 5√

3
× J,

�
(2)
Fopt = ±

√
3 + 5√

3
× J. (13)

Two such groups of different optimal Fizeau-Sagnac shifts
�Fopt induce simultaneous nonreciprocal conventional photon
blockade of both independent optical modes when driving the
device from different directions.

B. Analytical results

To quantitatively study the quantum statistics of the pho-
tons, the state vector method is used to analyze the quantum
statistics of photons [52]. According to the quantum-trajectory
method [53], the non-Hermitian Hamiltonian containing sys-
tem dissipations can be written as follows:

HNM = H ′
tot − i

κ1

2
a†

1a1 − i
κ2

2
a†

2a2 − −i
γ

2
σ+σ−, (14)

where κ1 (κ2, γ ) is the dissipation rate of mode a1 (a2, σ ). In
the weak driving limit, the weak driving term can be consid-
ered as a perturbation, thus the wave function of the system at
any time can be approximately expressed as [54]

|ψ (t )〉 = C00g(t )|00g〉 + C10g(t )|10g〉 + C01g(t )|01g〉
+ C00e(t )|00e〉 + C20g(t )|20g〉 + C02g(t )|02g〉
+ C11g(t )|11g〉 + C10e(t )|10e〉 + C01e(t )|01e〉,

(15)

with probability amplitude Cmng(e)(t ), which satisfies

{C20g(0), C02g(0), C11g(0), C10e(0), C01e(0)} 
 {C10g(0),

C01g(0),C00e(0)} 
 C00g(0) ≈ 1, that is, the probability of

the system is initially in a one-excitation subspace much

larger than the two-excitation subspace when E/κ j 
 1.

According to Eqs. (14), (15), and the Schrödinger equation

id|ψ (t )〉/dt = HNM|ψ (t )〉, the evolution equations for the

wave-function amplitudes can be obtained. Without the loss

of physics, one can set κ1 = κ2 = γ = κ . Thus, the analytical

results of the probability amplitude can be obtained by using

the steady-state assumption as follows:

C10g = 2EA1

[2(� + �F ) − iκ]A2
,

C01g = 8J2E

[2(� + �F ) − iκ]A2
,

C20g = −2
√

2E2((2� − iκ )A3 + A4)

(2� + 2�F − iκ )[A3 − 4J2(2� + 2�F − iκ )]A2
,

C02g = 16
√

2J4E2

(2� + 2�F − iκ )[A3 − 4J2(2� + 2�F − iκ )]A2
, (16)

with

A1 = 2iκ (2� + �F) − 4�(� + �F) + 4J2 + κ2,

A2 = 2iκ (2� + �F) − 4�(� + �F) + 8J2 + κ2,

A3 = (2� + �F − iκ )(2� + 2�F − iκ )2,

A4 = 8J4 − 4J2(2� − iκ )(2� + 2�F − iκ ). (17)

According to the statistical properties of photons [9,55,56],
the equal-time second-order correlation function is defined by

g(2)
j (0) = 〈a†

j a
†
j a ja j〉

〈a†
j a j〉2

, (18)

which can be characterized the quantum statistics of nonclas-
sical photons. Thus, the final analytical results are

g(2)
1 (0) = 2|C20g|2

|C10g|4 ,

g(2)
2 (0) = 2|C02g|2

|C02g|4 , (19)

which means the probability of simultaneous observation of
two photons in the jth optical mode. The condition g(2)

j (0) <

1 [g(2)
j (0) > 1] stands for the photon blockade (photon-

induced tunneling) effect.

C. Numerical simulation

To verify the analytical results and further demonstrate
the quantum statistics of the photons, a numerical simulation
method based on the quantum master equation is proposed.
The system can be governed by the master equation

ρ̇ = −i[H ′
tot, ρ] + κ1L[a1]ρ + κ2L[a2]ρ + γL[σ−]ρ, (20)

where ρ is the dynamical density matrix of the system
and L[o]ρ = oρo† − (o†oρ + ρo†o)/2 denotes the standard
Lindblad terms accounting for losses to the bath for an
operator o (o = a1, a2, σ−). To numerically examine the anal-
ysis, we focus on the statistical properties of the photons in
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FIG. 2. The equal-time second-order correlation function
(a) g(2)

1 (0) and (b) g(2)
2 (0) in logarithmic scale versus the optical

detuning � and Fizeau shift �F. The system parameters are
κ1 = κ2 = γ = κ , �c = �0 = �, E/κ = 0.1, and J = 10

√
2κ .

the corresponding optical modes, which can be described in
terms of the normalized equal-time second-order correlation
function [57]

g(2)
j (0) =

〈
a†2

j a2
j

〉
〈a†

j a j〉2
= Tr(a†

j a
†
j a ja jρs)

[Tr(a†
j a jρs)]2

, (21)

where ρs is the steady-state solution after the long time evo-
lution of the system. So far, the optimal Fizeau shifts �Fopt

are given by Eq. (13), as well as analytical and numerical
results of second-order correlation functions representing the
statistical properties of photons have been obtained. In the
following, we numerically calculate the quantities of Eq. (21)
and analyze the physical mechanism behind the emergence
of nonreciprocal conventional photon blockades for the both
optical modes.

IV. RESULTS AND DISCUSSION

In Figs. 2(a) and 2(b), we show the equal-time
second-order correlation function g(2)

1 (0) and g(2)
2 (0) versus

the frequency shift �F and the detuning � on a logarithmic
scale. The second-order correlation functions are derived by
solving the master equation in Eq. (20) numerically. In the
strong coupling regime J = 10

√
2κ , the photon antibunching

phenomenon can be found simultaneously in both optical
modes when the drive field ωl is resonant with the one-
photon resonant conditions, but is also off-resonant from
the two-photon resonant conditions. The physical origin of
the conventional photon blockade can be found based on
the anharmonicity of the energy level spacing. Concretely,
once the one-photon excitation is resonant, that is, � = �

(2)
1

or � = �
(3)
1 , the subsequent transition (two-photon transition

processes) is suppressed due to large detuning β5 (please see
Fig. 5 in detail), with

β5 = 1

2

(
�F −

√
16J2 + �2

F

) +
√

8J2 + �2
F. (22)

Under the strong coupling parameter regime, i.e., J �
{κ1, κ2, γ }, a first excited photon with significant probability
blocks the second one being excited due to large detuning β5,
which induces the single-photon blockade. In other words, an
incident photon with the same frequency as the first excited
|ψ (3)

1 〉 can excite the system from initial |ψ0〉 to the first
excited state |ψ (3)

1 〉, which means that only one photon can be
detected in the system. Subsequently, the second photon with
that frequency is emitted into the system. Due to the large
detuning β5, the second photon cannot be excited resonantly

on the |ψ (k)
2 〉, which induces photon antibunching. According

to Eq. (8), both optical modes a1 and a2 occupy the single-
photon state, which indicates that single-photon antibunching
can be simultaneously realized in both optical modes. The
photon antibunching means that two optical modes tend to
be occupied by one photon rather than multiple photons. In
addition, we also find that, for a specific detuning �, when
the sign of the �F is different (driving devices in different
directions), the phenomenon of photon bunching or pho-
ton antibunching occurs, which may observe nonreciprocal
photon blockade under the appropriate parameter regime for
the both optical modes.

In most cases, the nonreciprocal photon blockade effect is
sensitive to cavity-mode driving, determining the resonance
of the multiphoton physical transitions. For a precise obser-
vation of the nonreciprocal photon blockade, we present the
dependence of the zero-delay-time second-order correlation
functions g(2)

j (0) on optical detuning � when the Fizeau shift
�F takes different values through analytical and numerical
methods, as shown in Fig 3.

In Figs. 3(a) and 3(b), the reciprocity conventional pho-
ton blockade phenomenon can be found due to the lack of
Sagnac-Fizeau shift (�F = 0), where the locations of the two
peaks pn=4,5 correspond to the two-photon resonant excita-
tion with the resonance conditions � = �

(4,5)
2 . Moreover, the

locations of the two dips dn=2,3 correspond to single-photon
resonant excitation � = �

(2,3)
1 . It is not difficult to find that, in

the curve of g(2)
j (0), the locations of these dips dn and peaks pn

match the single-photon and two-photon resonance transition
processes, respectively, which are consistent with our theoret-
ical analysis performed in Sec. III A. More importantly, we
can observe that the zero-delay-time second-order correlation
function g(2)

j (0) exhibits strong nonreciprocity in both optical
modes when the laser drives the optical mode a1 from the
different directions in Figs. 3(c) to 3(h). The two-photon reso-
nance transition processes driven from the left side (�F > 0)
are consistent with the driving frequency of the cavity field
required by the single-photon resonance transition processes
driven from the right side (�F < 0), that is, the nonreciprocal
photon blockade effect occurs in the case of � = �

(2)
1 =

�
(4)
2 ≈ −17.76κ as shown in Figs. 3(c) and 3(e). One can set

� = �
(3)
1 = �

(5)
2 ≈ 17.76κ by changing the laser frequency

ωl , surprisingly, photon blockade to photon-induced tunneling
conversion occurs in the same driving direction, ensuring the
survival of the nonreciprocal photon blockade effect as shown
in Figs. 3(d) and 3(f). Similar phenomena can be found in
Figs. 3(g) and 3(h), in the case of � = �

(2)
1 = �

(4)
2 ≈ −9.19κ

or � = �
(3)
1 = �

(5)
2 ≈ 9.19κ . Moreover, we also find that

there are four dips probably located at � ≈ ±5.92κ and � ≈
±2.24κ as shown in Fig. 3(g), which originates from quantum
interference between energy levels (please see Appendix A in
detail).

To reveal the physical mechanism behind the nonreciprocal
conventional photon blockade effect, the equal-time higher-
order correlation function is introduced,

g(μ)
j (0) =

〈
a†μ

j aμ
j

〉
〈a†

j a j〉μ
, (23)
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FIG. 3. The equal-time second-order correlation function g(2)
j (0) in logarithmic scale versus the optical detuning � with different Fizeau

shift �F. Analytical and numerical simulation results represented by red (blue) curve and red (blue) diamonds, respectively. Here |�F| = �
(1)
Fopt

for (c)–(f), |�F| = �
(2)
Fopt for (g) and (h). In (a) and (b), �F = 0, which leads to the conventional reciprocal photon blockade caused by the

anharmonicity of the system energy levels. In (c)–(h), |�F| = �
(1)
Fopt or |�F| = �

(2)
Fopt, which leads to the nonreciprocal photon blockade. The

other parameters are the same as in Fig. 2.

which can be used to explore the multiphoton blockade effect
or multiphoton tunneling for specific values of μ (μ > 2).
For instance, g(3)

j (0) > 1 (g(3)
j (0) < 1) means that the third-

order bunching (third-order antibunching) [34]. Moreover, it
is well known that the two-photon blockade, that is, featur-
ing three-photon antibunching but with two-photon bunching,
which must meet the following terms [44]:

g(3)
j (0) < f (3)

j = e−〈a†
j a j〉,

g(2)
j (0) > f (2)

j = e−〈a†
j a j〉 + 〈a†

j a j〉 × g(3)
j (0). (24)

To determine the type of nonreciprocal conventional photon
blockade effect, we plot the time evolution of the correspond-
ing optical correlation as shown in Fig. 4. In Figs. 4(a) and
4(b), we find that the statistics of photons in both optical
modes exhibit an antibunching effect in the long-time limit,
which implies the occurrence of the single-photon blockade
and is consistent with the results in Figs. 3(c) and 3(e).
Although the equal-time second-order correlation function
shows a bunching effect, it violates the judgment criterion of
the two-photon blockade given by Eq. (24), which means the
photon-induced tunneling rather than the two-photon block-
ade effect occurs when the system is driven from the left side
as shown in Figs. 4(c) and 4(d).

To better understand the physical origin behind the si-
multaneous nonreciprocal conventional photon blockades
phenomenon, an energy-level diagram of the system is shown
in Fig. 5 and the corresponding energy gaps can be calculated
as (please see Appendix B in detail).

β1 = 1

2

(√
8J2 + �2

F + �F
)
,

β2 = 1

2

(√
8J2 + �2

F − �F
)
,

β3 = 1

2

(√
16J2 + �2

F + �F
)
,

β4 = 1

2

(√
16J2 + �2

F − �F
)
,

β6 = 1

2

√
8J2 + �2

F − 1

4

(√
16J2 + �2

F − �F
)
. (25)

Specifically, with � = −17.76κ and driving from the right
side (�F < 0), the driving field is in resonance with the
single-photon transition |ψ0〉 → |ψ (3)

1 〉 and the single-photon
blockade occurs simultaneously for both optical modes.
Physically, when the cavity field is driven from the right side
by an externally driven laser with a frequency of ωl , the

0 5 10 15

10-2

100

0 5 10 15

10-7

100

0 5 10 15

100

105

0 5 10 15

100

103

FIG. 4. The time evolution of the corresponding optical corre-
lation with different Fizeau shift �F. Here � = �

(2)
1 = �

(4)
2 and

�F = �
(1)
Fopt. In (a) and (b), the system is assumed to be driven from

the right-hand side (�F < 0), while in (c) and (d), it is assumed to be
driven from the left-hand side (�F > 0). The functions f (2)

j and f (3)
j

are defined by Eq. (24), which is one of the criteria for multipho-
ton blockade. μ = 2 or μ = 3 denotes the order of the equal-time
μ-order correlation function g(μ)

1 (0). The other parameters are the
same as in Fig. 2.
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FIG. 5. Energy-level diagram of a simultaneously nonreciprocal
conventional photon blockades in both independent optical modes.
The eigenstates are drawn on the left-hand side. The photon con-
version processes mediated by the two-level system between the
two independent optical modes in one- and two-photon subspaces
is plotted on the right-hand side. (a) Setting � = −17.76κ , J =
10

√
2κ , and �F ≈ −4.76κ , which means driving from the right

side. (b) Setting � = −17.76κ , J = 10
√

2κ , and �F ≈ 4.76κ , which
means driving from the left side.

photons with the same frequency will be excited and occupy
the single-photon excited state |ψ (3)

1 〉, which enables the res-
onance transition from the vacuum state to the first excited
state. Once the system has an first excited photon on |ψ (3)

1 〉
state, that photon will block the second one being excited due
to the large detuning β5 of the system. That is, there is not
enough energy for the photon to be excited resonantly on the
|ψ (k)

2 〉 state as shown in Fig. 5(a), so the photon antibunching
effect occurs for both optical modes. On the other hand, when
the cavity field is driven from the left side (�F > 0), the tran-
sition |ψ0〉 → |ψ (5)

2 〉 is two-photon resonant, which means
that two photons are resonantly excited and occupy the |ψ (5)

2 〉
state. Meanwhile, the single-photon transition |ψ0〉 → |ψ (k)

1 〉
cannot be excited resonantly due to the large detuning β6

as shown in Fig. 5(b), so the photon-induced tunneling can
be observed. Similarly, the photon blockade to the photon-
induced tunneling conversion occurs in different directions
when � = 17.76κ or ±9.19κ . The essential reason is the
change of energy level structure of the system under the dif-
ferent Fizeau-Sagnac shifts �F.

2 4 6 8 10
0

0.5

1

8 9 10
0.99

1

1.01

1 2 3 4
0

0.5

1

0.1 0.15 0.2
0.99

1

1.01

FIG. 6. (a) The bidirectional contrast ratio Cj versus the coupling
strength J . (b) The bidirectional contrast ratio versus the amplitude of
the external classical laser field E . For both (a) and (b), �F = �

(1)
Fopt

and � = �
(2)
1 . The other parameters are the same as in Fig. 2.

To quantitatively measure nonreciprocal photon blockade,
the bidirectional contrast ratio Cj (0 < Cj < 1) is introduced

Cj =
∣∣∣∣∣g(2)

jR (0) − g(2)
jL (0)

g(2)
jR (0) + g(2)

jL (0)

∣∣∣∣∣, (26)

where the subscript R (L) represents the driving system from
the right (left) side. Obviously, a larger Cj corresponds to a
stronger nonreciprocal photon blockade effect. When Cj = 1,
the perfect nonreciprocal photon blockade is achieved. From
Fig. 6(a), it can be found that a larger coupling strength
J corresponds to a stronger nonreciprocity. The reason is a
stronger coupling strength J leads to a greater anharmonicity
of the energy level spacing of the system, resulting in a photon
antibunching. Similarly, we also find that a weak driving limit
is necessary for strong nonreciprocity of the system as shown
in Fig. 6(b). This is because the strong driving regime signifi-
cantly increases the probability of photons in the excited state
(|20g〉 and |02g〉), which destroys the photon antibunching.
Photons in both optical modes have strong nonreciprocity
when driving the device from different directions under the
appropriate parameter regime (Cj ≈ 1).

V. CONCLUSION

In conclusion, the simultaneously strong nonreciprocal
photon blockades for both independent optical modes were
studied in a rotating optical system, which was connected
by a two-level system. The optimal Fizeau-Sagnac detun-
ings can be obtained via the single-photon resonance and
two-photon transition processes, which induce the nonrecip-
rocal properties, that is, the simultaneous photon blockades
occur when the spinning system is driven from an arbitrary
direction but not from the other side under the appropriate
parameters’ regime. Moreover, the equal-time second-order
correlation functions describing the photon blockades effect
was obtained by solving the Schrödinger equation of the sys-
tem analytically, which are in good agreement with numerical
results by using quantum master equation. The physical mech-
anism behind the nonreciprocal conventional photon blockade
is derived from the fact that �F changes the energy level
structure of the system. Meanwhile, the bidirectional contrast
ratio Cj is also introduced to further explore the relationship
between nonreciprocal strength and parameter fluctuations.
Our scheme opens a prospective way to achieve simultaneous
nonreciprocal photon blockades in both uncoupled optical
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modes, which provides a promising method to generate the
high-quality nonreciprocal single-photon source.
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APPENDIX A: OPTIMAL DETUNING FROM THE
UNCONVENTIONAL PHOTON BLOCKADE EFFECT

To make the photon distribution probability on the |20g〉
as low as possible, one can set |C20g| = 0. Then the optimal
detuning can be determined by the quartic equation

2�4 + k3�
3 + k2�

2 + k1� + k0 = 0, (A1)

where

k0 = J4 + J2κ2

2
− �2

Fκ
2 + κ4

8
,

k1 = �3
F − 2J2�F − 15

4
�Fκ

2,

k2 = 4�2
F − 2J2 − 3κ2,

k3 = 5�F, (A2)

so the optimal conditions can be found

�
(1,2)
opt ≈ −k3

8
− 1

2

√
λ4 ± 1

2

√
λ5 − λ6

4
√

λ4
,

�
(3,4)
opt ≈ −k3

8
+ 1

2

√
λ4 ± 1

2

√
λ5 + λ6

4
√

λ4
, (A3)

where

λ1 = k2
2 − 3k3k1 + 24k0,

λ2 = 2k3
2 − 9k3k2k1 + 54k2

1 + 27k2
3k0 − 144k2k0,

λ3 =
3
√

2λ1

6 3

√
λ2 +

√
−4λ3

1 + λ2
2

+
3

√
λ2 +

√
−4λ3

1 + λ2
2

6 3
√

2
,

λ4 = k2
3

16
− k2

3
+ λ3,

λ5 = k2
3

8
− 2k2

3
− λ3,

λ6 = −k3
3

8
+ k3k2 − 4k1. (A4)

For convenience, we redraw Fig. 3(g) in the main text and
some special values of the optical detuning � are marked as
shown in Fig. 7. Specifically, the two dips located at points a
and c belong to the conventional photon blockade. However,
the other four dips separately marked by the points e, f ,
g, and h originate from the unconventional photon blockade
caused by different excitation pathways (|10g〉 → |20g〉 and
|10g〉 → |00e〉 → |10e〉 → |20g〉), which can be obtained by
Eq. (A3). Similar dips originating from the unconventional

-30 -20 -10 0 10 20 30
-4

-2

0

2

4

FIG. 7. The equal-time second-order correlation function
g(2)

1 (0) in logarithmic scale versus the optical detuning. Here
|�F| = �

(1)
Fopt. The other parameters are the same as in Fig. 2.

photon blockade cannot be found in Figs. 3(c) and 3(d) be-
cause Eq. (A1) is not satisfied in the real number space when
�F = �

(1)
Fopt. Here, we do not discuss them in detail.

APPENDIX B: ENERGY GAPS OF THE SYSTEM
EIGENSTATES

In this Appendix, we give the corresponding energy gaps
of the system. According to Eq. (6), the eigenvalues of the
system in the one-photon excitation subspace can be given by

E (1)
1 = ωc + �F,

E (2,3)
1 = 1

2

(
�F ±

√
8J2 + �2

F + 2ωc
)
. (B1)

Here E (k)
1 denotes the eigenfrequency of the corresponding

sublevel |ψ (k)
1 〉 in the one-photon excitation subspace. There-

fore, the energy gaps in the one-photon excitation subspace
can be calculated as

β1 = E (1)
1 − E (3)

1

= 1

2

(√
8J2 + �2

F + �F
)
,

β2 = E (2)
1 − E (1)

1

= 1

2

(√
8J2 + �2

F − �F
)
. (B2)

On the other hand, according to Eq. (10), the eigenvalues of
the system in the two-photon excitation subspace are

E (1)
2 = 2(ωc + �F),

E (2,3)
2 = 1

2

(
3�F ±

√
8J2 + �2

F + 4ωc
)
,

E (4,5)
2 = 1

2

(
3�F ±

√
16J2 + �2

F + 4ωc
)
. (B3)

Here E (k)
2 denotes the eigenfrequency of the correspond-

ing sublevel |ψ (k)
2 〉 in the two-photon excitation subspace.
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Therefore, the energy gaps in the two-photon excitation sub-
space are

β3 = E (1)
2 − E (5)

2

= 1

2

(√
16J2 + �2

F + �F
)
,

β4 = E (4)
2 − E (1)

2

= 1

2

(√
16J2 + �2

F − �F
)
,

β5 = E (5)
2 − 2E (3)

1

= 1

2

(
�F −

√
16J2 + �2

F

) +
√

8J2 + �2
F,

β6 = 1

2
E (5)

2 − E (3)
1

= 1

2

√
8J2 + �2

F − 1

4

(√
16J2 + �2

F − �F
)
. (B4)
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