
PHYSICAL REVIEW A 107, 063516 (2023)
Editors’ Suggestion

General framework for two-photon spontaneous emission near plasmonic nanostructures
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We present a general framework that computes the two-photon spontaneous emission rate of a quantum
emitter close to an arbitrary photonic structure beyond the dipolar approximation. This is relevant for strongly
confined light fields, such as in plasmonic nano- and picocavities, which are currently being explored to enhance
higher-order light-matter interactions. In our framework, the emitter contribution to this process is calculated
analytically, while the influence of the photonic environment is determined via the computation of Purcell factors
with conventional electromagnetic simulations, which avoids tedious analytic calculations for the environment.
Also, our framework efficiently handles asymmetric structures that were not treated before. We show that placing
a hydrogen-like emitter close to a silver nanodisk enhances the transition rate between two spherically symmetric
states by 5 and 11 orders of magnitude via electric dipole and quadrupole two-photon transitions, respectively.
In the future, controlling this process promises efficient entangled two-photon sources for quantum applications,
new platforms in spectroscopy, as well as broadband absorbers and emitters.

DOI: 10.1103/PhysRevA.107.063516

I. INTRODUCTION

Spontaneous emission, which is responsible for most of the
light we see around us, is a fundamental process in the field
of light-matter interaction. In this process, an excited quantum
emitter (e.g., an atom, a molecule, or a quantum dot) decays
into a lower energy state by emitting a quantized amount of
energy in the form of a single quantum or in the form of
several quanta [1–3]. These transitions are also responsible
for the fingerprint of atoms and molecules, which is their
emission spectrum [4].

Nowadays, it is well known that the spontaneous emission
rate of an emitter does not depend only on the emitter itself
but also on its environment, termed the Purcell effect [5,6].
Moreover, an excited emitter can decay either radiatively in
the case of photon emission in the far field or nonradiatively
in the case of energy dissipation in the environment in the
form of, for example, phonons or plasmons [6]. Especially
near metallic structures, the two relaxation channels can be
enhanced [7], and in many applications one aims to harness
the radiative one.

Usually, because the size of a quantum emitter is typically
three orders of magnitude smaller than the wavelength of
the emitted light, it is sufficient to study the influence of the
environment on the emitter under the electric dipole approxi-
mation [6,8]. In the latter approach the emitter feels a uniform
electric field, thus neglecting the spatial variations of the field
over it. Therefore, the emitter is assumed to be a point and
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only electric dipole transitions can occur [9], making most of
the characteristic emitter transitions inaccessible [10].

Nevertheless, when the spatial extent of an emitter is no
longer negligible compared with the wavelength of light,
the point dipole approximation is no longer valid. This can
happen with emitters having a large spatial extent, such as
quantum dots or organic molecules [11–14] and in current
devices used to increase light-matter interactions [15] where
the light can be highly confined, such as photonic crystals
[16,17], plasmonic nanocavities [11,18–22], nanomagnonic
cavities [23,24], and polar dielectrics [25,26]. For example,
the wavelength can be squeezed by two orders of magnitude
in the form of localized surface plasmons and, therefore, the
spatial variation of the fields over an emitter is no longer
negligible [10,27–30]. Furthermore, the breakdown of the
electric dipole selection rule leads to a multitude of “for-
bidden” transitions becoming accessible, which can compete
with the one-photon electric dipole transition: the multipolar
processes, multiquanta emission processes, and spin-flip pro-
cesses [10,15,30].

In this article we focus on the two-photon spontaneous
emission (TPSE) process that is typically 8 to 10 orders of
magnitude slower than the competing spontaneous emission
of a single photon [10]. Historically this second-order process
in perturbation theory was predicted by Göppert-Mayer in
1931 [31]. It is the main process responsible for the mean
lifetime of the 2s state of hydrogen [32], which is at the origin
of the continuous spectrum coming from planetary nebulae
[33]. The first estimate of this two-electric dipole transition
rate was made by Breit and Teller in 1940 [32], and one
decade later Spitzer and Greenstein realized a refinement and
found a value of 8.23 s−1 [33]. It was not until 1975 that the
first experimental measurement of the two-photon emission
rate in hydrogen was carried out [34]. In 1981 Goldman and
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Drake realized the first calculations that include multipolar
contributions to the TPSE process [35]. For the hydrogen atom
they found that the two magnetic dipole and the two electric
quadrupole transition rates are, respectively, 12 and 13 orders
of magnitude smaller than the two electric dipole one. More
recently the TPSE process has been investigated in systems
other than hydrogen, such as in quantum dots [17,36], semi-
conductors [37–40], and epsilon-near-zero-materials [41].

Nowadays interest in the tailoring of this process grows
[40,42] as it has several applications [43]. For example,
it promises efficient entangled photon sources for quantum
applications [37,44,45], it allows spectroscopy to access a
usually invisible part of a spectrum [44], and it leads to the
conception of broadband absorbers and light emitters since
this is a continuous process [46]. However, the current study
of TPSE near arbitrary objects is hampered by a lack of
efficient theoretical and numerical methods.

A few years ago, Muniz et al. derived an expression for the
TPSE transition rate of a quantum emitter as a function of the
one-photon Purcell factors, with the restriction that structures
are symmetric, that the emitter is at specific positions, and
under the electric dipole approximation [47]. With an analyt-
ical calculation of these factors they studied the two-photon
Purcell effect near two-dimensional (2D) plasmonic nanos-
tructures, ideal to harness TPSE from single emitters [48].

In this paper we present an efficient and more general
framework that computes the TPSE rate of a quantum emitter
at any position, close to an arbitrary structure, and beyond
the dipolar approximation, i.e., by taking into account the
electric dipole, magnetic dipole, and electric quadrupole con-
tributions, respectively, which is relevant for state-of-the-art
current plasmonic nanostructures [10,27–30] and for larger
emitters [11–14]. Note that our framework is based on the
Fermi’s golden rule and is therefore limited to the weak-
coupling regime. Indeed, the perturbation theory is expected
to fail when the ratio between the one-photon spontaneous
emission rate and the transition angular frequency approaches
one [10]. Furthermore, for the extreme cases of large emitters
placed very close to a nanostructure (≈1 nm distance), the
point approximation fails and one needs to consider the spatial
extent of the emitter [14].

To this end in Sec. II we start with Fermi’s golden rule
to provide the multipolar emission channel contributions to
the TPSE rate. In Sec. III, via the expression of the rates in
terms of the dyadic Green’s function, we establish for each
multipolar contribution the connection between the TPSE rate
and the one-photon Purcell factors. In Sec. IV our frame-
work is applied to study the modification of the TPSE rate
of a hydrogen-like emitter placed near a plasmonic silver
nanodisk, also in an asymmetric configuration that was not
handled before. The document ends with a conclusion in
Sec. V. Throughout this document we refer several times to
our Supplemental Material [49], which provides more details.

II. MULTIPOLAR EMISSION CHANNEL
CONTRIBUTIONS TO THE TWO-PHOTON

SPONTANEOUS EMISSION PROCESS

In this section we discuss the contribution of the two elec-
tric dipole, two magnetic dipole, and two electric quadrupole

emission channels to the TPSE process. For this purpose
Fermi’s golden rule is reminded because it is used to calculate
the transition rates, and we introduce the states involved in
this second-order process. Then we present the Hamiltonian
that describes the emitter-field interactions, and the electro-
magnetic field operators are given. Finally, we provide the
multipolar emission channel contributions to the TPSE rate
and describe the particular case where the environment of the
emitter is vacuum.

A. Fermi’s golden rule

Let us consider a system composed of a quantum emitter
(e.g., an atom, a molecule, or a quantum dot) and its photonic
environment. With a perturbative approach the probability per
unit time that the system carries out a second-order transition
by emitting two quanta from an initial state |i〉 to a final state
| f 〉, upon an interaction described by the Hamiltonian Hint, is
given by Fermi’s golden rule [2,50]

�
(2)
i→ f = 2π

h̄

∣∣M (2)
f i

∣∣2
δ(E f − Ei ), (1)

with the second-order matrix element

M (2)
f i =

∑
l

〈 f | Hint |l〉 〈l| Hint |i〉
Ei − El

, (2)

where the summation runs over all possible virtual intermedi-
ate states |l〉 of the system. In these equations h̄ is the reduced
Planck constant, Ea stands for the energy of the system in the
state |a〉 with a = i, l, f , and the superscript (2) indicates that
this is a second-order transition. Furthermore, this second-
order transition can be seen as two successive transitions in
which each one emits a quantum.

Regarding the states in this second-order process [50], the
initial one is characterized by the emitter in an excited state |e〉
and the field in the vacuum state |vac〉, while in the final state
the emitter is in a lower energy state |g〉 and the field is in a
two-quanta state |1α, 1α′ 〉 where α and α′ stand for the modes
of the two emitted quanta. Thus, these two states are written
as |i〉 = |e; vac〉 and as | f 〉 = |g; 1α, 1α′ 〉, respectively. In the
intermediate states that connect these two states, the emitter is
in an intermediate energy state |m〉 and the field is in a one-
quantum state. Depending on which mode is the first emitted
quantum, the intermediate states are written as |l〉 = |m; 1α〉
or |l〉 = |m; 1α′ 〉. Later, the energy of the emitter in the state
|a〉 will be denoted as εa with a = e, m, g.

B. Interaction Hamiltonian

When the spatial variation of the electric field at the emit-
ter’s position is not negligible, which is possible when the
photonic environment is a nanostructure supporting localized
surface plasmons, the standard electric dipole approximation
is no longer appropriate [10,27–30]. Therefore, we study the
interaction Hamiltonian Hint of the system, which describes
the emitter-field interactions, up to the electric quadrupolar
order [6,51]:

Hint(R, t ) = −d · E(R, t )︸ ︷︷ ︸
HED

−m · B(R, t )︸ ︷︷ ︸
HMD

−Q : [∇E(R, t )]︸ ︷︷ ︸
HEQ

,

(3)
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in which the emitter’s position R is taken at the center of its
charge distribution. In this equation, ∇ = ( ∂

∂x ,
∂
∂y ,

∂
∂z )T is a

column vector with T denoting the transpose, the dot product
is the vector scalar product, the product ∇E is an outer prod-
uct, whereas the double dot product is defined as T : U :=∑

i, j T...i jUji... with T and U two tensors of rank greater than
or equal to two. Moreover, d, m, and Q are, respectively,
the electric dipole (ED), the magnetic dipole (MD), and the
electric quadrupole (EQ) moment operators.

Since a photon can be emitted by three different multipolar
emission pathways (ED, MD, and EQ), there are nine possible
contributions to the total TPSE rate. In this paper we focus
on three contributions, namely, the two-electric dipole (2ED),
two-magnetic dipole (2MD), and two-electric quadrupole
(2EQ) second-order transitions, under which both photons are
emitted by the same multipolar first-order transition. Other
combinations can be derived with similar developments, but
they are not relevant to the application we describe later on.

The electromagnetic field operators in Eq. (3) can be writ-
ten as a function of the normal modes Aα (r) of the vector
potential [52,53]:

E(r, t ) = i
∑

α

√
h̄ωα

2ε0
{aα (t )Aα (r) − a†

α (t )A∗
α (r)}, (4a)

B(r, t ) =
∑

α

√
h̄

2ε0ωα

{aα (t )Bα (r) − a†
α (t )B∗

α (r)}, (4b)

where Bα (r) := ∇×Aα (r) using the vector cross product. In
these equations ε0 is the vacuum electric permittivity, whereas
aα (t ) and a†

α (t ) are the annihilation and creation operators of
a photon in the mode α of energy h̄ωα . Note that the modes
Aα (r) are normalized and form a complete set of solutions of
the Helmholtz equation, subject to the boundary conditions
imposed by the photonic environment. These are also the
conditions applied to the modes that lead to the Purcell effect.

C. Multipolar emission channel contributions to the two-photon
spontaneous emission rate

Since the states of the system and the interaction Hamil-
tonian are known, we can calculate each multipolar emission
channel contribution to the two-photon transition rate using
Eqs. (1) to (4). If the first-order Fermi’s golden rule is used
instead of the second-order one, we find the three multipolar
emission channel contributions to the one-photon spontaneous
emission rate [50]:

�
(1)
ED(R) = π

ε0h̄

∑
α

ωα|deg · Aα|2δ(ωeg − ωα ), (5a)

�
(1)
MD(R) = π

ε0h̄

∑
α

1

ωα

|meg · [∇×Aα]|2δ(ωeg − ωα ), (5b)

�
(1)
EQ(R) = π

ε0h̄

∑
α

ωα|Qeg : [∇Aα]|2δ(ωeg − ωα ), (5c)

where the spatial dependency of the modes has been omitted.
ωα denotes the angular frequency of the photon in the mode
α and h̄ ωeg := εe − εg is the transition energy. Furthermore,
dab := 〈a|d|b〉, mab := 〈a|d|b〉, and Qab := 〈a|Q|b〉 stand for
the transition electric dipole, the transition magnetic dipole

and the transition electric quadrupole moments, respectively,
which describe the emitter’s transition from the state |b〉 to
the state |a〉 (a, b = e, m, g). Notice that the electric dipole
transition is due to the field modes evaluated at the center
of charge of the emitter, while the magnetic dipolar and the
electric quadrupolar ones are caused by the variation of the
field modes.

Now we focus on the two-photon transition rates. One
shows that the two-electric dipole contribution to the TPSE
rate is given by [47,50]

�
(2)
2ED(R) = π

4ε2
0 h̄2

∑
α,α′

ωα ωα′ |Aα (R) · Deg · Aα′ (R)|2

× δ(ωeg − ωα − ωα′ ), (6)

which involves a summation over the modes α and α′ related
to the two emitted quanta. In this equation we have defined
the second-rank tensor

Deg(ωα, ωα′ ) :=
∑

m

(
demdmg

ωem − ωα

+ dmgdem

ωem − ωα′

)
, (7)

which depends on the frequencies of the two emitted quanta.
The outer product is implied and h̄ ωab := εa − εb. As this ten-
sor involves two one-order transition electric dipole moments,
the tensor Deg describes the two successive electric dipole
transitions between the states |e〉 and |g〉 of the emitter. Subse-
quently, we refer to this tensor as the second-order transition
electric dipole moment.

Following the same procedure we derive the two magnetic
dipole (2MD) and the two electric quadrupole (2EQ) contribu-
tions to the TPSE rate (details relative to the 2EQ contribution
in the Supplemental Material [49]):

�
(2)
2MD(R) = π

4ε2
0 h̄2

∑
α,α′

1

ωαωα′
|[∇×Aα] · Meg · [∇×Aα′ ]|2

× δ(ωeg − ωα − ωα′ ), (8a)

�
(2)
2EQ(R) = π

4ε2
0 h̄2

∑
α,α′

ωαωα′ |[∇Aα] : Qeg : [∇Aα′ ]|2

× δ(ωeg − ωα − ωα′ ). (8b)

In these expressions the spatial dependency of the field modes
has been omitted, as well as the frequency dependence of the
second-rank and fourth-rank tensors defined as

Meg(ωα, ωα′ ) :=
∑

m

(
memmmg

ωem − ωα

+ mmgmem

ωem − ωα′

)
, (9a)

Qeg(ωα, ωα′ ) :=
∑

m

(
Qem Qmg

ωem − ωα

+ Qmg Qem

ωem − ωα′

)
, (9b)

where the outer product is implied. The components of the
tensor that derive from the outer product of two tensors U
and V are (UV)i1,i2,...,in, j1, j2,..., jn := Ui1,i2,...,inVj1, j2,..., jn . Thus,
these tensors describe the two successive magnetic dipole
and electric quadrupole transitions, respectively, between the
states |e〉 and |g〉 of the emitter. Subsequently, we refer to
them as the second-order transition magnetic dipole and elec-
tric quadrupole moments. Note that since Q is symmetric,
the fourth-rank tensor Qeg is also symmetric (i.e., ∀ i, j, k,

l = 1, 2, 3, Qeg
i jkl = Qeg

jikl and Qeg
i jkl = Qeg

i jlk). Moreover,
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since Q can be taken traceless [54,55], with the definition
of Qeg, the tensor satisfies the two following proper-
ties: ∀ k, l = 1, 2, 3,

∑3
i=1 Q

eg
iikl = 0 and ∀ i, j = 1, 2, 3,∑3

k=1 Q
eg
i jkk = 0.

The derived equations (6) and (8) for the multipolar con-
tributions to the TPSE rate are valid regardless of the emitter
environment. We will now derive the rate of these transitions
in vacuum. The obtained expressions will be useful in Sec. III
to normalize transition rates, and to derive expressions for
the multipolar contributions that can be computed through
classical electromagnetic simulations.

D. Free-space two-photon spontaneous emission rate

In free space the field modes are plane waves defined by a
wave vector k and a unitary polarization vector εk,s where the
parameter s = 1, 2 represents the two transverse polarizations
[50,52]. Consequently, the field modes in Eqs. (6) and (8)
become

Aα (r) −→ Ak,s(r) = eik·r
√

V
εk,s, (10)

where V stands for the arbitrary and finite-box quantization
volume in which the field is assumed to be confined. In this
case the summation over the modes α becomes [50,52]

∑
α

−→
2∑

s=1

∑
k

V →∞−→ V

(2π )3

2∑
s=1

∫
d3k. (11)

The calculations for the 2ED transition can be found in
Ref. [50], while the calculations relative to the 2EQ transition
is in our Supplemental Material [49]. Thus, for each multipo-
lar operator MO ∈ {ED, MD, EQ} the free-space TPSE rate
is given by

�
(2)
2MO,0 =

∫ ωeg

0
γ

(2)
2MO,0(ω) dω, (12)

where each multipolar contribution γ
(2)

2MO,0(ω) to the spectral

distribution of the emitted quanta γ
(2)

0 (ω) is given by

γ
(2)

2ED,0(ω) = ω3(ωeg − ω)3

36π3ε2
0 h̄2c6

‖Deg(ω,ωeg − ω)‖2, (13a)

γ
(2)

2MD,0(ω) = ω3(ωeg − ω)3

36π3ε2
0 h̄2c10

‖Meg(ω,ωeg − ω)‖2, (13b)

γ
(2)

2EQ,0(ω) = ω5(ωeg − ω)5

400π3ε2
0 h̄2c10

‖Qeg(ω,ωeg − ω)‖2, (13c)

where c denotes the speed of light in vacuum, and the
squared norm of an nth-rank tensor U with n ∈ N0 is ‖U‖2 :=∑

i1,i2,...,in
|Ui1,i2,...,in |2.

III. RELATION BETWEEN THE TWO-PHOTON
SPONTANEOUS EMISSION RATE

AND PURCELL FACTORS

A connection between the TPSE rate of an emitter and the
Purcell factors related to the one-photon spontaneous emis-
sion (OPSE) process was established for the 2ED transition
[47]. However, this formula can only be used in the basis that

diagonalizes the imaginary part of the dyadic Green’s function
independently of the frequency, which is a condition that
only allows the study of symmetric structures with emitters
at specific positions. In further work, this formula was used to
calculate TPSE spectra for the 2ED transition of a hydrogen-
like emitter placed under a plasmonic two-dimensional silver
nanodisk [48]. However, because of the aforementioned con-
dition on the basis, they could only study the case where the
emitter is on the axis of symmetry of the disk.

Consequently, it is interesting to take into account cor-
rective terms, linked to the off-diagonal components of the
imaginary part of the Green’s function, in order to derive
general formulas for the 2ED, 2MD, and 2EQ transition rates,
which can be used for structures of arbitrary shape and at
any emitter’s position. Moreover, since the derived formulas
are based on the calculation of Purcell factors, we emphasize
here that the TPSE rate of an emitter can be determined
through conventional classical electromagnetic simulations,
thus allowing to consider arbitrary shaped nanostructures.

To this end we first normalize the multipolar contributions
to the TPSE rate, Eqs. (6) and (8), with the free-space rates,
and rewrite them as a function of the dyadic Green’s function
G. Its imaginary part admits a spectral representation that
can be expanded in terms of the normal modes Aα of the
electromagnetic field [6]

ImG(ω; r, r′) = πc2

2ω

∑
α

Aα (r)A∗
α (r′) δ(ω − ωα ). (14)

Then, for each multipolar contribution we establish a con-
nection between the Green’s function and the one-photon
Purcell factors. We start with the 2ED transition, next we
extend this relation for the 2MD transition, and lastly for
the 2EQ transition (detailed derivation in the Supplemental
Material [49]).

A. Two-electric dipole transitions

By involving the Green’s function and dividing the ob-
tained spectral density γ

(2)
2ED(ω; R) by the free-space one

[Eq. (13a)] we obtain [47]

γ
(2)

2ED(ω; R)

γ
(2)

2ED,0(ω)
= D̂eg

ia (ω,ωeg − ω)
[
D̂eg

jb(ω,ωeg − ω)
]∗

× 6πc

ω
ImGi j (ω; R, R)

× 6πc

ωeg − ω
ImGab(ωeg − ω; R, R), (15)

where the Einstein summation convention is used and the caret
denotes normalized tensors (i.e., for an nth-rank tensor U with
n ∈ N0, Û := U/‖U‖). Note that the indices i and j are related
to the quantum emitted at the frequency ω while the indices
a and b concern the quantum emitted at the complementary
frequency ωeg − ω.

1. Relation with the Purcell factors

To establish the relation between the components of the
Green’s function and the one-photon Purcell factors, let us
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consider the ED transition rate written as [6]

�
(1)
ED(R)

�
(1)
ED,0

= d̂eg
i

(
d̂eg

j

)∗ 6πc

ωeg
ImGi j (ωeg; R, R), (16)

where d̂
eg

stands for the normalized one-order transition elec-
tric dipole moment.

A general electric dipole moment can be expanded with
an orthonormal basis of three dipoles. We define the Purcell
factors PED

i , which correspond to the ratio between the ED
transition rate of an emitter that has its transition electric
dipole moment aligned along one of the basis vectors (i.e.,
d̂

eg
:= êi with i = 1, 2, 3) and the corresponding rate in free

space as [47]

PED
i (ω;R) := 6πc

ω
ImGii(ω; R, R). (17)

Furthermore, we define the Purcell factors PED
i j relative

to an emitter that has its transition electric dipole moment
aligned along the bisector of two basis vectors [i.e., d̂

eg
:=

(êi + ê j )/
√

2 with i, j = 1, 2, 3 and i = j[ as

PED
i j (ω; R) := 1

2

[
PED

i (ω; R) + PED
j (ω; R)

]
+ 6πc

ω
ImGi j (ω; R, R), (18)

where we used the definition of the Purcell factors PED
i as well

as the symmetry property of the tensor ImG [56].
We can now rewrite equation (15) as

γ
(2)

2ED(ω; R)

γ
(2)

2ED,0(ω)
= D̂eg

ia (ω,ωeg − ω)
[
D̂eg

jb(ω,ωeg − ω)
]∗

× F ED
i j (ω; R) F ED

ab (ωeg − ω; R), (19)

where the components of the tensor FED are defined as

F ED
ii (ω; R) := 6πc

ω
ImGii(ω; R, R) = PED

i (ω; R), (20)

F ED
i j (ω; R) := 6πc

ω
ImGi j (ω; R, R)

= PED
i j (ω; R) − 1

2

[
PED

i (ω; R) + PED
j (ω; R)

]
,

(21)

with i, j = 1, 2, 3 and i = j. Note that we can also rewrite
equation (16) of the ED transition rate as a function of this
tensor.

Since this tensor FED is also symmetric we need to calcu-
late in the most general case six Purcell factors to get the 2ED
transition rate. For example, in a Cartesian basis we need to
calculate these six factors:{

PED
x , PED

y , PED
z , PED

yz , PED
xz , PED

xy

}
. (22)

In free-space all Purcell factors are equal to one and so the
tensor FED is equal to the identity matrix.

As a consistency check, in the basis that diagonalizes the
imaginary part of the Green’s function simultaneously at the
frequencies of the two emitted quanta (or in the range of the
studied spectrum), we retrieve the less general formula (valid

only in this specific basis) that involves only the three Purcell
factors PED

i [47]:

γ
(2)

2ED(ω; R)

γ
(2)

2ED,0(ω)
= ∣∣D̂eg

ia (ω,ωeg − ω)
∣∣2

× PED
i (ω; R) PED

a (ωeg − ω; R). (23)

B. Two-magnetic dipole transition

Similar developments lead to the 2MD transition rate:

γ
(2)

2MD(ω; R)

γ
(2)

2ED,0(ω)
= M̂eg

ia (ω,ωeg − ω)
[
M̂eg

jb(ω,ωeg − ω)
]∗

× F MD
i j (ω; R) F MD

ab (ωeg − ω; R), (24)

involving the normalized second-order transition magnetic
dipole moment, as well as the tensor FMD. Equations (20) and
(21) that establish the link between the tensor FED and the
Purcell factors for the ED transition are also valid for the MD
transition, where the Purcell factors are defined in the same
way, but with the transition magnetic dipole moment instead.

C. Two-electric quadrupole transition

Let us now focus on the 2EQ transition. Via the Green’s
function [Eq. (14)] and dividing the obtained spectral density
γ

(2)
2EQ(ω; R) by the free-space one [Eq. (13c)] we get [49]

γ
(2)

2EQ(ω; R)

γ
(2)

2EQ,0(ω)
= Q̂eg

i jab(ω,ωeg − ω)
[
Q̂eg

klcd (ω,ωeg − ω)
]∗

× Ti jkl (ω; R) Tabcd (ωeg − ω; R), (25)

where the Einstein summation convention is used and Q̂eg

stands for the normalized second-order transition electric
quadrupole moment. Note that the indices i, j, k, and l are
related to the quanta emitted at the frequency ω, while the
indices a, b, c, and d concern the quanta emitted at the com-
plementary frequency ωeg − ω.

In the previous equation we use the fourth-rank tensor T
defined as

Ti jkl (ω; R) := 20πc3

ω3
{∂ j∂l ′ ImGik (ω; r, r′)}r=r′=R, (26)

where ∂ j and ∂l ′ mean derivatives with respect to, respectively,
the coordinates r and r′. Since T is a real tensor, by using
Eq. (14) we can show that it satisfies the property ∀ i, j, k, l =
1, 2, 3, Ti jkl = Tkli j .

The derived equation contains 94 terms. Fortunately, we
can use the property of the tensor T mentioned above, as well
as the properties of the tensor Qeg derived from the symmetric
and traceless properties of electric quadrupole moments (cf.
Sec. II C), to remove redundant components. We obtain a
formula involving only (

∑5
n=1 n)2 = 152 terms [49]:

γ
(2)

2EQ(ω; R)

γ
(2)

2EQ,0(ω)
=

5∑
μ,ν=1
ν�μ

5∑
α,β=1
β�α

Q̂eg
μανβ (ω,ωeg − ω)

× F EQ
μν (ω; R) F EQ

αβ (ωeg − ω; R), (27)
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TABLE I. Modified Voigt notation: correspondence between the
pair of indices (i, j) of a symmetric and traceless tensor in three di-
mensions and the indices μ in five dimensions. The indices μ = 1, 2
correspond to the two independent diagonal components of a second-
rank tensor, while the indices μ = 3, 4, 5 correspond to its three
independent off-diagonal components. By convention, the indices of
this notation are denoted with Greek letters.

(i, j) (1,1) (2,2) (2,3) (1,3) (1,2)

μ 1 2 3 4 5

where the indices μ and ν are relative to the first quantum,
while the indices α and β are relative to the second one. In
this equation the second-rank tensor FEQ in five dimensions
is expressed as a function of the tensor T [49], and the com-
ponents of the fourth-rank tensor Q̂eg

in five dimensions is
defined as

Q̂μανβ :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q̂μαQ̂∗
νβ ∀ μ = ν, α = β

Q̂μαQ̂∗
νβ + Q̂μβQ̂∗

να ∀ μ = ν, α < β

Q̂μαQ̂∗
νβ + Q̂ναQ̂∗

μβ ∀ μ < ν, α = β

2Q̂μαQ̂∗
νβ + 2Q̂μβQ̂∗

να ∀ μ < ν, α < β,

(28)

where the eg superscript and the dependencies are omitted.
To derive this formula we use a modified version of the

Voigt notation. This mathematical convention exploits the
symmetry and the traceless properties of a tensor by remov-
ing its redundant components to represent it by a lower-rank
tensor defined in a higher-dimensional space. In this way
the one-order and two-order transition electric quadrupole
moments, which are second-rank and fourth-rank tensors in
three dimensions, are represented by means of a vector and
a second-rank tensor in five dimensions, respectively. Table I
establishes the correspondence between the new indices and
these of the represented tensors.

1. Relation with Purcell factors

As for the 2ED transition we first consider the one-photon
EQ transition rate in order to establish the relation between
the tensor FEQ and the one-photon Purcell factors, which are
defined here as the ratio between the one-photon EQ transition
rate and the corresponding rate in free space.

We can show that the EQ transition can be written as [49]

�
(1)
EQ(R)

�
(1)
EQ,0

=
5∑

μ,ν=1
ν�μ

Q̂eg
μν F EQ

μν (ωeg; R), (29)

with the second-rank tensor Q̂
eg

in five dimensions defined as

Q̂eg
μν :=

{
Q̂eg

μ

(
Q̂eg

μ

)∗ ∀ μ = ν

2Q̂eg
μ

(
Q̂eg

ν

)∗ ∀ μ < ν.
(30)

Since a general electric quadrupole moment involves up
to five independent components, it can be expanded with a
basis of five quadrupoles. To construct this basis we consider
two different types of quadrupole, sketched in Fig. 1. In our
notation these quadrupoles are represented by a vector in five

FIG. 1. Representation of the two considered types of plane
quadrupole configurations. Type II differs from type I by a rotation of
45◦ in the plane and involves only diagonal components, while type
I involves solely off-diagonal components. They are represented by
means of four dipoles of same norm (blue arrows) and the radiation
patterns are sketched in dark red. The modified Voigt notation is used
to represent their tensor by the means of a five-dimensional vector.

dimensions where only the μth component is nonzero and
equals 1/

√
2.

First, we define five Purcell factors PEQ
μ where the in-

dices {μ = 1, . . . , 5} correspond, respectively, to the indices
{xx, yy, yz, xz, xy} (three types I and two types II):1

PEQ
μ (ω; R) := 1

2 F EQ
μμ (ω; R) ∀ μ = 1, . . . , 5. (31)

These factors correspond to the ratio between the EQ tran-
sition rate of an emitter for which its transition electric
quadrupole moment is the basis tensor Q̂μ and the correspond-
ing rate in free space.

Second, we consider all of the possible combinations of the
basis quadrupoles:2

Q̂μν := 1

N
(Q̂μ + Q̂ν ) ∀ μ, ν = 1, . . . , 5, μ < ν, (32)

with N a normalization constant. This allows us to define ten
Purcell factors:

PEQ
μν :=

{
1
3 (Pμ + Pν + Fμν ) if (μ, ν) = (1, 2)
1
2 (Pμ + Pν + Fμν ) ∀ μ, ν = 2, 3, 4, 5, μ < ν,

(33)

where the EQ superscript and the dependencies have been
omitted and where the Purcell factors PEQ

μν are relative to
an emitter that has its transition electric quadrupole moment
described by the tensor Q̂μν (i.e., an equal and linear combi-
nation of the tensors Q̂μ and Q̂ν).

To summarize, we established a relation between the 15
independent components of the symmetric tensor FEQ, which

1We do not need to consider the type-II quadrupole Q̂zz because, in
our modified Voigt notation, we removed the last diagonal compo-
nent to remove redundancy with respect to the traceless property.

2Note that all considered quadrupoles need to be normalized and
that the quadrupole Q̂xxyy = (Q̂xx + Q̂yy )/

√
3 is the linear quadrupole

represented by the diagonal matrix 1/
√

6 diag(1, 1, −2).
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are related to the derivatives of the imaginary part of the
dyadic Green’s function, and 15 Purcell factors:

F EQ
μν (ω; R) =

⎧⎨
⎩

2PEQ
μ ∀ μ = ν

3PEQ
μν − PEQ

μ − PEQ
ν if (μ, ν) = (1, 2)

2PEQ
μν − PEQ

μ − PEQ
ν else,

(34)
where the dependencies have been omitted. Thus, in the most
general case these 15 Purcell factors are necessary to calculate
the 2EQ transition rate:{

PEQ
μ

} ∪ {
PEQ

μν

}
, (35)

where the indices μ, ν = 1, . . . , 5 with μ < ν correspond to
the indices {xx, yy, yz, xz, xy}. In vacuum all Purcell factors
tend towards one and so FEQ is given by

F EQ
μν =

⎧⎨
⎩

2 ∀ μ = ν

1 if (μ, ν) = (1, 2)
0 else.

(36)

D. Discussion

It is important to note that the derived equations for the
multipolar contributions to the total TPSE rate [Eqs. (19),
(24), and (27)] are valid regardless of the emitter environment.
It is thus possible to calculate the change in spontaneous
emission rates when the emitter is placed in a given photonic
environment. Moreover, the contribution of the electronic
structure of the emitter and the contribution of the photonic
environment are decoupled in these equations, and thus can
be calculated separately. Indeed, each equation involves two
tensors. The first one is the normalized multipolar second-
order transition moment that depends only on the electronic
structure. The second one is the tensor FMO, with MO ∈
{ED, MD, EQ}, presents for the two emitted quanta of com-
plementary energy and that is expressed as a function of the
one-photon Purcell factors, and thus it depends only on the
photonic environment.

It is known that the Purcell factors can be computed
classically by the ratio of the power emitted by a classical
emitter (i.e., a radiating point ED, MD, or EQ) in presence
of the photonic environment and in free-space PMO(ω; R) =
WMO(ω; R)/WMO,0(ω) [6]. Furthermore, there is a dependency
on the emitter’s orientation with respect to the photonic en-
vironment. In the end these Purcell factors can be computed
by modeling point sources in conventional electromagnetic
software packages (with e.g., the finite-element method [57],
the finite-difference time-domain method [58], etc.). The ex-
pression of the free-space emitted power for point sources can
be found in Ref. [54].

In an emission process a quantum can be emitted either
radiatively in case of photon emission to the far field, or
nonradiatively in case of energy absorption by the environ-
ment. Since our framework is based on Purcell factors we
can separate the contributions of the radiative and nonradia-
tive emission channels to the TPSE process [48]. They can
be calculated through the decomposition into radiative and
nonradiative parts of the total Purcell factors: PMO(ω, r) =
PMO

r (ω, r) + PMO
nr (ω, r) [6,48].

Furthermore, as the TPSE process is continuous [59], re-
trieving a full TPSE spectrum requires the calculation of the

Purcell factors over a range of frequencies. In addition, at each
frequency the Purcell factors need to be calculated for differ-
ent source orientations. In the most general case, six Purcell
factors are needed for the dipolar transitions [cf. Eq. (22)],
while for the quadrupolar one 15 are needed [cf. Eq. (35)].
However, depending on the symmetry of the studied photonic
environment some factors can be equal, thus reducing the
number of Purcell factors to calculate.

Once the one-photon Purcell factors are calculated clas-
sically, one can straightforwardly determine each multipolar
contribution to the TPSE rate via equations (19), (24), and
(27) when the normalized multipolar second-order transition
moments are known. In our framework these are calculated
analytically via the wave functions of the emitter.

IV. APPLICATION

As a validation step of the developed framework, we study
the two-photon Purcell effect for an s → s transition of a
hydrogen atom placed 10 nm under a quasi-two-dimensional
silver nanodisk, with the same system’s parameters as in
Ref. [48]. In this study, they calculated the 2ED contribution
to the TPSE rate in the specific case where the emitter is
placed on the axis of symmetry of the disk and with an analyt-
ical calculation of Purcell factors [48]. With our more general
framework, the Purcell factors are computed numerically and
the 2EQ contribution is also determined. Subsequently, we
exploit the flexibility of our method in the case of an off-
axis emitter. Note that since the considered structure is not
relevant to enhance MD transitions [22], we did not calculate
the magnetic contributions to the TPSE rate. Furthermore, the
mixed ED-EQ two-photon s → s transition is not allowed by
selection rules [35,60]. Our methods are explained below and
then the results are presented and discussed.

A. Methods

Concerning the analytical calculation of the second-order
transition moments, the determination of the tensor Deg can
be found in Ref. [47] while the derivation of Qeg is given
in our Supplemental Material [49]. The obtained tensors are
independent of the frequencies of the emitted quanta and are
respectively given by

D̂eg = 13√
3
, (37a)

Q̂eg = 1√
20

⎛
⎜⎜⎜⎜⎝

4/3 −2/3 0 0 0
−2/3 4/3 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠, (37b)

where 13 is the identity matrix in three dimensions.
Near a low-loss plasmonic structure the nonradiative emis-

sion channel is dominated by the excitation of dark plasmonic
modes, leading to absorption and no emission in the far field
[48]. Thus, the two-quanta spontaneous emission process of
an emitter close to this type of structure is dominated by
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photon

plasmon
−

nm

2D plasmonic 
silver nanodisk

̂

FIG. 2. From left to right: photon-photon, photon-plasmon, and
plasmon-plasmon emission channels of the TPSE rate between two
symmetric states of a quantum emitter. The latter is placed on-axis or
off-axis 10 nm below a 5.2 Å thickness silver disk and its transition
frequency is h̄ ωeg = 2.64 eV, which corresponds to a wavelength of
470 nm. The first quantum is emitted at the frequency ω while the
second one is emitted at the complementary frequency ωeg − ω.

three emission pathways, namely the photon-photon, photon-
plasmon, and plasmon-plasmon channels (Fig. 2), which can
be computed through the decomposition of the Purcell factors
into radiative and nonradiative parts.

When the emitter is on-axis the system has az-
imuthal symmetry, reducing the number of Purcell fac-
tors to calculate. Thus, at each frequency three Pur-
cell factors for the dipolar transition and seven for the
quadrupolar one need to be calculated: {PED

x , PED
z , PED

xz }
and {PEQ

xx , PEQ
xz , PEQ

xy , PEQ
xxyy, PEQ

xxxz, PEQ
xxxy, PEQ

xzxy}, where the Z

direction has been taken perpendicular to the disk. In contrast,
when the emitter is shifted in the X direction, the system
has no longer an azimuthal symmetry but rather a XZ-plane
mirror symmetry and all factors (6 + 15) need to be calculated
[cf. Eqs. (22) and (35)].

In practice each Purcell factor is computed over a range
of frequencies with the COMSOL MULTIPHYSICS® software,
which is based on the finite-element method, on a single
core of a computer using an AMD Ryzen Threadripper PRO
5995WX CPU and 256 GB of RAM, thus enabling parallel
computation. The parameters of our comsol models in the
frequency domain are the following. First, the domain is a
sphere with a radius equal to the studied wavelength λ and
an unstructured tetrahedral mesh is used where the smallest
element has a characteristic size of 0.25 nm. Second, perfectly
matched layers (PMLs) are defined as an outer layer of the
domain with a thickness of λ/4. Third, the silver nanodisk
is modeled using a cylinder with a height t = 5.2 Å and
a diameter D = 25 or 60 nm. Its optical response is given
by the Drude conductivity σ (ω) = ε0τω2

p/(1 − iωτ ) with the
plasma frequency h̄ωp = 9.1 eV and the relaxation rate of sil-
ver h̄τ−1 = 18 meV, as used in Ref. [48]. Fourth, the classical
emitter is placed 10 nm under the nanodisk and is modeled by
a radiating electric point dipole or quadrupole. Fifth, the Pur-
cell factors are calculated by integration of the emitted power
either at the inner surface of the PML for the radiative part or

1
6

4 6
5

4

6
4

6
5

6 7 8

3

10

9
9

6
4

3

1 2

1 2

1 1

1

FIG. 3. Photon-photon (ph-ph), photon-plasmon (ph-pl), and plasmon-plasmon (pl-pl) relaxation channels of the spectral TPSE rate for the
2ED (top row) and 2EQ (bottom row) transitions between two symmetric states of a quantum emitter. The latter is placed 10 nm below a 5.2 Å
thickness silver disk and its transition frequency is h̄ ωeg = 2.64 eV. The first two columns correspond to a 25 nm diameter disk, while for the
third one the diameter is 60 nm. The emitter is placed on the axis of symmetry of the disk, except for the central column where it is shifted in
the direction parallel to the disk by D/4. The spectra were computed over 199 frequencies for the emitter on-axis and over 99 frequencies for
the emitter off-axis. The first quantum is emitted at the frequency ω while the second one is emitted at the complementary frequency ωeg − ω,
leading to symmetric spectra. In Fig. 4, the surface current density on the disk corresponding to some radiative and nonradiative peaks, which
are identified by respectively a cyan and magenta number, is plotted.
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1 2 3

6 7 8

4 5

9 10

FIG. 4. Surface current density on the silver nanodisk relative to
some radiative and nonradiative peaks, which are numbered respec-
tively in cyan and magenta in Fig. 3. These plots were obtained by the
excitation of the modes on the structure with a specific orientation of
the emitter, either a dipole or a quadrupole. For example, the mode 1
can be obtained with a dipole oriented along the X axis but also with
the quadrupole Q̂xz, while the mode 10 can only be obtained with
quadrupoles, with for example Q̂xx and Q̂xy.

at the surface of a fictional sphere of 5 nm radius centered on
the emitter for the total part (radiative plus nonradiative).

B. Results

The photon-photon, photon-plasmon, and plasmon-
plasmon relaxation channels of the spectral TPSE rate for
the 2ED and 2EQ contributions are plotted in Fig. 3. The
emitter is placed on-axis for the spectra in the first and in
the last columns, while it is shifted by a quantity D/4 in the
plane parallel to the disk for the spectra in the central column.
The computation of one Purcell factor over 199 frequencies
has required 45 minutes and 13 GB of RAM for the 25 nm
diameter disk, and 135 minutes and 30 GB of RAM for the
60 nm diameter one.

First of all, our results obtained for the ED two-quanta
transition where the emitter is placed on-axis (top left and
top right spectra) correspond to the results in Ref. [48] with
their analytical calculation of Purcell factors with a plasmon
wave-function formalism, thus confirming our method. Fur-
thermore, the 2ED and 2EQ transitions are strongly enhanced
by the plasmonic disk. Indeed, with the 25 nm diameter disk
(left spectra) at ω = ωeg/2, i.e., the frequency where both pho-
tons have the same energy, the 2ED and 2EQ transition rates
are enhanced by, respectively, 8 and 15 orders of magnitude
for the emission of two plasmons (dotted red line) and by, re-
spectively, a factor 1.12 × 105(±0.4%) and 7.5 × 1011(±5%)
for the emission of two photons (solid blue line). The standard
deviation, expressed in percent, has been calculated by com-
puting the comsol models at this frequency with finer mesh
parameters.

Concerning the comparison of the different spectra, the
surface current density of some modes excited on the disk
is plotted in Fig. 4. We first observe that the 2EQ spectrum
relative to a 25 nm diameter disk (bottom left spectrum) has an
additional nonradiative peak compared with the 2ED one (top
left spectrum) that corresponds to a quadrupolar mode (cf.
mode number 4 in Fig. 4). Second, when the emitter is shifted
(central spectra), the breaking of the azimuthal symmetry of
the system leads to a greater wealth of excited modes (cf.

nonradiative mode numbers 4 and 5 in Fig. 4, note that the
mode 5 peak is weakly visible at the scale of the figure), but
the central radiative peak is slightly reduced. Note that in the
off-axis configuration (central spectra), the 2ED spectra (top
central spectrum) exhibits a peak (mode 4) corresponding to
a quadrupolar mode excited on the structure, which was not
possible to excite in the more symmetric on-axis configuration
(top left spectrum). Third, when the diameter of the disk
increases (right spectra), the frequency of the peaks changes
and new, both radiative and nonradiative, peaks appear, which
correspond to higher-order modes (cf. mode numbers 2, 3, 7,
8, 9, and 10 in Fig. 4). Remark, for example, that the dipolar
mode 1 appears multiple times, such as in Fig. 3 top left
and top right. The modes at these peaks have the same shape
(Fig. 4), but there is a frequency shift because of the different
disk radius. Note that only the bright peaks would show up in
scattering spectra [61–63].

V. CONCLUSION

We develop a general framework to efficiently calculate
two-photon spontaneous emission spectra of a quantum emit-
ter in the vicinity of an arbitrary shaped nanostructure. It is
based on the analytical calculation of the emitter contribution
and, for the environment, on the classical computation of Pur-
cell factors related to one-photon spontaneous emission. The
latter are calculated by modeling classical point emitters in
electromagnetic simulations, thus facilitating more complex
geometries without available analytical models. Moreover,
our framework goes beyond the dipolar approximation by
taking into account the second-order multipolar interactions
and is therefore relevant for plasmonic nano- and picocavities
in which light is highly confined. In addition, our framework
allows us to calculate separately the radiative and nonradiative
emission channels, which is important to distinguish for many
applications.

As a direct application we use the COMSOL MULTIPHYSICS®
software to show an enhancement of 5 and 11 orders of
magnitude for the electric dipole and quadrupole two-photon
transitions for the s → s transition of a hydrogen-like emit-
ter placed under a plasmonic silver nanodisk. Subsequently,
the flexibility of our framework allows the optimization and
the design of platforms for efficient entangled two-photon
sources as an alternative to the conventional parametric
down-conversion sources. These devices can include peri-
odic structures in order to enhance the photon pair emission
rate in the far field [64]. For on-chip sources one proposes
nanostructures joined to waveguides [65], photonic crystals
[66], or cavities [67] in order to create an integrated two-
photon source. The method can be used to study two-photon
spontaneous process for diverse quantum emitters and can be
extended for example by including interference between the
multipolar emission channels of this process [28].
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