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Trapping of ultrashort pulses in nondegenerate parametric conversion
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Parametric conversion of ultrashort pulses is a versatile tool in nonlinear and quantum optics. Here, we present
a detailed theory and numerical investigation of the phenomenon of the signal and idler trapping by the ultrashort
pump pulse in a material with second- and third-order nonlinearities. The trapping regime becomes possible
by balancing the characteristic length scales associated with the group-velocity mismatch and second-order
nonlinearity, ensuring that signal, idler, and pump pulses propagate with the pump group velocity. We have
derived analytical solutions for the trapped states and found that the transition between the broadband coherent
and in-coherent signal and idler spectra accompanies the changeover between the trapping and no-trapping
regimes. We have also demonstrated the higher-order trapped states, reported a significant boost to conversion
efficiency in the trapping regime and considered in detail a particular case of the pump pulse being an optical
soliton.
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I. INTRODUCTION

Parametric frequency conversion is one of the most fun-
damental and well-studied nonlinear optical processes, which
plays a key role in such applications, as spectroscopy and
generation of quantum states of light [1–4]. The physical
mechanism underpinning diverse applications of parametric
processes is the pump’s instability triggered by either vacuum
fluctuations or a weak seed. In both cases, the instability peaks
at the phase-matching conditions and generates a pair of signal
and idler photons. Over the past couple of decades, appli-
cations of ultrashort pulses for parametric conversion have
become a widely spread experimental technology [3–13].

At first glance, when dealing with the broadband frequency
conversion of ultrashort pulses, one rightfully expects that
the group-velocity walk-off should limit the useful propaga-
tion distances and conversion efficiency. However, dispersion
engineering often allows manipulating the group velocities
of different parts of broadband signals to suppress their
dispersive spreading and walk-off from the pump. One well-
studied realization of such a scenario drives supercontinuum
generation in photonic crystal fibers [14–17]. Also, supercon-
tinuum generation via group-velocity matching of the 1-μm
pump and its half-harmonic has been recently demonstrated
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in thin-film lithium-niobate waveguides [18]. Other exam-
ples come from the near-group-velocity-matched four-wave
mixing between solitons and dispersive waves [19,20] and
photon-pair generation in the pulsed four- and three-wave
mixings [21–23]. Similar combinations of group velocities
were shown to give a dramatic increase in the efficiency of
parametric conversion, which occurred due to suppression
of the signal and idler walk-off induced by the femtosecond
pump [5–8].

The first theory of pulse trapping in parametric three-wave
mixing through the interplay of the group-velocity walk-off
and χ (2) nonlinearity dates back to 1971 [24]. This not widely
known reference should not be confused with the later and
quite famous Karamzin-Sukhorukov paper on χ (2) solitons
due to the balance of diffraction/dispersion and nonlinearity
[25,26]. Below, we present detailed theoretical studies of the
trapping effect in parametric down-conversion of ultrashort
pulses. We demonstrate the trapped states of multiple orders,
explore their role in the trapping scenario, and compare the
amplified fields’ spectral bandwidth and coherence with and
without trapping. A practical example we consider describes
frequency conversion of the red pump to the infrared signal
and idler in a thin-film lithium niobate waveguide. Although
the interplay of group-velocity mismatch and χ (2) nonlinearity
is the focus of our attention, we also investigate the role of
cross-phase modulation induced by the Kerr effect in the last
section.

II. THREE-WAVE MIXING MODEL

We describe the three-wave mixing of ultrashort pulses
in an optical waveguide using the coupled equations for the
complex envelopes of the pump Ap, signal As, and idler Ai
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fields [24]

i ∂zAp = 1
2β2p∂tt Ap − γ2AsAi

− [γ3pp|Ap|2 + 2γ3ps|As|2 + 2γ3pi|Ai|2]Ap,

i ∂zAs = −ivs∂t As + 1
2β2s∂tt As − γ2ApA∗

i

− [γ3ss|As|2 + 2γ3ps|Ap|2 + 2γ3si|Ai|2]As,

i ∂zAi = ivi∂t Ai + 1
2β2i∂tt Ai − γ2ApA∗

s

− [γ3ii|Ai|2 + 2γ3pi|Ap|2 + 2γ3si|As|2]Ai. (1)

Here, z is the propagation distance, and t is time in the frame
comoving with the group velocity of the pump. |Ak|2 is mea-
sured in Watts. Second- γ2, and third-order γ3..., nonlinear
coefficients have units of m−1W−1/2 and m−1W−1, respec-
tively. Their relation with material parameters and waveguide
geometry is detailed in Appendix A.

The pump, signal, and idler fields are centered at fre-
quencies ωp, ωs, and ωi, respectively, h̄ωp = h̄ωs + h̄ωi. It
is assumed that the three-wave mixing (TWM) process at
the carrier frequencies of the pump, signal, and idler fields
is phase matched, i.e., βp = βs + βi. Here, βk = β(ωk ), k =
p, s, and i, are the respective propagation constants. Pump,
signal, and idler could belong to the same or different trans-
verse mode families. The four-wave mixing (FWM) energy
conservation, 2h̄ωp = h̄ωs + h̄ωi, cannot be satisfied simul-
taneously with the assumed TWM one, h̄ωp = h̄ωs + h̄ωi,
therefore, it is safe to disregard the FWM terms omitted in
Eq. (1).

Group velocities are defined as 1/β1k , where β1k =
∂ωβ(ω)|ω=ωk . Group-velocity mismatch (GVM) between sig-
nal and pump,

vs = β1s − β1p, (2)

and pump and idler,

vi = β1p − β1i (3)

are the key parameters controlling transition between the
trapped and the untrapped states of the parametric generation.
For future convenience, we also introduce

v± = 1
2 (vs ± vi ). (4)

Dispersion coefficients are β2k = ∂2
ωβ(ω)|ω=ωk .

To analyze the initial stage of parametric generation, we
assume that the signal and idler waves are weak and neglect
the terms nonlinear in As and Ai. Then, Eq. (1) separate to the
independent equation for the pump,

i ∂zAp = 1
2β2p∂tt Ap − γ3pp|Ap|2Ap, (5)

and a pair of equations for the signal and idler fields,

i ∂zAs = − i vs∂t As + 1
2β2s∂tt As − γ2ApA∗

i

− 2γ3ps|Ap|2As,

i ∂zAi = ivi∂t Ai + 1
2β2i∂tt Ai − γ2ApA∗

s

− 2γ3pi|Ap|2Ai.

(6)

We assume that the pump pulse has the peak power P
and duration T . Then, the dispersion length Ld , and nonlinear

(Kerr) length L3nl , are defined as

Ld = T 2

|β2p| , L3nl = 1

γ3ppP
. (7)

Taking as an example a 600 × 500 nm2 lithium niobate
ridge waveguide, see Ref. [27], and selecting pump at λp =
0.685 μm in the fundamental TE mode, and signal and idler
in the fundamental TM mode at λs = 1.5 and λi = 1.26 μm,
we estimate β2p ≈ −2.8 ps2/m, γ2 ≈ 200 W−1/2m−1, and
γ3pp ≈ 7.1 W−1m−1. For the practical range of T between
1 ps and 100 fs this gives the range of Ld between 30 cm and
3 mm. For P between 1 W and 1 kW, L3nl varies between
15 cm and 0.15 mm.

Equations for signal and idler make their own characteristic
lengths. We define the GVM length as

Lgvm = T√|vsvi|
. (8)

The above waveguide geometry gives vs ≈ 0.016/c and vi ≈
0.013/c, where c is the vacuum speed of light. Thus, for T
between 1 ps and 100 fs, Lgvm varies between 2 cm and 2 mm.
Nonlinear length originating in the second-order parametric
effect is defined as

L2nl = 1

γ2

√
P

, (9)

and varies between 5 mm for P = 1 W and 0.1 mm for 1 kW.

III. TRAPPING EFFECT

A. Eigenvalue analysis

In this section, we assume that the waveguide length L is
shorter than Ld and L3nl but is much longer than Lgvm and L2nl .
Therefore, we assume that the pump pulse maintains its shape,
peak power, and spectral content,

Ap(t, z) = S(t ) =
√

P sech(t/T ), (10)

which can be referred to as the stationary pump approx-
imation. This approximation implies that the pump pulse
degradation due to energy transfer to signal and idler,
dispersion and self-phase modulation are negligible over
propagation distances of interest. Furthermore, we disregard
the second-order dispersion in the signal and idler equation,
and introduce

As(t, z) =eλzas(t ),

Ai(t, z) =eλ∗za∗
i (t ),

(11)

so that Eq. (6) reduces to an eigenvalue problem,

λ

[
as

ai

]
=

[ −vs∂t iγ2S(t )
−iγ2S(t ) vi∂t

][
as

ai

]
. (12)

Any eigenvalue λ with a positive real part has physical mean-
ing of parametric gain, g = Re(λ) > 0, and characterizes the
exponential growth rate of the signal and idler fields from
noise or a weak seed field.

For the cw pump, i.e., S(t ) = const, Eq. (12) can be
easily solved analytically, see Appendix B. For a pulsed
pump S(t ), the problem can be fully analyszd only numer-
ically. To perform this, we replaced derivatives in Eq. (12)
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FIG. 1. Maximal gain (in the units of cm−1) as a function of
the GVM parameters vs and vi for the pump pulse peak power
P = 0.25 W and width T = 0.5 ps. c is speed of light in vacuum.

with suitable algebraic approximations and solved the result-
ing matrix eigenvalue problem using standard linear algebra
tools. Figure 1 shows the maximal parametric gain, max g =
max Re(λ), plotted as a function of the GVM parameters vs

and vi, for P = 0.25 W and T = 0.5 ps. The gain function is
profoundly asymmetric and much higher in the quadrants with
vsvi > 0. This appears to be in stark contrast to the CW pump
case where the maximal gain is always equal to max[g(cw)] =

γ2

√
P = 1 cm−1, regardless of the combination of vs and

vi, see Appendix B. The gain increases sharply at vi = 0,
which is directly associated with a qualitative change in the
corresponding eigenvectors signaling transition between the
trapped and delocalized signal and idler pulses, see Fig. 2.

The vsvi < 0 quadrants correspond to the case when the
signal-idler pulses are simultaneously slower or faster than
the pump. In this case, a typical spectrum contains a quasi-
continuous band of eigenvalues with Re(λ) > 0, see Fig. 2(a).
The unstable eigenvectors have narrow quasimonochromatic
spectra and are delocalized in time, see Figs. 2(b) and 2(c).
The sequence of blue peaks in Fig. 2(b) is obtained by adding
spectral profiles of all the unstable eigenvectors with the am-
plitudes taken proportional to their gain.

For

vsvi > 0, (13)

one pulse from the signal-idler pair is faster, and the other is
slower than the pump pulse. The respective quadrants in Fig. 1
have one or few unstable eigenvalues, which are discrete and
isolated from the stable continuum, see Fig. 2(d). The unstable
eigenvectors are well localized in the time domain, they are
both trapped almost in the middle of the pump pulse, which
constitutes the essence of the trapping effect of the signal and
idler pulses, see Figs. 2(e) and 2(f).

Importantly, Eq. (12) also allows analytical solutions cor-
responding to the zero order, i.e., fundamental trapped state,
see Ref. [24] and Appendix C. Explicit expressions for the
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FIG. 2. Spectrum and unstable eigenvectors of Eq. (12) for P = 0.25 W, T = 0.5 ps, and different combinations of GVM parameters:
(a)–(c) vs = 0.013/c, vi = −0.016/c; and (d)–(f) vs = 0.013/c, vi = 0.016/c. (a) and (d) show eigenvalues calculated using numerical
discretization with N = 1024 Fourier modes. Spectra of the signal field corresponding to particular eigenvalues, indicated with red arrows
in (a) and (d), are plotted in panels (b) and (e), respectively. The shaded area in (b) shows the combined spectrum of all signal components of
unstable perturbations (see the main text for details). Panels (c) and (f) show the corresponding mode profiles in time domain.

063515-3



GORBACH, ROIZ, VAINIO, AND SKRYABIN PHYSICAL REVIEW A 107, 063515 (2023)

eigenvector and eigenvalue corresponding to the trapped state
are given by

λ = g =
⎛⎝√

P

Pth
− 1

⎞⎠ vsvi

2T v+
, (14a)

as(t ) = √
vi

exp{−t/T̃ + t/2T }
coshm(t/T )

, (14b)

ai(t ) = √
vs

exp{−t/T̃ − t/2T }
i coshm(t/T )

, (14c)

Pth = vsvi

4γ 2
2 T 2

, T̃ = vsvi

gv−
, m = 1

2

√
P

Pth
, (14d)

where v± are defined in Eq. (4) and vsvi > 0. These solutions
match the ones in Fig. 2(f) exactly. The trapping effect hap-
pens over the propagation distances shorter than the distance
at which energies of the signal and idler become large enough
to degrade the pump significantly, typically multiples of 1/g.

Parametric gain threshold g = 0 is exceeded for P > Pth.
For our geometry and T = 0.5 ps, the value of Pth is Pth =
0.15 W. Pth can be found from the balance condition between
the GVM and the χ (2) lengths. Indeed, resolving

L2nl = 2Lgvm (15)

relative to P yields Pth, see Eqs. (8) and (9). This remarkable
result implies that the three bright pulses with substantially
different group velocities can form a transient but long-living
state sustained by a balance between the second-order non-
linearity and group-velocity mismatch. Before we move onto
analysis of the propagation of trapped states, it will be insight-
ful to formalize the stationary-pump approximation used to
derive Eq. (12).

B. Stationary-pump approximation

The analytical result in Eq. (14a) allows us to formulate the
limits of validity of the stationary-pump approximation quite
comprehensively. Requiring that the parametric gain length
Lg = R/2g needed to achieve the signal amplification ratio
R = ln(|A(out)

s |2/|A(in)
s |2) > 1 is smaller than the Kerr nonlin-

earity length L3nl , i.e., Lg < L3nl , we obtain

T >
R

1 − (2R
√

P/Pnl − 1)2
Tnl ,

Pnl = 4γ 2
2

γ 2
3pp

vsvi

v2+
, Tnl = γ3ppv+

γ 2
2

.

(16)

Similarly, requiring that the gain length is smaller than the
dispersion length of the pump Lg < Ld , we obtain√

P

Pnl
>

Tnl

4T

[
1 + RTd

T

]
,

Td =|β2p|v+
vsvi

.

(17)

Conditions in Eqs. (16) and (17) together define a domain
on the plane of parameters (P, T ) of the input pulse, see
shading in Figs. 3(a) and 3(b). The Lg = L3nl (red line) and
Lg = Ld (black line) curves intersect when Ld = L3nl , see

0 0.05 0.1 0.15 0.2 0.25
(P/Pnl)

1/2

0

0.1

0.2

0.3

0.4

0.5

0.6

T 
(p

s)

(a)

(b)

β   =-0.028 ps /m
2p

2

β   =-2.8 ps /m2p
2

0 0.05 0.1 0.15 0.2 0.25
(P/Pnl)

1/2

0

0.1

0.2

0.3

0.4

0.5

0.6

T 
(p

s)

FIG. 3. Full-red (light gray) and black lines show the T vs P as
given by Eqs. (16) and (17), respectively, for R = ln(103). Dashed-
dot line in (a) shows the parametric threshold T vs Pth. The same
threshold practically merges with the full-black line in (b). Dashed
blue lines show the T vs P0 for the soliton pulses, see Eq. (18). For
the chosen waveguide geometry, Pnl = 3.1 kW and Tnl = 8.5 fs.

Fig. 3(a). The intersection point defines the minimal pulse
duration satisfying the stationary-pump approximation,

Tmin = R√
P0/Pth − 1

Td ,

P0 = |β2p|
γ3ppT 2

.

(18)

If the intersection does not occur, then the validity range of the
stationary pump approximation is defined by the red line, i.e.,
by Eq. (16), with Tmin = RTnl , see Fig. 3(b). A special case of
the stationary pump pulse profile is when it forms a soliton.
This case deserves a separate consideration, see Sec. III E
below.

C. Dynamics of fundamental trapped states

We now choose a point where the stationary-pump ap-
proximation is predicted to work and describe a series of
numerical simulations of Eq. (1) illustrating emergence and
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FIG. 4. Numerical simulation of the parametric conversion for P = 0.25 W, T = 0.5 ps, and spectrally uniform initial noise ∼10−5
√

P,
in the signal and idler fields. Panels (a)–(e) correspond to vi = −0.016/c, panels (f)–(j) correspond to vi = 0.016/c. The signal GVM is
vs = 0.013/c in all cases. With these parameters, the GMV length is Lgvm ≈ 1 cm. Panels (a) and (f) show fractional total energy in the pump
and signal fields, where E0 is the total energy of the input pump, E = ∫ |F |2dt , F is either the pump or the signal field. The inset in (a) shows
a zoomed part of the signal energy plot. Space-time dynamics of the pump and normalized signal and idler fields, Ā = A/max[|A|] are shown
in panels (b)–(d) for vivs < 0 and in (g)–(i) for vivs > 0. Panels (e) and (j) show the output spectra. The shaded region in (e) indicates the
predicted gain spectrum computed using the eigenvalue problem in Eq. (12)

evolution of the signal and idler pulses. Changeover between
trapping vsvi > 0 and no-trapping vsvi < 0, conditions makes
a profound impact on the observed spatiotemporal evolution
and generated spectra, see Fig. 4. We fixed |vs| = 0.016/c,
|vi| = 0.013/c, and used the pump with P = 0.25 W and
T = 0.5 ps (Lgvm ≈ 1 cm), see the rhombus in Fig. 3(a). Uni-
form random noise of a small amplitude |A| = 10−5

√
P was

added in the signal and idler fields to trigger the parametric
amplification processes. For vsvi < 0 (left column of Fig. 4),
we observe amplification of the signal-idler noise with the
spectral bandwidth predicted by the eigenvalue analysis, cf.
Figs. 2(b) and 4(e). The generated signal and idler waves are
continuously emitted away from the pump because they have
different group velocities determined by the linear dispersion,
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see Figs. 4(c) and 4(d). Due to dispersion of the pump pulse,
amplification of the signal and idler saturates at z ≈ 47Lgvm,
see Figs. 4(a) and 4(b).

For vsvi > 0 (right column of Fig. 4), the nature of
parametric conversion becomes qualitatively different. Now,
parametric amplification leads to the emergence of localized
signal-idler pulses trapped by the pump pulses and copropa-
gating with it despite large GVM. This trapping is associated
with the 20-fold amplification rate boost, cf. Figs. 2(a) and
2(d). Transfer of energy to the signal and idler stops due
to pump depletion at z ≈ 30Lgvm, when trapped signal and
idler pulses are released abruptly and start propagating with
their own group velocities, see Figs. 4(h) and 4(i). At this
stage, nearly 80% of the initial pump energy has been already
transferred to the signal and idler.

The signal and idler pulses in the fundamental trapped state
and corresponding parametric gain are shown in the left inset
and with the black line in Fig. 5(a), respectively. Maxima of
the signal and idler pulses are shifted away from the pump
center through the impact of the exponents in the numerators
of Eqs. (14b) and (14c), see the left inset in Fig. 5(a) and
Appendix C.

D. Higher-order trapped states

Increasing the pump peak power and/or pulse duration,
and solving the eigenvalue problemEq. (12), we have found
higher-order trapped states, see Fig. 5(a). Our numerical re-
sults demonstrate that, similarly to the fundamental trapped
state, gain of the higher-order states also increases linearly
with

√
P. The thresholds for the nth-order state appear to sat-

isfy P(n)
th = (2n + 1)Pth, see Eq. (14d). We note that when the

higher-order states’ field crosses zero, its phase jumps by π .
Having the largest gain and lowest threshold, the funda-

mental state dominates the parametric generation. To illustrate
this, we performed numerical simulations with a weak ini-
tial signal pulse consisting of many trapped states and pump
power able to sustain all of them. To achieve the multi-
mode excitation, we applied the seeded signal pulse detuned
in frequency and delayed in time relative to the pump
pulse: As(t, z = 0) ∼ sech[(t − ts)/T ] exp(−i δst ), whereas,
the idler was set to zero. Pump power P = 10Pth = 1.5 W and
duration T = 0.5 ps, were such that the eigenvalue analysis
predicted coexistence of five trapped states, n = 0–4. Evolu-
tion of the signal field in time and frequency domains is shown
in Figs. 5(b) and 5(c).

Calculated projections of the signal and idler onto all five
trapped states are shown in Fig. 5(d). The initial signal pulse
had a large proportion of the higher-order trapped states.
However, since the higher-order states have lower gain, the
fundamental state comes out as the dominant one already
at z � 0.4Lgvm. This dynamical re-ordering of the power of
trapped states is also reflected in the changes in the temporal
and spectral pulse profiles at z ≈ 0.5Lgvm in Figs. 5(b) and
5(c).

E. Soliton pump

If the pump dispersion is anomalous, β2p < 0, then the
pump pulse can form a soliton. The soliton peak power P0
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FIG. 5. (a) Gain vs pump power P for the first four trapped states
T = 0.5 ps. The insets illustrate profiles of the fundamental and
first-order trapped states at P = 0.75 W (P = 5Pth). In the first-order
state, the phases of each field jump by π at the nodal intensity points
located in a vicinity of t = 0 ps; (b)–(d) Parametric amplification
with P = 1.5 W (P = 10Pth) and an initial small-amplitude localized
pulse in signal field, shifted in frequency and position relative to the
pump pulse by ts = 1 ps and δs = 0.8 THz. (b) is the time profile
and (c) is the spectral evolution along the waveguide length. Time
profile and spectrum of the signal component of the fundamental
state are indicated with the pink/gray lines. (d) shows the projection
coefficients onto the five trapped modes vs the propagation distance.

and duration T are connected exactly as per the second line
of Eq. (18), see the dashed blue lines in Fig. 3. Using the
soliton pump allows to boost conversion efficiency further.
To illustrate this, we compared conversion efficiencies for the
nonsoliton and soliton pulses, see the pink stars in Figs. 3(b)
and 3(a), respectively. In both cases, the pump pulse duration
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FIG. 6. Energy of the signal field E , as a fraction of the input
pump energy E0. Initial spectrally uniform noise of the amplitude
|A| ∼ 10−5

√
P was added to the signal and idler fields. Pump pulse

duration T = 0.05 ps corresponds to Lgvm ≈ 1 mm. Power P =
170 W corresponds to the solitonic and nonsolitonic pump pulses
for β2p = −2.8 ps2/m and β2p = −0.028 ps2/m cases, respectively.
Also, see pink stars in Figs. 3(a) and 3(b).

to T = 0.05 ps and power P = 170 W. Figure 6 compares
how energy of the signal pulse is growing with the propa-
gation distance in these two cases. The nonsolitonic regime
(red line) leads to the dramatically suppressed conversion
efficiency compared to the soliton case (black line). This is
due to the considerable self-phase modulation and dispersion
of the pump in the former case.

The soliton has the power-dependent phase,

AP = √
P0eiqzsech(t/T ), q = 1

2 P0γ3 pp, (19)

and introduces the strong cross-phase modulation effect on the
signal and idler fields. Using Eq. (6), and introducing

As(t, z) = e(λ+iq/2)zas(t ),

Ai(t, z) = e(λ∗−iq/2)za∗
i (t ),

(20)

we find a more complex eigenvalue problem,

λ

[
as

ai

]
=

[
D̂s iγ2S

−iγ2S D̂∗
i

][
as

ai

]
,

D̂s = − i 1
2 q − vs∂t + i2γ3 psS

2
0,

D̂i = − i 1
2 q + vi∂t + i2γ3 piS

2
0,

S0 =√
P0 sech(t/T ).

(21)

Here, dispersion of the signal and idler fields can still be
neglected assuming that the GVM is strongly dominant. For a
particular relationship between the signal and the idler cross-
phase modulation coefficients, γ3 ps/vs = γ3 pi/vi, we found
the analytical expressions for the fundamental trapped state,
see Appendix D,

asol
s,i (t ) = as,i(t ) exp

{
iφ(t ) − i|β2p|

4T 2v+
t

}
,

φ(t ) = |β2p|
γ3 ppT

(
γ3 ps

vs
+ γ3 pi

vi

)
tanh

(
t

T

)
,

(22)

Soliton-induced parametric gain, g = Re(λ), is the same as in
Eq. (14).

0.02 0.04 0.06 0.08 0.1
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FIG. 7. Spectrum of the trapped mode (signal component) as a
function of the soliton pump pulse width for (a) γ3 ps = (vs/vi )γ3 pi =
0.09 W−1m−1; (b) γ3 ps = (vs/vi )γ3 pi = 4.5 W−1 m−1. Dashed lines
show the predicted frequency shifts using Eq. (23).

Leaving the intensity profiles of the trapped states unaf-
fected, cross-phase modulation induces a frequency chirp via
the time-dependent phase φ(t ). The associated instantaneous
frequency shift δc = −∂tφ(t ) is always negative for the sig-
nal and positive for the idler, see the complex conjugate ai

in Eq. (20). The other frequency shift δ0 = |β2p|/4T 2v+ is
associated with the modified phase-matching condition due
to self-phase modulation of the pump, and it acts in the op-
posite direction for v+ > 0. The net shift δ = δc + δ0 depends
on the balance between the cross-Kerr and self-Kerr effects.
Particularly, at t = 0, where δc has its maximal value, the net
frequency shift is

δ = |β2p|
4v+T 2

[
1 − 4v+

γ3 pp

(
γ3 ps

vs
+ γ3 pi

vi

)]
. (23)

When the cross-Kerr coefficients are small, γ3 psv+/γ3 ppvs �
1, γ3 piv+/γ3 ppvi � 1, the net δ is positive, see Fig. 7(a),
which corresponds to the signal and idler carrier frequencies
ωs and ωi, experiencing blueshifts and redshifts, respectively.
However, when the cross-Kerr effect is relatively strong, the
net shift is negative, see Fig. 7(b), so that now the signal
becomes redder and the idler becomes bluer.

IV. SUMMARY AND DISCUSSION

We have developed a detailed theory of the signal and idler
trappings by the ultrashort pump pulse generating parametric
gain in a material with second- and third-order nonlinearities.
We have derived explicit analytical solutions for the trapped
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states in the cases of stationary-pump approximation and soli-
ton pump. We have revealed that the trapping takes place
when, e.g., the signal is slower than the pump, and the idler
is faster and vice versa, and at the same time, the character-
istic length corresponding to the pulse walk-off is matched to
half of the nonlinear length. We have demonstrated that the
trapping to the no-trapping transition leads to the change over
between the broadband coherent and the in-coherent signal
and idler spectra. In the coherent case, spectral peaks of the
signal and idler pulses are further shifted in the opposite direc-
tion via the Kerr nonlinearity-induced cross-phase modulation
effect.

The importance of the trapping effect for applications come
through the dramatic increase in the conversion efficiency
and through the emerging application for frequency conver-
sion of the optical frequency combs [28–30]. We expect a
similar trapping phenomenon to happen in the nondegener-
ate four-wave-mixing frequency conversion in the absence of
second-order nonlinearity [21].

Since the signal and idler frequencies in three-wave mixing
processes are located relatively close to each other and are
well separated from the pump, one could expect that the
trapping condition vsvi > 0 implies that between the signal
and the idler frequencies, there should be a point where group
velocity is matched to the pump group velocity. One way this
can happen is when dispersions of the pump and signal/idler
are of the opposite signs, which also underpins the radiation
trapping effect driving supercontinuum expansion in photonic
crystal fibers [14].
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APPENDIX A: NONLINEAR COEFFICIENTS

The field amplitudes in Eq. (1) are normalized such that
(ωk/ωp)|Ak|2 gives power in watts, k = p, s, and i. The non-
linear coefficients are calculated using the methodology of
Refs. [32–34],

γ2 = ε0
√

ωsωi

4
√

NsNiNp

∫∫
�e∗

pχ̂2(x, y) · · · �es�eidx dy, (A1)

γ3k j = 1

ωp

ε0ωkω j

16NkNj

∫∫
�e∗

j χ̂3(x, y) · · · �ek�e∗
k �e jdx dy, (A2)

Nk = 1

4

∫∫
(�ek × �h∗

k + �e∗
k × �hk ) · �z dx dy, (A3)

where �ek (x, y) and �hk (x, y) are electric- and magnetic-field
profiles of the pump, signal, and idler modes, χ̂2(x, y) and
χ̂3(x, y) are material nonlinearity tensors, �z is the unit vector
along the propagation direction z.

In the case of a weakly guiding structure (i.e., when the
longitudinal components of the fields are negligible), the

normalization factors in Eq. (A3) can be approximated as

Nk ≈ cβk

2Z0ωk

∫∫
|�ek|2dx dy, (A4)

where Z0 = 1/(ε0c) is the vacuum impedance.

APPENDIX B: PARAMETRIC GAIN IN THE cw REGIME

For the case of a constant amplitude pump, S(t ) = √
P0 =

const., the spectrum of Eq. (12) can be found analytically
using as, ai ∼ exp(−i δt ),

λ
(cw)
1,2 = i

ks(δ) − ki(−δ)

2
±

√
γ 2

2 P0 − 1

4
[ks(δ) + ki(−δ) − q]2,

(B1)

where

ks(δ) = vsδ + β2s

2
δ2 + 2γ3 psP0, (B2)

ki(δ) = −viδ + β2i

2
δ2 + 2γ2 piP0, (B3)

and δ means detuning from the frequency ωs of the signal field
(the corresponding detuning for the idler field is −δ).

Conditioning the square root to zero, one can find a range
of δ’s, δ1 < δ < δ2, corresponding to the exponentially grow-
ing signal and idler, i.e., Re[λ(δ)] > 0. If

�(δ) = ks(δ) + ki(−δ) − q, (B4)

then �(δ1,2) = ±2γ2
√

P0. This is the modified phase-
matching condition, which takes into account the shift of the
pump propagation constant (q), shifts of the signal/idler prop-
agation constants due to frequency detunings and nonlinear
corrections to the propagation constants due to the cross-phase
modulation with the pump.

The expressions for δ1,2 become particularly transparent
when the second-order dispersion can be disregarded relative
to the large walk-off,

δ1,2 = q ± γ2
√

P0

vs + vi
. (B5)

For a given combination of |vs| and |vi|, the gain band-
width is broader when vsvi < 0. The maximal possible gain,
max[Re(λ)] = γ2

√
P0, is achieved at the phase matching,

�(δm) = 0, (B6)

and it does not depend on the combination of vs and vi.

APPENDIX C: FUNDAMENTAL TRAPPED STATE

For the sake of generality, we reinstate the pump propaga-
tion constant shift q in the eigenvalue problem in Eq. (12),

λas =
(
−i

q

2
− vs∂t

)
as + iγ2S(t )ai, (C1)

λai =
(

i
q

2
+ vi∂t

)
ai − iγ2S(t )as. (C2)

Using the ansatz,

as(t ) = e−i δ0t F (t/T ), (C3)

ai(t ) = −ie−i δ0t H (t/T ), (C4)
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and splitting the eigenvalue λ into real and imaginary parts,

λ = g + iκ, (C5)

we obtain two coupled equations for κ and δ0,

κ = −q

2
+ vsδ0, (C6)

κ = q

2
− viδ0, (C7)

and a separate set of equations for the real functions F and H ,

gF (τ ) = −(vs/T )F ′(τ ) + γ2S(τ )H (τ ), (C8)

gH (τ ) = (vi/T )H ′(τ ) + γ2S(τ )F (τ ), (C9)

where we use primes to denote derivatives in τ = t/T : F ′ =
dF/dτ .

The first set of equations gives the frequency detuning and
the imaginary part of the eigenvalue,

δ0 = q

vs + vi
= q

2v+
, (C10)

κ = q(vs − vi )

2(vs + vi )
= qv−

2v+
. (C11)

To proceed with the solution of Eqs. (C8) and (C9), it is
convenient to introduce a new function,

u(τ ) = F (τ )

H (τ )
(C12)

for which the following differential equation is derived:

u′ = −g

(
T

vs
+ T

vi

)
u + γ2S(τ )

(
T

vs
+ T

vi
u2

)
. (C13)

Using the pump function in Eq. (10), and introducing a
rescaling,

u(τ ) =
√

vi

vs
r(τ ), (C14)

we rewrite Eq. (C13) in the following form:

r′ =
[
−g

(
T

vs
+ T

vi

)
+ 2γ2

√
PT√

vsvi

r + r−1

eτ + e−τ

]
r. (C15)

One can see that

r(τ ) = σ exp(±τ ) (C16)

is the solution of the above equation with σ = ±1, provided
the following condition is satisfied:

−g
vs + vi

vsvi
+ σ

2γ2

√
P√

vsvi
= ± 1

T
, (C17)

which sets the real part of the eigenvalue g (gain). Altogether
there are four combinations with different signs of σ and dif-
ferent signs of the right-hand side [corresponding to different
signs of the argument of the exponent in Eq. (C16)].

Using the solution for r(τ ) in Eq. (C16) and the definitions
in Eqs. (C14) and (C12) from Eq. (C9) we obtain

gH = (vi/T )H ′ + σ

√
vi

vs

2γ2

√
Pe±τ

eτ + e−τ
H, (C18)

which can be rewritten as

H ′ =
[

λT

vi
− σ

γ2

√
PT√

vsvi
∓ σ

γ2

√
PT√

vsvi
tanh(τ )

]
H. (C19)

Here, the upper/lower sign of the last term corresponds to
the upper/lower sign of the argument of the exponent in the
solution for r(τ ) in Eq. (C16).

The general solution of Eq. (C19) is (up to a constant
amplitude factor),

H (τ ) = exp(γ τ )cosh−m(τ ), (C20)

γ = gT

vi
− σ

γ2

√
PT√

vsvi
, (C21)

m = ±σ
γ2

√
PT√

vsvi
. (C22)

For localized solutions we require m > 0, therefore, out of
four combinations of the signs of σ and the argument of expo-
nent in the solution for r(τ ) in Eq. (C16), only two correspond
to localized modes: r1(τ ) = exp(τ ) and r2(τ ) = − exp(−τ ).
Using the first combination of signs in Eq. (C17) we obtain
the spectrum,

g1 =
(

2γ2

√
P√

vsvi
− 1

T

)
vsvi

vs + vi
, (C23)

and the corresponding mode is

H1(τ ) = exp(γ τ )cosh−m(τ ), (C24)

F1(τ ) =
√

vi

vs
exp(τ )H1(τ ), (C25)

γ = g1T

vi
− γ2

√
PT√

vsvi
= −1

2
− g1v−T

vivs
, (C26)

m = γ2

√
PT√

vsvi
. (C27)

The gain of this mode is positive, provided

γ2

√
PT > 1

2

√
vsvi. (C28)

(which gives m > 1/2). Below this threshold, m � 1/2 and
the mode is no longer localized.

Similarly, choosing the second solution r2(τ ), we obtain

g2 = −g1, (C29)

H2(τ ) = exp(γ τ )cosh−m(τ ), (C30)

F2(τ ) = −
√

vi

vs
exp(τ )H2(τ ), (C31)

and the same γ and m parameters as for the first solution. This
mode exponentially decays with the propagation distance (i.e.,
it is the conjugate pair of the first mode).
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Above the threshold, signal and idler fields of the mode
in Eqs. (C24)–(C27) are exponentially localized with the
asymptotes,

as(t → +∞) ∼ exp

[
− (2m − 1)vi

vs + vi

t

T

]
, (C32)

as(t → −∞) ∼ exp

[
2mvs + vi

vs + vi

t

T

]
, (C33)

ai(t → +∞) ∼ exp

[
−2mvi + vs

vs + vi

t

T

]
, (C34)

ai(t → −∞) ∼ exp

[
(2m − 1)vs

vs + vi

t

T

]
. (C35)

Maxima of the signal and idler pulses are shifted away
from the pump center. Depending on the combination of
GVM and pump parameters, they can be located on the dif-
ferent or on the same side from the maximum of the pump
pulse,

tpeak,s = T arctanh

[
vs − vi + 1/m

vs + vi

]
. (C36)

tpeak,i = T arctanh

[
vs − vi − 1/m

vs + vi

]
. (C37)

Near the threshold m = 1/2, the asymmetry of the signal
and idler pulses becomes more pronounced. At the threshold,
the signal (idler) fields become delocalized in the t → +∞
(t → −∞) tails.

APPENDIX D: SIGNAL AND IDLER PHASES INDUCED
BY THE SOLITON PUMP

Including the cross-Kerr terms, the eigenvalue problem in
Eq. (21) now becomes

λas =
(

−i
q

2
− vs∂t

)
as + iγ2S(t )ai + i2γ3 ps|S(t )|2as, (D1)

λai =
(

i
q

2
+ vi∂t

)
ai − iγ2S(t )as − i2γ3 pi|S(t )|2ai. (D2)

We use ansatz,

as,i(t ) = a(0)
s,i (t ) exp[iφ(t )], (D3)

λ = λ0 + iκ, (D4)

where a(0)
s (t ), a(0)

i (t ), and λ0 are the eigenfunctions and the
eigenvalue for γ3 ps = γ3 pi = 0.

We obtain the following set of equations for κ and φ(t ):

φ′ = 2γ3 ps

vs
|S(t )|2 − κ

vs
, (D5)

φ′ = 2γ3 pi

vi
|S(t )|2 + κ

vi
, (D6)

which has a solution if γps/vs = γpi/vi,

κ = 0, (D7)

φ(t ) =
(

γps

vs
+ γpi

vi

) ∫ t

−∞
|S(t ′)|2dt ′. (D8)

In particular, for the sech pump function as in Eq. (10) we
obtain

φ(t ) = PT

(
γps

vs
+ γpi

vi

)
tanh

(
t

T

)
. (D9)
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