
PHYSICAL REVIEW A 107, 063517 (2023)

Transverse spin angular momentum of a space-time surface plasmon polariton wave packet
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In addition to longitudinal spin angular momentum (SAM) along the axis of propagation of light, spatially
structured electromagnetic fields such as evanescent waves and focused beams have recently been found to
possess transverse SAM in the direction perpendicular to the axis of propagation. In particular, the SAM of
surface plasmon polaritons (SPPs) with spatial structure has been extensively studied in the last decade after it
became clear that evanescent fields with spatially structured energy flow generate three-dimensional spin texture.
Here we present numerical calculations of the space-time surface plasmon polariton (ST-SPP) wave packet, a
plasmonic bullet that propagates at an arbitrary group velocity while maintaining its spatial distribution. ST-
SPP wave packets with complex spatial structure and energy flow density distribution determined by the group
velocity are found to propagate with accompanying three-dimensional spin texture and finite topological charge
density. Furthermore, the spatial distribution of the spin texture and topological charge density determined by
the spatial structure of the SPP is controllable, and the deformation associated with propagation is negligible.
ST-SPP wave packets, which can stably transport customizable three-dimensional spin textures and topological
charge densities, can be excellent subjects of observation in studies of spin photonics and optical topological
materials.
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I. INTRODUCTION

Spin angular momentum (SAM) associated with the rota-
tion of electromagnetic polarization [1–3] plays an important
role in both classical and quantum optics [4–11]. While the
SAMs of light have been studied for nearly a century, most
discussions until the 2000s focused on the longitudinal SAM
(l-SAM), which is the component parallel to the propaga-
tion axis. However, Aiello et al. and Bliokh et al. reported
that optical SAM also has a component perpendicular to the
propagation axis, transverse SAM (t-SAM) [12–14]. t-SAM
has recently received much attention as it is responsible
for a longstanding problem of polarization-dependent beam
shift (the Imbert-Fedorov shift) [12,13,15], has been given
new rotational degrees of freedom in optical manipulation
[16–18], and provides strong light-matter coupling, which
cannot be achieved by ordinary polarizations [19]. t-SAM is
proportional to the rotation of the energy flow density of the
electromagnetic field and arises when the Poynting vector of
the electromagnetic field has a spatial gradient in the plane
normal to the propagation direction of the optical field, such
as in tightly focused beams [20,21], guided light [22], inter-
ference beats between two plane waves [23], and evanescent
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fields [24]. Studies related to t-SAM have been conducted
from a wide range of perspectives, including control of SAM
with hyperbolic metasurfaces [25], and spin and momentum
densities in water waves [26].

Surface plasmon polaritons (SPPs), which are surface elec-
tromagnetic waves confined at the metal-insulator interface,
are accompanied by an evanescent field that decays in the per-
pendicular direction to the interface and thus exhibits t-SAM
in the in-plane direction (t-SAM‖) [27–31]. The direction of
the t-SAM‖ of the SPP is fixed according to the energy propa-
gation direction, resulting in a broken time-reversal symmetry.
Hence, as a counterpart of a quantum spin Hall effect of light
[32,33], the t-SAM‖ of SPPs has garnered widespread interest
in the field of spin photonics [34–38].

Furthermore, when the SPP has a two-dimensional spa-
tial structure at the confined interface, its t-SAM is not
limited to the in-plane component, but also includes an out-
of-plane component (t-SAM⊥) [39–47]. The existence of
both t-SAM⊥ and t-SAM‖ components of SPP indicates that
the SPP can have a three-dimensional arrangement of spin
textures and thus a finite surface area on the Poincaré polariza-
tion vector sphere [48–51]. Efforts to generate topologically
stable three-dimensional spin vector fields by preparing a
vortexlike energy flow have been actively pursued in the con-
text of topological quasiparticles [39,40]. The introduction
of integer topological charges into SPPs using the designed
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light-SPP coupler or vortex beam has enabled the demonstra-
tion of various plasmonic topological quasiparticles, including
plasmonic spin skyrmion [39,42,44,52], topological melon
structure [40,53], and topological plasmonic field [54,55] and
spin [41,43] lattice structures. However, the spin textures
of SPPs discussed in previous studies are typically excited
at specific coordinates and do not involve spatial movement,
such as propagation. While numerous studies have examined
and experimentally realized the motion control of magnetic
skyrmions [56–60], only a few have considered the spatial
movement of the spin texture of SPPs [61,62].

Shi et al. recently formulated the t-SAM of the structured
electromagnetic guided waves and experimentally demon-
strated the t-SAM⊥ of SPP waves with inhomogeneous
energy flow density, such as Cosine SPP and Airy SPP waves
[46]. Their formulation of the SAM suggests that all SPP
waves with both spatial structure and energy flow should
be accompanied by t-SAM⊥, even if these SPP fields are
topologically uncharged. Therefore, temporal variation of the
SPP fields with spatial structure, such as SPP wave packets
with short temporal widths [63], steering SPP beams excited
by achromatic incident waves [64], and plasmonic bullets
with confinement in all dimensions [65], are expected to be
accompanied by t-SAM⊥ in their propagation. However, al-
though several observations of t-SAM⊥ associated with SPPs
have been reported [47], the migration of t-SAM⊥ caused by
propagating SPP fields has rarely been investigated.

Here, we present theoretical calculations of the t-SAM⊥
for the space-time SPP (ST-SPP) wave packet, a newly pro-
posed type of SPP wave packet classified as a plasmonic bullet
[66]. ST-SPP wave packets are structured SPPs with artifi-
cially designed propagation characteristics achieved through
precise adjustments to the spatial and temporal frequencies
of each frequency component of the SPP wave packet. The
concept of designing propagation characteristics by adjusting
the time-space-frequency correlation of a wave packet was
initially proposed and experimentally demonstrated for light
pulses and referred to as space-time (ST) waves [67–69]. ST-
SPP wave packets have been theoretically shown to possess
attractive properties such as diffraction-free and dispersion-
free propagation invariance and arbitrary group velocities.
Efforts to experimentally excite and observe them are ongoing
[70,71].

In this study, we conducted an examination of the three-
dimensional spin arrangement of ST-SPP wave packets
through calculations of each electromagnetic component and
energy flow density. Our calculations revealed that ST-SPP
wave packets possess a three-dimensional spin texture and a
finite topological charge density. The spin texture and topo-
logical charge density of ST-SPPs with propagation invariance
were found to be spatially robust and maintain a stable spatial
distribution during propagation. Interestingly, the topologi-
cal charge density of ST-SPP wave packets exhibited spatial
distributions with only opposite signs on the left and right,
with positive and negative positional relationships reversing
depending on the group velocity. The proposed calculation
results open up the possibility of constructing plasmonic
topological quasiparticles and manipulating excited structured
SPP waves, which may have potential applications in optical
information transfer and optical trapping.

FIG. 1. (a) The spectral representation of a conventional plane
SPP wave on the surface of the SPP-light cone k2

x + k2
y = k2

sp.
(b) Spatial distribution of the field intensity of a conventional plane
SPP wave in physical space, I (x, y; t = 0). (c), (d) Same as (a), (b),
but for a Cosine SPP wave. (e), (f) Same as (a), (b), but for an ST-SPP
wave. The black lines in the side and bottom panels in (b), (d), and (f)
are cross sections through the field distributions in the main panels
at x = 0 and y = 0. Each profile in (b), (d), and (f) is normalized by
each maximum value.

II. ST-SPP WAVE PACKET

To describe the dispersion relation of a wave packet with a
two-dimensional spatial distribution, such as an ST-SPP wave
packet, a three-dimensional spatiotemporal spectral diagram
consisting of one frequency axis and two wave-number axes is
useful. While the light cone of the light in a vacuum is a cone
kl = ω/c, the three-dimensional spatiotemporal correlation of
SPP, the SPP light cone, has a curved surface that reflects the
dispersion of SPP (Fig. 1) [66,72],

ksp = ω

c

√
εm(ω)εd

εm(ω) + εd
, (1)

where εd(m) is the relative permittivity of the dielectric (metal).
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In the case of the conventional pulsed SPP wave with uni-
form intensity in the transverse direction, the spectral support
domain of the SPP wave packet corresponds to the intersec-
tion of the SPP-light cone and kx = 0 plane [Fig. 1(a)]. We
choose the y direction as the axial propagation direction and
define the z direction as the surface normal of the interface
between metal and dielectric so that the SPP is localized on
the xy plane. The out-of-plane component of the electric field
distribution of the conventional SPP plane wave packet with
finite width along the propagation direction [Fig. 1(b)] is given
by

∫
dω Ẽ (ω)ei(kyy−ωt ), where ω is the temporal angular fre-

quency and Ẽ (ω) is the pulse spectrum, the Fourier transform
of E (t ) at y = 0. The free-space pulse used to excite the SPP
has the form

E (t ) = Eoe−iωot exp

(
− t2

[�T/(2 ln 2)]2

)
, (2)

where �T = 100 fs, ωo/(2π ) = 375 THz (800 nm wave-
length), and Eo is the amplitude of the electric field. The
dielectric is assumed to be vacuum (εd = 1) and the metal
is gold (Au). We employ the Lorentz-Drude model [73]
for εm(ω). Experimentally, the conventional plane SPP wave
packet corresponds to a wave packet excited by a linear light-
SPP coupling structure with sufficiently long length, such as
a slit or gratings [74,75]. The propagation of a conventional
SPP wave on the dispersive sample surface is inevitably ac-
companied by deformation and chirping due to the frequency
dependence of the group velocity [63].

As a comparison, the spectral support domain of the Cosine
SPP wave [76] is shown in Fig. 1(c). The Cosine SPP waves
are a spatial pattern generated by the interference of two SPPs,
corresponding to the two-wave interference in free space [23].
On the SPP-light cone surface, the spectral support domain of
the Cosine SPP wave is defined by two points that have identi-
cal ky components and two kx components equal in magnitude
but with opposite signs. The spatial field distribution E cos

z is
given by

E cos
z (x | ω) = 1

2 Ẽ (ω)(ei(kxx+kyy−ωt ) + ei(−kxx+kyy−ωt ) ) (3)

= Ẽ (ω) cos(kxx)e+i(kyy−ωt ), (4)

where we have defined x = (x, y; t ). In this study, Ez is calcu-
lated for the insulator side (z > 0). Note that kx and ky are the
real components of the wave vector along the transverse (x)
and axial (y) coordinates, respectively, which satisfy the re-
lation k2

x + k2
y = k2

sp. The interference between the two plane
waves generates a periodic cosine-shaped field distribution in
the transverse direction, as its intensity profile is shown in
Fig. 1(d).

Importantly, the axial wave number of the Cosine SPP

wave, ky =
√

k2
sp − k2

x , can be arbitrarily set in the range 0 <

ky < ksp by properly selecting kx. Therefore, by making all
frequency components of the SPP wave packet into Cosine
SPP waves with designed ky, structured SPP wave packets
with arbitrary dispersion on the propagation axis can be con-
structed. The concept of designing the dispersion relation
on the propagation axis by strictly adjusting kx and ky has
already been experimentally demonstrated for light pulses in
free space and is known as a space-time (ST) wave packet

[67–69]. ST wave packets with a variety of novel propagation
characteristics have been reported, including a diffraction-free
property [67], arbitrary group velocity [77], acceleration and
deceleration in unprecedented ranges [78,79], the introduction
of dispersion properties into a light pulse in free space [80,81],
and nondispersive propagation in a dispersive media [82].

The spectral support domain of an ST-SPP wave packet,
which is the target of this study, is defined as a one-
dimensional trajectory at the intersection of the SPP-light
cone, given by Eq. (1), with a spectral plane � = (ky −
k′

o)c tan θ , that is parallel to the kx axis and makes an angle θ

with the ky axis [Fig. 1(e)], where k′
o is the SPP wave number

evaluated at the carrier frequency [i.e., k′
o = ksp(ω = ωo)] and

� = ω − ωo is the frequency measured with respect to ωo.
The projection of the spectral support domain onto the

(ky,
ω
c ) plane is a straight line, and thus the group velocity

ṽg = dω/dky = c tan θ is a constant independent of ω. Each
component of the spatial field distribution of the ST-SPP wave
packet on the z = 0+ plane, EST

x , EST
y , and EST

z , is given by
[46] (see, also, the Appendix A for details)

EST
x (x) = i

∫
dω

kz

k2
sp

∂

∂x
E cos

z (x | ω), (5)

EST
y (x) = i

∫
dω

kz

k2
sp

∂

∂y
E cos

z (x | ω), (6)

EST
z (x) =

∫
dωE cos

z (x | ω), (7)

where kz =
√

k2
l εm − k2

sp is the wave number in the surface

normal that determines the exponential decay in the z direc-
tion [E(x, y, z; t ) = E(x)eikzz]. Remember that kz and ksp are
functions of ω.

While the kx of the conventional SPP wave packet is always
0, that of the ST-SPP wave packet varies with frequency to
keep dω/dky = c tan θ . As a result, ST-SPP wave packets
possess a finite transverse bandwidth �kx and thus exhibit
spatial confinement in both the axial and transverse directions.
Previous experiments on ST wave packets in free space and
simulation results of the ST-SPP wave packets have shown
that the spatial distributions of the ST wave packets are X
shaped. [see Fig. 1(f)] [69,71,83]. The ST-SPP wave packet
with a characteristic X-shaped spatial distribution propagates
toward the y direction with the designed group velocity
ṽg = c tan θ , maintaining the identical spatial distribution un-
less ohmic losses are considered [66].

Note that the calculations of ST-SPP wave packets in this
paper are performed under the condition that (i) SPP attenua-
tion is neglected and (ii) the wave source is of infinite width.
With these assumptions, the ST-SPP wave packet constitutes
a nondiffractive beam with an infinite propagation distance,
a so-called infinite energy beam, and thus is experimentally
unfeasible [84–86]. Nevertheless, this modeling is still valid
enough to investigate a realistic ST-SPP for the following
reasons: First, even if the SPP damping is taken into account,
the spatial stability of the wave-packet shape and the distri-
bution of the normalized t-SAM remain almost unchanged.
Therefore, the attenuation does not affect the main conclu-
sions about the spin texture and the topological charge density
that we will discuss later. Second, properties of a realistic
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finite-energy ST-SPP coincide with the case of the infinite-
energy one when the SPP attenuation is taken into account.

A useful insight is obtained from the relation between the
effective beam radius D and the propagation distance Lb in
which the nondiffractive property of a finite-energy beam is
maintained. In the case of the Cosine-Gauss plasmon beam,
Lb is expressed as Lb ∼ D/sinα, where α is the incident angle
[76,87]. A finite-energy ST-SPP is generated by an incidence
of an experimentally realizable ST wave with a regulated
beam width D on a light-SPP coupler [70]. Therefore, the
practical ST-SPP wave packet should possess a similar lim-
itation.

In addition, the propagation distance of the ST wave is
tied to the uncertainty in the spectral support domain [68,88].
The ideal ST wave, in which each spatial frequency (kx) is
associated with one temporal frequency (�) with unambigu-
ous precision, is practically unfeasible because it requires
infinite beam area. Realistically, experimental limitations in
the generation of a ST wave such as a finite beam area and a
related spectral resolving power of an optical system induce
a fuzziness in the association between kx and � (i.e., spectral
uncertainty δ�). The δ� regulates the limit of the propaga-
tion distance over which the ST wave maintains propagation
invariance, LST [69,88]. This restriction is also valid for the
ST-SPP wave packet [66]. The LST is usually two orders of
magnitude larger than the Rayleigh length [69].

However, in practice, the SPP attenuation length κ , rather
than Lb or LST, regulates the propagation distance of ST-SPP
because κ limits the effective wave source width. The main
contribution to the formation of the ST-SPP wave packet
comes from wave sources located within a distance ∼κ from
the center of the wave-packet emission. This means that if the
excitation beam is sufficiently wider than κ , the difference
from the case of infinite source width becomes almost neg-
ligible. Since κ is typically a few tens of micrometers (e.g.,
κ ≈ 45 µm for SPP on a Au surface with the excitation light
wavelength of 800 nm), this condition is practical.

III. ENERGY FLOW DENSITY

For an SPP wave with an evanescent field, the SAM can be
calculated as follows:

S = 1

4ω
Im(εE∗ × E + μH∗ × H ). (8)

The electric field E is given by Eqs. (5)–(7), and the magnetic
field H is calculated from Ez by employing the Maxwell
equations [46] (see Appendix A). The asterisks signify their
complex conjugates. We can confirm the SAM is a diver-
genceless vector field, ∇ · S = 0. This implies that the SAM is
the rotation of another vector field. Indeed, taking the rotation
of the canonical decomposition of momentum density, ∇ ×
εμ(P − Po) = ∇ × ∇ × S/2, where P = Re(E∗ × H )/2 is
the total energy flow density, and Po = Im[μ−1E∗ · (∇)E +
ε−1H∗ · (∇)H]/(4ω) is the orbital contribution, we can find
the following relationship [46,89–92]:

S = 2

ω2
∇ × (P − Po) = 1

2ω2
∇ × P. (9)

From Eq. (9), it can be confirmed that the SAM of the SPP is
represented by a rotation of the energy flow density. In Fig. 2,
we plot the in-plane components of the energy flow density
in the ST-SPP wave packets calculated at different group
velocities. In this study, the group velocity of the conven-
tional SPP wave packet at the center frequency, vsp[ω/(2π ) =
375 THz] = 0.91c, is defined as the boundary velocity for
superluminal (ṽg > vsp) and subluminal (ṽg < vsp) (c: Speed
of light in vacuum). The tilt angle of the spectral plane θ is
determined by the designed group velocity, θ = tan−1(ṽg/c).
In this paper, we set ωo/(2π ) = 360 THz (390 THz) for the
superluminal (subliminal) ST-SPP wave packet. The spectral
projections onto the (ky, ω) and (kx, ω) planes for an ST-SPP
with ṽg = c, i.e., the superluminal ST-SPP wave packet, are
plotted in Fig. 2(c).

The energy flow density in the axial direction Py indicates
the direction in which the ST-SPP wave packet propagates.
The spatial distribution of Py shown in Fig. 2(a) corresponds
to the spatial distribution of the field intensity profile shown
in Fig. 1(f). In contrast to Py, which is positively valued ev-
erywhere, the spatial distribution of Px (i.e., the energy flow
density in the direction transverse to the propagation axis) is
composed of two diagonal branches with opposite signs [see
Fig. 2(b)]. These two branches are constructed by the +kx

and −kx components of the ST-SPP, indicated by red and blue
lines in Fig. 2(c), respectively. As a result of the destructive in-
terference between the two branches, Px vanishes on the x and
y axes (at t = 0). Figures 2(d)–2(f) show the Poynting vector
and the spectral projections for the subluminal ST-SPP wave
packet, ṽg = 0.8c. In the subluminal and superluminal ST-SPP
wave packets, the energy flow in the propagation direction Py

exhibits a similar spatial distribution. In contrast, the energy
flow in the transverse direction Px is reversed [Fig. 2(e)]. In
Fig. 2(g), the calculation for one branch consisting only of the
+kx components [red lines in Figs. 2(c) and 2(f)] is presented,
which is useful to understand the spatial distribution of the
ST-SPP wave packet and the energy flow. The typical spatial
distributions of Py and Px of the +kx branches are plotted in
the left panels. While Px and Py are positive regardless of the
group velocity, the spatial distribution of the branches show a
marked dependence on the group velocity. In the superluminal
regime, the angle between the branches and the propagation
axis is positive, α > 0, while in the subluminal regime, α < 0.
This implies the counterintuitive fact that the spatial angle of
the branch is determined independently of the direction of the
energy flow (see Appendix B). In addition, the intensity distri-
butions also show that Py and Px have different dependencies
on the group velocity. Py and Px at (x, y) = (0, 0) for various
group velocities ranging from 0.7 c to 1.1 c are plotted in the
right panel. Py reaches the maximum value when ṽg = vsp and
decreases as the ṽg deviates from vsp, and vice versa for Px.
Since the ratio of kx and ky represents the tilt angle of each
frequency component, an increase in kx tends to result in an
increase in Px in exchange for a decrease in Py. It is also
noteworthy that the variation of Py is less than 1%, while that
of Px exceeds 50% in this calculation range. This correlation
between Py and Px suggests that the controllable group ve-
locity of the ST-SPP wave packet can be interpreted as the
projection of the velocity of the diagonal branch onto the
propagation axis, which is propagating in a slightly oblique
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FIG. 2. The spatial distributions of the energy flow density for ST-SPP waves at t = 0. (a) Py and (b) Px components of the superluminal
ST-SPP wave packet with ṽg = 1.0c. (c) The spectral projections onto the (ky, ω) and (kx, ω) planes. (d)–(f) Same as (a)–(c), but for the
subluminal ST-SPP wave packets with ṽg = 0.8c. (g) Spatial distributions of the energy flow density of one of the branches comprising the
ST-SPP wave packet calculated from the +kx components only. Each display region is entirely identical to (b) and (e). The intensities obtained
at the x = y = 0 are plotted in the right panel as a function of group velocity. The maximum value of Py at ṽg = vsp was normalized to 1.

direction from the propagation axis. Note that the velocity
projected on the propagation axis corresponds to the velocity
of movement of the intersection point of the two branches for
the ST-SPP wave packet consisting of ±kx components.

IV. SPIN ANGULAR MOMENTUM

Figures 3(a)–3(c) show each component of the SAM of the
superluminal ST-SPP wave packet, calculated from Eq. (8) at
ṽg = c. As the main component of t-SAM‖ (Sx and Sy) arises

from the exponential decay of the in-plane energy flow density
along the surface normal, we have Sx ≈ −[1/(2ω2)]∂Py/∂z
and Sy ≈ [1/(2ω2)]∂Px/∂z and can confirm these are consis-
tent with the spatial distribution of Py and Px [see Figs. 3(a)
and 3(b)].

On the other hand, the t-SAM⊥ (Sz) arises from the rotation
of the in-plane energy flow of the SPP. As the y component
of the energy flow is approximately 10 times larger than
the x component, Py � Px, in this study [Fig. 2(g)], it dom-
inantly contributes to the t-SAM⊥, Sz ≈ [1/(2ω2)]∂Py/∂x.

FIG. 3. (a)–(c) Spatial field distribution of the spin texture, (a) Sx , (b) Sy, and (c) Sz component. (d) Cross sections along the dashed lines
in (a) and (c), and energy flow density in the propagation direction, Py, obtained at corresponding positions. (e) The L-line singularity map
of the in-plane polarization of SPP fields. (f) The inverse of the magnitude of the electric field distribution. The black lines represent the
L-line calculated by taking the contour lines of (d) with a value of 100. (g) Spatial distributions of the t-SAM⊥ and L-lines before and after
propagation calculated at t = 0 and t = 334 fs. (h) The cross sections along the lateral direction at x = 0 µm and 100 µm.
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Figure 3(d) shows the cross sections of the x and z compo-
nents of the SAM along the x axis (y = 0) [dashed lines in
Figs. 3(a) and 3(c)]. Note that the y component of the energy
flow [dashed line in Figs. 2(a)] is also plotted in the same
figure. The spatial distribution of the phase-matched Sx and
π/2-shifted Sz with respect to the Py component is consistent
with the SAM of the Cosine SPP wave reported previously
[46].

To characterize the three-dimensional spin texture of the
SAM, we evaluate where the ellipticity of the local polar-
ization is minimal in the xy plane. This region corresponds
to the equator of the Poincaré sphere and can be interpreted
as the L-line region where the field is linearly polarized
[93,94]. In Fig. 3(e), we plotted the L-line singularity map
|S|/Sz. Note that the L-lines shown in Fig. 3(e) are not a
one-dimensional trajectory, but have a finite width because
the L-line map saturates in the region where Sz is smaller
than 1%.

Because the t-SAM⊥ of the ST-SPP wave packet is gen-
erated from the cosinelike spatial structure resulting from the
interference between the +kx and −kx branches, there are al-
most no Sz components in regions where the two branches do
not spatially overlap. Therefore, the X-shaped region without
fringes of the ST-SPP wave packet exhibits linear polarization,
which is the polarization state of the conventional SPP wave
packet. In contrast, multiple split ring-shaped L-lines, which
are derived from the spatial structure of the ST-SPP wave
packet, are aligned along the x axis (y = 0) with their split
points oriented in the opposite direction around the y axis.
The split ring structures define perimeters where the t-SAM⊥
of the ST-SPP wave packet is distributed on the plane, and the
split points on the x axis are singularities where the electric
field amplitude is zero. Around these discontinuous points,
there is a steep gradient in the electric field intensity. In
Fig. 3(f), we plot the L-line obtained from Fig. 3(e) overlaid
on the inverse of the electric field distribution, 1/|E|.

Although the calculations up to this point only consid-
ered the case t = 0 and propagation loss was not taken into
account, the actual propagation of an ST-SPP wave packet
on the dispersive metal surface has a frequency-dependent
attenuation determined by the imaginary part of the dielectric
function. The attenuation of the overall intensity is inevitable,
and there will be a slight deformation where the ST-SPP
wave packet has an ultrabroadband spectral width [66,70].
To estimate the spin texture stability of the ST-SPP wave
packet, calculations of the ST-SPP wave packet before and
after propagation were performed with an attenuation model
that introduced propagation loss into Eqs. (5)–(7). The propa-
gation loss at each frequency was calculated from Im[εm(ω)].
For each frequency component with a finite transverse wave
number, which propagates in a slightly oblique direction, we
define the distance of propagation y/cos(φ), where φ is the
angle between the propagation direction and the y axis, φ =
tan−1(kx/ky). In Fig. 3(g), we plot the spatial distributions
of the t-SAM⊥ calculated by the attenuation model at t = 0
and t = 334 fs. The L-lines calculated at each time were also
overlaid on the plots.

While the Sz distribution after propagation over ∼100 µm
shows an overall attenuation in intensity, the spatial distri-
bution surrounded by the L-line is almost unchanged from

that before propagation. Moreover, the cross sections along
the dashed lines in Fig. 3(g) almost overlap [see Fig. 3(h)].
This indicates that the deformation of the spin texture with
propagation is marginal. Note that the shape of the Sz distri-
bution in Fig. 3(g) is slightly skewed towards smaller values
of y compared to the peak position of a lossless wave packet
(y = 100 µm). This happens because the front part of the wave
packet has a longer propagation distance than the tail part and
therefore attenuates more strongly (see Appendix D). From
these calculations, we conclude that the ST-SPP wave packet
can transport the spin texture in a spatially stable manner of
the order of the propagation length of the SPP.

V. TOPOLOGICAL CHARGE DENSITY

We next discuss the topological properties of ST-SPP
based on the SAM textures obtained above. We calculate
the topological charge density as in studies of topological
spin quasiparticles, where the integration of the topological
charge density over an area within the boundary of the quasi-
particle provides the topological charge (skyrmion number)
[39–45,49,53]. The topological charge density is defined by

D = 1

4π
S′ ·

(
∂S′

∂x
× ∂S′

∂y

)
, (10)

where we have normalized the SAM, S′ = S/|S|.
Figure 4(a) shows the calculated D map for an ST-SPP

wave packet with ṽg = c. The positions of the discretized
spatial distribution of D correspond to the split points of the
L-lines. One of the major characteristics of the D map is its
reversed signs on the left and right sides: The spatial distri-
bution exhibits perfect line symmetry around the x axis, with
positive values for positive x and negative values for negative
x. In addition, the D map for ṽ = 0.8c plotted in Fig. 4(b)
shows a similar symmetric spatial distribution as in the case
of ṽ = c, but with opposite signs on the left and right. The
left-right reversal and the group velocity-dependent reversal
of the sign of D are explained by the spatial distribution of Sy.
In Figs. 4(c) and 4(d), we plot each component of S′ (S′

x, S′
y,

and S′
z) for the superluminal and subluminal ST-SPP waves

shown in Figs. 4(a) and 4(b), respectively. As shown in Fig. 3,
the t-SAM‖ arising from the decay of evanescent fields has
spatial distributions consistent with the in-plane component of
P, Px and Py. While S′

x is positive throughout the calculation
region regardless of the group velocity, S′

y has a different sign
in each quadrant. The sign is switched depending on whether
the group velocity is subluminal or superluminal. On the other
hand, the spatial distribution of t-SAM⊥ is mainly deter-
mined by the partial differentiation of Py in the x direction; it,
therefore, does not exhibit quadrant dependence of the sign,
unlike S′

y.
To examine the differences in the spatial distribution of

each component in detail, the enlarged view around the split
points is plotted in the top panels, one on the left (region L)
and one on the right (region R). In contrast to the consistent
spatial distribution of S′

x and S′
z, only the S′

y component shows
the switched signs for right and left, and for superluminal
and subluminal. From Eq. (10), we can confirm that the sign
of D is switched when the two vector components of S′

are fixed, and only the sign on one component is switched.
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FIG. 4. (a), (b) Spatial distributions of the topological charge density D at t = 0 for (a) ṽ = c, (b) ṽ = 0.8c. The black lines represent the
L-line calculated by |S|/Sz. The regions around the fourth split point on the left and right from the center are defined as L and R, respectively.
(c), (d) Spatial distributions of each normalized SAM component, S′

x , S′
y, and S′

z, for (c) ṽ = c and (d) ṽ = 0.8c. The expanded views of the
dashed squares are plotted in the top panels. (e),(f) The expanded view of the right dashed square in (c) and (d) of the spatial distribution of each
component of the normalized SAM. The vector plots show the in-plane components, and the color lines show the contour of the out-of-plane
components (red: −0.9 to −0.6, blue: 0.6 to 0.9). The color map represents the distribution of D.

This is consistent with the calculation results shown in
Figs. 4(a)–4(d). It can also be seen that the in-plane and
out-of-plane components of S′ have complementary spatial
distributions at the vicinity of the split points. Both S′

x and S′
y

are zero at y = 0 and have a spatial distribution that extends
toward the y direction from the split point of the L-line. In
contrast, S′

z shows the maximum value at y = 0 and has a dis-
tribution that extends toward the x direction. The vector plots
of the in-plane components of S′ and the contour plots of the
out-of-plane component superimposed on the D map plotted
in Figs. 4(e) and 4(f) show more clearly the positional rela-
tionship of each S′ component. The plotted areas correspond
to the region R. The field distribution of the Sx in Figs. 4(c)
and 4(d) and the direction of the in-plane components of the
SAM in Figs. 4(e) and 4(f) indicate that Sx is dominant in most
of the calculation region. Only in a limited region around the
split points of the L-line does each component of SAM have
comparable magnitudes, and D a finite value.

There have been a few methods used for experimental
evaluations of D in topological SPP fields. One is to deter-
mine the t-SAM distribution from local Stokes parameters
measured over the structured field. This method uses dielectric
nanospheres as a probe to scatter the evanescent field of the
SPP [39,95]. The other is to reconstruct the vector components
of the electromagnetic field from the microscopic image of the
field intensity by using Maxwell’s equations. Phase-sensitive
near-field scanning optical microscopy (NSOM) [54] and in-
terferometric pump-probe photoemission electron microscopy
(PEEM) [40,43,55] have been reported. Identifications of the
electric fields, SAMs, L-lines, and topological charge densi-
ties of topological plasmonic skyrmions and skyrmion lattices

have been performed [44]. Similar techniques could also be
applied to the ST-SPPs.

VI. DISCUSSION AND CONCLUSION

The propagation invariance of an ST-SPP preserves the
wave-packet shape and the L-line structure, which forms
the stable frame of the SAM texture. As discussed above, the
propagation of the ST-SPP is accompanied by the propagation
of topological charge densities with different signs on its left
and right sides. In the case of a plasmonic spin skyrmion or
meron, a phase singularity (C-point) exists in the core of the
vortex where an in-plane rotating electric field (local circular
polarization) is formed [39,40,42,44,49]. It corresponds to
the north or the south pole of the Poincaré sphere; the local
polarization is circularly polarized and the SAM vector points
in the surface-normal direction. The field exhibits a 2π -phase
rotation around the center with the angular momentum pro-
vided by the excitation light field or the geometrical charge of
a coupling structure. The ST-SPP, in contrast, does not have
the plasmonic vortex like the plasmonic spin skyrmion; the
ST-SPP has an X-shaped electric field distribution, with each
branch consisting of the +kx and −kx branch components
of the spectral support domain [Figs. 1(f), 2(a)–2(f)]. In the
central part of the X shape, the electric field forms a textured
structure and oscillates at the central frequency of the wave
packet (see Appendix B). In the areas on either side, “holes”
in the electric field strength are lined up due to the interference
between the +kx and −kx branches [Fig. 3(f)]. These holes
are not accompanied by a 2π -phase rotation of the field and
are therefore distinct from the central core of the plasmon
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skyrmions mentioned above. Because the ST-SPP propagates
at the group velocity vsp, the energy flow density is inherently
dominated by the positive-valued Py component. The lack of
negative Py precludes generations of vortices around phase
singularities. However, the periodic modulation of Py intensity
in the transverse direction is responsible for the surface-
normal SAM [Fig. 3(d)]. The overall SAM vector distribution
of ST-SPP is concentrated in the positive Sx, while it changes
steeply only in the vicinity of the holes of the field. The SAM
vector is not distributed over the hemisphere or the entire
Poincaré sphere; therefore, the topological charge is neither
half integer nor integer. However, the different branches con-
sisting of the +kx and −kx components surrounding the hole
generate Sy components of different signs, resulting in the
winding of SAM and the related nonzero topological charge
density D [Figs. 4(e) and 4(f)]. This nonzero D is specific to
ultrashort ST-SPP wave packets, not to single-frequency SPP
fields, because it originates from the spatial proximity of the
+kx and −kx branches and thus should be associated with the
geometry of the spectral support domain that generates the
ST-SPP.

Since the SPP also has an evanescent field associated with
electric polarization on the metal side, it would be useful to
describe the SAM interaction with metal electrons and the
relation to topological magnetic quasiparticles. First, the SAM
in the metal comprises the circular motion of electrons or
localized circular currents. As a result, magnetization due
to the inverse Faraday effect is expected to occur within
the metal [30,96–99]. The magnetic field can interact with
the electron spin. Indeed, conduction electron spin currents
can be driven by the SPPs at a single surface [100–102], a
metallic film [103,104], and in graphene [105,106]. Second,
the SAM vector in the Poincaré sphere is regarded as an
optical correspondence of the magnetization vector in mag-
netic skyrmion systems. The topological charge density is
a physical quantity that reflects the degree of twist in the
local spin (magnetization) vector. In the context of magnetic
topological spin textures, D can be related to as an emergent
magnetic field bem [56,107,108]. In two-dimension systems,
the magnitude of the field vector directing the surface normal
is proportional to D. Importantly, bem is not merely a fictitious
field, but can also interact with the spins of other electrons
in solid materials. The interaction of bem with electron spins
via the magnetic moments described by the Landau-Lifshitz-
Gilbert (LLG) equation has been experimentally confirmed
[59,107,109–111]. This interaction, known as the topologi-
cal Hall effect [112–114], has realized the manipulation of
magnetic skyrmions by external currents. It is noteworthy that
the propagating topological charge density was found in the
context of SPPs, which belong to the class of optical topo-
logical systems. Furthermore, the correspondence between
the magnetic topological systems and optical spin topological
systems demonstrated in various previous studies suggests
that the topological charge density calculated in this study can
be considered as an optical emergent magnetic field that can
interact with the spins of electrons in materials [115,116]. In
addition, the propagation invariance and arbitrary group ve-
locities of the ST-SPP wave packet enable adaptive transport
of topological charge density with a stable spatial distribution
across subluminal and superluminal regimes. Through the

experimental excitation of ST-SPP wave packets using a spa-
tial light modulator (SLM), the intensity, spatial distribution,
and polarity of D can be adjusted externally at the driving
frequency of the SLM. This feature enables the exploration of
novel opportunities to realize spin information transmission.

In conclusion, we have conducted numerical simulations to
examine the spin texture in an ST-SPP wave packet, which is a
type of plasmonic bullet that possesses propagation invariance
at arbitrary group velocities. Our calculations reveal three-
dimensional spin textures in these wave packets, which are
found to have stable spatial distributions during propagation
over distances of the order of the SPP propagation length.
Furthermore, we have discovered that the ST-SPP wave packet
also possesses a finite topological charge density, which ex-
hibits a symmetric spatial distribution where only the sign
differs between the left and right sides of the propagation
axis. As the spin texture and topological charge density are
determined by the gradient of the energy flow density, it is
possible to design them by manipulating the ST-SPP wave
packet. These findings suggest that three-dimensional local-
ized electromagnetic fields can propagate with accompanying
spin textures and may offer the possibility to observe optical
topological particle propagation phenomena experimentally.
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APPENDIX A: THE ELECTRIC AND MAGNETIC FIELD

The electric field brought about by an SPP is given by
utilizing the transverse polarization basis with the SPP disper-
sion relation. As the SPP wave is a transverse magnetic mode,
the electric field will be given, in terms of the Hertz potential
[117–119], in the reciprocal space as

E = k × k × ψuz = (kzk‖ − |k‖|2uz )ψ, (A1)

where ψuz corresponds to the Hertz vector potential, and
we defined the parallel component of the wave vector, k‖ =
kxux + kyuy. The ratio of Ex,y to Ez can be written as

Ex,y

Ez
= kzkx,y

−|k‖|2 = ikz∂x,y

k2
sp

. (A2)

Note that we have used the dispersion relation |k‖|2 = k2
sp and

replaced kx,y → −i∂x,y. Multiplying Ez from the right-hand
side, we can get

E‖ = ikz

k2
sp

∇‖Ez, (A3)
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FIG. 5. (a) Spatial distribution of the ST-SPP wave packet, Re[Ez(x, y; t = 0)] for different group velocities ranging from 0.8c to 1.0c. Top
panels show the expanded views indicated by dashed squares. The colors of the frames (red, yellow, and blue) correspond to the colors of the
dashed squares in the main panels. (b) One of the two branch structures that make up the ST-SPP wave packet, calculated with only the positive
kx component. Top panels show the expanded views indicated by black dashed squares. White solid lines in the main panels and dashed lines
in the top panels indicate the peak positions of the band structure itself and wave fronts of inside the band structures. White arrows are the
normal direction of the wave front and correspond to the propagate directions. The angles between each line and the y axis were defined as α

and β. Note that α and β are not comparable quantities since the aspect ratio of the expanded views has been modified.

where we have defined the parallel component of the electric
field, E‖ = E − Ezuz, and the derivative in the direction par-
allel to the surface, ∇‖ := ux∂x + uy∂y.

Once we get the electric field, the magnetic field can be
calculated from Faraday’s law of induction, ∇ × E = ωμ0H ,
as follows:

H = ∇ × E
ωμ0

= (∇‖ + kzuz ) × (E‖ + Ezuz )

ωμ0
(A4)

= i
1 + k2

z /k2
sp

ωμ0
uz × ∇‖Ez (A5)

= i
ωεε0

k2
sp

uz × ∇‖Ez. (A6)

Note that we have applied k2
sp + k2

z = (ω/c)2ε. Note also that
the permittivity is dependent on whether we are on the dielec-
tric or metal side,

ε(z, ω) =
{
εd (z > 0)

εm(ω) (z < 0).
(A7)

APPENDIX B: WAVEFRONT DIRECTIONS
OF ±kx BRANCHES

The electric spatial distribution, including fine fringes
within the wave packet, is useful for visualizing the intricate
motion of the ST-SPP wave packets. Figure 5 displays the real
part of the electric field Ez (x, y; t = 0) of the ST-SPP wave
packets calculated for different group velocities ranging from
0.8c to 1.0c. The expanded views of the dashed squares are
plotted in the top panels.

All of the spatial distributions show that the subluminal
and superluminal ST-SPP wave packets with close vdiff have
similar envelope distributions, where vdiff is a difference of
the group velocity between the ST-SPP wave packet and the
conventional SPP wave packet (vdiff = |vsp − ṽg|). The angles
±α of the ±kx branches, which constitute the ST-SPP wave
packet, depend on the angle θ of the spectral plane and vary
with the group velocity. While the entire distribution of the
wave packets corresponds, the fringes within the branches
are oriented in contrasting directions in the superluminal and
subluminal wave packets. The wave fronts of the subluminal
ST-SPP are distributed in a rhombic shape surrounding the
central region, whereas the wave fronts of the superluminal
ST-SPP are distributed radially from the central region. In
Fig. 5(b), we plotted the +kx branch calculated from only
the +kx component of the ST-SPP wave packet. The angles
between the wave front inside the branch made with the prop-
agation axis are defined as β. The value of α varies widely
with ṽg, being negative during subluminal and positive during
superluminal. In contrast, the group velocity dependence of β

is relatively small compared to α, and the wave front faces the
upper right direction regardless of vg.

APPENDIX C: SPATIAL DISTRIBUTIONS OF THE FIELD
INTENSITY, t-SAM⊥, AND D OF ST-SPP

As discussed in Figs. 3 and 4 in the main text, the
spatial distribution of the SAM and topological charge
density are determined by the spatial distribution of the
ST-SPP wave packet, which vary with the designed group
velocity. In Figs. 6(a)–6(c), we plotted the I (x, y; t = 0),
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FIG. 6. (a)–(c) Spatial field distribution of the typical parameters of ST-SPP wave packets in physical space for various group velocities
ranging from 0.7c to 1.1c. (a) I (x, y, ; t = 0), (b) t-SAM⊥(x, y; t = 0), and (c) D(x, y; t = 0). White lines in (a) are cross sections along y = 0.
(d) The spectral projections onto the (ky, ω) and (kx, ω) planes. (e) Transverse wave number of the ST-SPP wave packets. The red circles
and blue line represent the λx evaluated from I (x, y; t = 0) [shown in (a)] and 2π/kc calculated from the spectral domain [shown in (d)],
respectively. (f),(g) Variation of the (f) Sz and (g) D distribution with group velocity. The horizontal profiles correspond to the integral cross
sections along the y direction of the Sz(x, y; t = 0) and D(x, y; t = 0) in the calculation region shown in (b) and (c), (−30 < y < 30) µm.

t-SAM⊥(x, y; t = 0), and D(x, y; t = 0) calculated for differ-
ent group velocities ranging from 0.7c to 1.1c. The projections
of the spectral support domains onto the (ky, ω) and (kx, ω)
planes at each group velocity were plotted in Fig. 6(d).

In both the superluminal and subluminal cases, the spectral
domain projected onto the (ky, ω) plane moves away from
the SPP dispersion curve as the vdiff increase. Therefore, the

transverse wave number kx(ω) =
√

k2
sp − k2

y increases as vdiff

increases, resulting in the transverse fringe density of the ST-
SPP wave packet is at its lowest value at ṽg = vsp. Under the
calculation conditions of this paper, in which the spectrum of
the ST-SPP wave packet is assumed to have a Fourier-limited
pulse with a peak at ωc = 375 THz, the transverse wavelength
λx of the ST-SPP wave packet is expressed as λx = 2π/kc

[Fig. 6(e)], where kc is transverse wave number evaluated at
ωc [Fig. 6(d)].

Since a regional extension of the branches distributed on
the y = 0 axis is determined by the angle of the branches, the
transverse Gaussian spatial distribution of the envelope of the
ST-SPP wave packet, wx, also varies with vg. This change
of the spatial width can also be interpreted as a change in
wave-packet width due to the difference in �kx. For ṽg 
 vsp,
the spectral domain in the (kx, ω) plane shows a slight cur-
vature but almost constant |kx|, resulting in very small �kx.
The spatial distribution of the wave packet is similar to that
of a striped ST-SPP wave packet whose spectral domain is
defined by the iso-kx plane [70], and wx is almost infinite.
In contrast, for ST-SPP wave packets with large vdiff , the

difference between ky and ksp is larger for larger � = ωo − ω,
resulting in large �kx. From Fig. 6, we can confirm the inverse
correlation between �kx and wx.

A two-dimensional plot of the cross sections of the
t-SAM⊥ [Fig. 6(b)] integrated along the y direction is plotted
in Fig. 6(f). The vertical axis shows the group velocity nor-
malized by the speed of light in a vacuum. Since the spatial
distribution of the t-SAM⊥ reflects the intensity profile of
the ST-SPP wave packet, the t-SAM⊥ becomes densely dis-
tributed in the central region as vdiff increases. In addition, the
maximum intensity of the SAM also increases with increasing
vdiff because finer fringes imply a larger gradient of the energy
flow density. A two-dimensional plot of the integrated cross
section of D plotted in Fig. 6(g) shows a spatial distribution
corresponding to the SAM. The left-right reversal of the sign
of D associated with the change in ṽg discussed in the main
text can be confirmed.

APPENDIX D: EFFECTS OF SPP ATTENUATION
ON THE t-SAM⊥ OF ST-SPP

Figures 7(a) and 7(b) show the distribution of t-SAM⊥
when the ST-SPP wave packet propagates to y = 100 µm
(t = 334 fs), with and without the effect of SPP attenuation
included in the calculation, respectively. Figure 7(a) is a re-
plot of the lower panel of Fig. 3(g), but with an enhanced
color contrast for easy recognition of the t-SAM⊥ near the
X-shaped SPP branches. We can observe, in both Figs. 7(a)
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FIG. 7. (a),(b) Spatial distributions of the t-SAM⊥ and L-lines of a ST-SPP wave packet propagated to y = 100 µm (t = 334 fs), (a) with
and (b) without including the SPP attenuation. (c),(d) Series of t-SAM⊥ distribution of a ST-SPP wave packet propagated to y = 0, 40, 80, and
120 µm, (c) with and (d) without including the SPP attenuation.

and 7(b), the faint t-SAM⊥ intensities along the X-shaped
branches (L-lines), in addition to the strong oscillatory dis-
tribution at the center part of the wave packet. The t-SAM⊥ is
caused by the spatial confinement of the SPP field. The mag-
nitudes of t-SAM⊥ are larger when the gradient of the field is
steeper, resulting in the much weaker t-SAM⊥ at the branches
than at the center of the wave packet. Moreover, Fig. 7(a)
shows that t-SAM⊥ in the upper part of the branches is clearly
weaker than that in the lower part. The field intensity is more
strongly damped at the upper side due to the attenuation of the
SPP wave, reflected in the weakening of t-SAM⊥.

The effect of SPP attenuation on the t-SAM⊥ distribution
is more evident in the snapshots of the ST-SPP wave-packet
propagation shown in Figs. 7(c) and 7(d). Figures 7(c) and
7(d) show the t-SAM⊥ when the center of the ST-SPP wave
packet propagates to y = 0, 40, 80, and 120 µm with and
without including the SPP attenuation, respectively. When
SPP attenuation is ignored [Fig. 7(d)], both the wave-packet
center and the X-shaped branch show a constant spatial

distribution and intensity of t-SAM⊥, exhibiting a propaga-
tion invariance with suppression of both the diffraction- and
the dispersion-induced deformations. In contrast, when SPP
attenuation is taken into account [Fig. 7(c)], t-SAM⊥ atten-
uates with the propagation in both the wave-packet center
and the X-shaped branch. The attenuation length of SPP is
connected to the imaginary part of the complex dispersion
relation kSPP(ω) as κ = 1

2 Im[kSPP], and is approximately 45
µm for an excitation light wavelength of 800 nm. This length
is comparable to the size of the longitudinal spread of the
center part of the ST-SPP wave packet. Therefore, the field
attenuation at the upper side of the X-shaped branch is more
pronounced than at the lower side, and so is the case for the
t-SAM⊥. Nevertheless, the stable and nondiffractive nature
of the center part of the ST-SPP wave packet is maintained
despite the overall attenuation of the SPP field, which well
demonstrates the characteristics of the ST-SPP wave packet
that can suppress the spatial spreading due to the dispersion
relation.
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