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Scattered and guided radiation emitted by an electron moving near a dielectric rod
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The scattered and guided radiation excited by a point charge moving in the vicinity of an infinite, dielectric
cylinder is considered. It is shown that guided waves constitute the dominant contribution to the emitted radiation
for short distances between the particle and the cylinder, low yet relativistic particle energies (roughly 10−1 <

γ − 1 < 101, where γ is the Lorentz factor), and large cylinder permittivity. In all the complementary cases,
radiation by scattered waves dominates the spectrum. Analytic, approximate expressions for the spectrum of the
scattered radiation are presented, with the spectrum for high energies resembling that of plane-wave scattering.
The relative contribution of the various cylinder eigenmodes to the guided radiation is also investigated. The
effect of a finite-size bunch on the emitted radiation is considered. Finally, the number of emitted photons via
both scattered and guided radiation is examined, with the scattered photon number observed to scale for high
energies as ln(bγ ).
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I. INTRODUCTION

A charged particle moving in vacuum generates a spectrum
of evanescent waves, each one propagating parallel to the
particle’s direction of motion and decaying exponentially in
the perpendicular direction. What is unique about these waves
is the fact that while the energy density is nonzero in both
directions, the ability to do work (power) is viable in the
longitudinal direction and identically zero perpendicular to
the motion. The essence of any radiation source is to couple
electromagnetic energy from an evanescent to a propagating
wave. In the present paper, we examine a simple configuration
consisting of a dielectric rod and a charge moving perpendic-
ular to the axis, and we aim to establish the scaling laws which
control the emitted spectrum in various regimes.

Throughout the years several coupling mechanisms have
been identified and thoroughly investigated. Transition ra-
diation, for example, occurs when the particle crosses the
interface between two media [1], diffraction radiation occurs
when the particle does not come in direct contact with an
obstacle but only approaches it [2], bremsstrahlung (“braking
radiation”) occurs when the particle is dramatically deceler-
ated [3], Ĉerenkov radiation occurs when the particle moves
faster than the phase velocity of light in the surrounding
medium [4], and Smith-Purcell radiation occurs when the par-
ticle traverses a periodic structure [5]. Radiation emitted due
to interaction between evanescent fields induced by charged
particles and dielectric or metallic structures is of high interest
in various scientific and industrial applications, such as the de-
sign of optical accelerators [6], electron microscopy [7], and
novel terahertz radiation sources [8], and in the last decade
also for the realization of single-photon sources for quantum
information purposes [9].
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Virtually any scheme that can generate radiation, and thus
decelerate electrons, may be used for acceleration. In the
context of the present paper we may conceive inverse Smith-
Purcell or inverse Ĉerenkov processes recently reviewed in
Ref. [6]. Such accelerating systems are driven by high-power
lasers that are injected into dielectric structures (preferred
over their metallic counterparts due to larger laser damage
threshold and lower ohmic losses), and offer a promising
alternative to conventional radio-frequency accelerators due
to reduction in size (from meters to millimeters), required
energy for acceleration, and operating costs. The emitted
wakefield leads to both a decelerating force on the particle
and a transverse “kick,” which deflects the particle from its
original trajectory, leading to a reduction in acceleration ef-
ficiency. Thus, a great effort is invested in minimizing the
wakefields induced by the acceleration structures [6]. Besides
acceleration considerations, the emitted wakefields may assist
in beam diagnostics, that is, characterization of a charged
bunch’s spatial distribution, energy, and position relative to the
structure [10–12].

An additional direct application of the interaction be-
tween structures and charge-induced evanescent fields is in
electron microscopy. The resolution of conventional optical
microscopes is limited by the wavelength of light (hundreds
of nanometers), preventing the imaging of objects in the
nanoscale (smaller than the wavelength of light). Electron
microscopy solves this problem by using an electron as a
source of illumination, which has a de Broglie wavelength
several orders of magnitude smaller than light (roughly 1.7
pm for a 70-keV electron) [7]. The measurement of the elec-
tron’s energy loss after traversing near the sample is known
as electron energy-loss spectroscopy [13], and has been ex-
tensively used to characterize its interaction with micrometer-
and nanometer-scale structures [14]. Another prevalent tech-
nique is electron holography, in which the electron passing
through the sample is interfered with a reference electron
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beam (passing through vacuum), with the interference per-
formed via a very thin wire with positive voltage [15].

A particular structure of high interest, which is also the
focus of this paper, is an infinite dielectric rod, which serves
as an idealized optical fiber. More generally, it can model
any corner or wedge in a dielectric structure with a similar
radius of curvature. The coupling between a point charge’s
evanescent waves and the cylindrical structure induces elec-
tromagnetic radiation, with the radiated energy having two
components: The first contribution comes from the scattering
of radially propagating waves, which is a manifestation of
diffraction radiation [2]. The second contribution comes from
the excitation of guided modes inside the cylinder, which
carry energy along its axis. The following can be roughly
conceived as Ĉerenkov radiation emitted by image charges
inside the dielectric medium.

Studies of electrodynamics in cylindrical structures date
back to the beginning of the 20th century, with the works
of Sommerfeld, who investigated wave propagation in resis-
tive wires [16], and Hondros and Debye, who considered a
lossless dielectric cylinder [17]. Since then, full analytical
electromagnetic descriptions for the scattering of propagat-
ing (not evanescent) plane waves from a dielectric cylinder
[18] and for its guided mode characteristics [19] have been
formulated, rendering both close problems from a theoretical
perspective.

Radiation due to coupling between cylindrical geometries
and evanescent fields has also been studied for a point charge
moving parallel to the cylinder’s axis [20,21], a uniform line
charge moving perpendicular to the cylinder’s axis [22], and
a planar beam with sinusoidal charge modulation moving in
the same manner [23]. It should be noted that in the first
two works no scattering is present due to the absence of an
obstacle in the electron’s direction of motion, and in the latter
two studies no guided modes are excited due to translation
symmetry along the cylinder’s axis. The more complex case
of a point charge moving perpendicular to the cylinder’s axis
has been investigated for metallic cylinders (with Drude per-
mittivity) and arrays of cylinders in the context of surface
plasmons [24,25]. However, these two studies lack analysis
of the radiation carried by the guided modes, which are ex-
pected to emerge in such a configuration. The inverse effect to
“wakefield recoil,” namely, the acceleration of charged parti-
cles by field injection into dielectric structures, has also been
theoretically [26], numerically [27], and experimentally [28]
studied for a periodic cylindrical grating, which is a possible
topology for a dielectric laser accelerator [6].

The remainder of this paper is organized as follows: In
Sec. II we present a theoretical formulation for the electro-
magnetic fields formed inside the system and provide integral
expressions for both the radially emitted (scattered) and ax-
ially emitted (guided) energy. In Sec. III we numerically
evaluate the emitted energy and its spectrum, compare be-
tween the contributions of the scattered and guided waves,
and examine their dependence on the various parameters
of the system. Finally, in Sec. IV we provide concluding
remarks.

FIG. 1. The geometry of the system. An electron is moving in
vacuum at a constant velocity βc in the x direction and with an
impact parameter h above an infinite, dielectric cylinder of radius
R and relative permittivity εr . The cylinder’s axis coincides with the
z axis. The electron’s radial (ρ) and azimuthal (φ) coordinates are
also depicted. The inset contains a two-dimensional projection of the
geometry onto the xy plane.

II. ANALYTIC FORMULATION

A. Electromagnetic field

The system in consideration consists of a point charge,
−e representing a single electron, which moves in vacuum
at a constant velocity v = βc (c being the speed of light in
vacuum), perpendicular to an infinite dielectric rod of radius
R and relative permittivity εr (see Fig. 1). The electron’s
impact parameter relative to the cylinder’s axis is h > R and it
moves in the x direction. We assume without loss of generality
that at time t = 0 the electron is exactly above the cylinder,
that is, x = 0. Moreover, it is assumed that the electron’s
longitudinal coordinate is z = 0. The coupling between the
electron’s evanescent fields and the cylindrical structure leads
to the emission of radiation, causing the electron to experience
a decelerating force, and as a result, in principle, it slows
down. In practice, the emitted energy is several orders of mag-
nitude smaller than the kinetic energy of the moving electron.
Therefore, throughout this paper we assume that the electron’s
velocity is constant.

By virtue of the linearity of Maxwell’s equations, we may
represent the total field as a superposition of the electron’s
field in the absence of the cylinder, which we denote as the
primary field, and the secondary field induced by the cylinder
itself. We begin by evaluating the primary fields (superscript
p): The longitudinal components (z) are given in space and
time coordinates by (see Ref. [3] pp. 558–561)

Ẽ (p)
z (r, t ) = − e

4πε0

γ z

d3(r, t )
,

(1)

H̃ (p)
z (r, t ) = − e

4π

γ v(y − h)

d3(r, t )
,
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where γ = 1/
√

1 − β2 is the Lorentz factor, and d (r, t ) =√
γ 2(x − vt )2 + (y − h)2 + z2. It is convenient to expand the

field components as a superposition of cylindrical waves, that
is,

Ẽ (p)
z (r, t ) = F

{
E (p)

z (ρ, n, kz, ω)
}
,

(2)
H̃ (p)

z (r, t ) = F
{
H (p)

z (ρ, n, kz, ω)
}
,

with the operator defined as

F (n, kz, ω) ≡
∞∑

n=−∞

∫ ∞

−∞
dkz

∫ ∞

−∞
dωe jωt− jkzz− jnφ (3)

being the corresponding Fourier expansion operator. Explicit
expressions for E (p)

z and H (p)
z are derived in Appendix A. The

remaining components of the primary fields, namely, the ra-
dial (ρ) and azimuthal (φ) components, are retrieved from
the longitudinal components using Maxwell’s equations. In
Fourier space, the following components read

E (p)
ρ = k−2

vac

(
jkz∂ρE (p)

z + ωμ0n

ρ
H (p)

z

)
,

E (p)
φ = k−2

vac

(
nkz

ρ
E (p)

z − jωμ0∂ρH (p)
z

)
,

H (p)
ρ = k−2

vac

(
−ωε0n

ρ
E (p)

z + jkz∂ρH (p)
z

)
,

H (p)
φ = k−2

vac

(
jωε0∂ρE (p)

z + nkz

ρ
H (p)

z

)
, (4)

where k2
vac ≡ k2

z − ω2/c2, and ∂ρ denotes the derivative with
respect to the radial coordinate ρ.

We now address the secondary fields (superscript “sec”),
generated by the dielectric cylinder in reaction to the primary
fields: The components of the secondary fields obey the ho-
mogeneous wave equation both inside the cylinder (ρ < R)
and in the surrounding vacuum (ρ > R). Specifically, for the
longitudinal components we have[

∇2 − εr (ρ)
1

c2

∂2

∂t2

]
Ẽ (sec)

z (r, t ) = 0,

(5)[
∇2 − εr (ρ)

1

c2

∂2

∂t2

]
H̃ (sec)

z (r, t ) = 0,

where the radial dependence of the relative permittivity in
the presence of the cylinder is εr (ρ < R) = εr and εr (ρ >

R) = 1. The discontinuous jump in εr at the interface be-
tween the media (ρ = R) requires solving Eqs. (5) for each
region separately and imposing continuity of the tangential
field components.

The general solutions for Eqs. (5), which do not diverge at
ρ → 0 and ∞, are given in Fourier space by

E (sec)
z (ρ) =

{
An(kz, ω)In(kcylρ), ρ < R
Bn(kz, ω)Kn(kvacρ), ρ > R

,

(6)

H (sec)
z (ρ) =

{
Cn(kz, ω)In(kcylρ), ρ < R
Dn(kz, ω)Kn(kvacρ), ρ > R

,

where k2
cyl ≡ k2

z − εrω
2/c2, and the functions In(ζ ) and Kn(ξ )

are the modified Bessel functions of the first and second kind,
respectively. From considerations of causality, the imaginary

parts of kcyl and kvac are chosen to have the same sign as ω.
For convenience, we henceforth omit the kz and ω arguments
from the coefficients An(kz, ω), . . . , Dn(kz, ω). As in Eqs. (4),
the radial and azimuthal components of the secondary fields
are retrieved using Maxwell’s equations, yielding in Fourier
space

E (sec)
ρ =

{
k−2

cyl

(
jkzkcylAnİn + ωμ0n

ρ
CnIn

)
ρ < R

k−2
vac

(
jkzkvacBnK̇n + ωμ0n

ρ
DnKn

)
ρ > R

,

E (sec)
φ =

⎧⎨
⎩k−2

cyl

( nkz

ρ
AnIn − jωμ0kcylCnİn

)
ρ < R

k−2
vac

( nkz

ρ
BnKn − jωμ0kvacDnK̇n

)
ρ > R

,

(7)

H (sec)
ρ =

{
k−2

cyl

(−ωε0εr n
ρ

AnIn + jkzkcylCnİn
)

ρ < R

k−2
vac

(−ωε0n
ρ

BnKn + jkzkvacDnK̇n
)

ρ > R
,

H (sec)
φ =

⎧⎨
⎩k−2

cyl

(
jωε0εrkcylAnİn + nkz

ρ
CnIn

)
ρ < R

k−2
vac

(
jωε0kvacBnK̇n + nkz

ρ
DnKn

)
ρ > R

,

where we denote İn(ζ ) and K̇n(ξ ) as the derivatives of In ≡
In(ζ ) and Kn ≡ Kn(ξ ), respectively. At this point it is conve-
nient to introduce the normalized quantities ω̄ ≡ ωR/c and
k̄ ≡ kR with k ∈ {kz, kcyl, kvac}.

The explicit values of the coefficients An, Bn,Cn, and Dn

are retrieved by imposing boundary conditions. Since there
are no free surface currents on the interface between the media
(ρ = R), the boundary conditions are given by continuity of
the field components tangential to the cylinder, namely,

[X (p) + X (sec)]ρ=R+0 = [X (sec)]ρ=R−0, (8)

where X ∈ {Eρ, Eφ, Hρ, Hφ}. Using the orthogonality of the
Fourier harmonics {e j(ωt−nφ−kzz)}ω,n,kz on the cylindrical sur-
face satisfying ρ = R, the relations in Eq. (8) reduce into a
linear equation system for An and Cn, given in matrix form by

(
M11 M12

M21 M22

)(
A

η0C

)
=
(

η0H (eff)
φ

E (eff)
φ

)
, (9)

where the matrix terms read

M11 = jω̄

(
εr

İn

k̄cyl
− K̇n

Kn

In

k̄vac

)
,

M12 = M21 = nk̄z

(
1

k̄2
cyl

− 1

k̄2
vac

)
In, (10)

M22 = − jω̄

(
İn

k̄cyl
− K̇n

Kn

In

k̄vac

)
,

where now In ≡ In(kcylR) and Kn ≡ Kn(kvacR), and we further
define

E (eff)
φ = E (p)

φ − nk̄z

k̄2
vac

E (p)
z + j

ω̄

k̄vac

K̇n

Kn
η0H (p)

z ,

(11)

η0H (eff)
φ = η0H (p)

φ − nk̄z

k̄2
vac

η0H (p)
z − j

ω̄

k̄vac

K̇n

Kn
E (p)

z ,
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where η0 is the free-space wave impedance. Inverting the
matrix for each value of n, kz, and ω yields the solution for
the coefficients An and Cn:

(
An

η0Cn

)
= 1



(
M22 −M12

−M21 M11

)(
η0H (eff)

φ

E (eff)
φ

)
, (12)

where

 = n(k̄z, ω̄) ≡ M11M22 − M12M21

= ω̄2

(
εr

İn

k̄cyl
− K̇n

Kn

In

k̄vac

)(
İn

k̄cyl
− K̇n

Kn

In

k̄vac

)

− n2k̄2
z

(
1

k̄2
cyl

− 1

k̄2
vac

)2

I2
n (13)

is the matrix determinant. The remaining coefficients
Bn and Dn are found by substituting An and Cn into the bound-
ary conditions for the longitudinal components in Eq. (8),
yielding Bn = K−1

n (AnIn − E (p)
z ) and Dn = K−1

n (CnIn − H (p)
z ).

Consequently, (A, B,C, D) constitutes an analytical solution
for the electromagnetic fields in Fourier space, in terms of the
variables n, k̄z, and ω̄.

Observing the general expressions for the secondary fields
in Eqs. (6), and the determinant in Eq. (13), we can identify
three regimes in the coordinate space (kz, ω), corresponding
to waves of qualitatively different nature.

(1) k2
z < ω2/c2. This regime contains radially propagating

waves, contributing to the scattered radiation. Here both kcyl

and kvac are imaginary, thus both In(kcylρ) and Kn(kvacρ) are
oscillatory.

(2) ω2/c2 < k2
z < εrω

2/c2. This regime contains the zeros
of the determinant, corresponding to the dielectric cylinder’s
guided modes. These modes are mostly confined to the cylin-
der and carry energy in the axial (z) direction. Here kcyl is
imaginary but kcyl is real, thus In(kcylρ) is oscillatory and
Kn(kvacρ) behaves asymptotically (ρ → ∞) as a decaying
exponential.

(3) k2
z > εrω

2/c2. Waves in this regime are purely evanes-
cent, as they both decay exponentially in the radial direction
and cannot be guided by the cylindrical structure. Therefore,
these waves do not contribute to the emitted radiation and are
thus not considered in this paper.

B. Scattered radiation

With the coefficients characterizing the electromagnetic
fields emitted by the system at hand [see Eq. (12)], the ra-
dially emitted energy by these propagating modes can now be
calculated. The scattered energy is determined by integrating
the radial component of the Poynting vector corresponding to
the secondary field, S̃(sec)

ρ = Ẽ (sec)
φ H̃ (sec)

z − Ẽz
(sec)

H̃ (sec)
φ , over

a cylindrical surface of radius ρ with the same axis as the
dielectric rod, and taking the limit ρ → ∞. The first term cor-
responds to the transverse electric (TE) contribution, whereas
the second is the transverse magnetic (TM) counterpart.

Explicitly, the emitted energy Wscat is given by

Wscat = lim
ρ→∞ ρ

∫ ∞

−∞
dt
∫ ∞

−∞
dz
∫ π

−π

dφ

× (
Ẽ (sec)

φ H̃ (sec)
z − Ẽ (sec)

z H̃ (sec)
φ

)
. (14)

Using Parseval’s identity and the large-argument asymptotic
expansions for the modified Bessel functions [29], we get the
following expression for the normalized scattered energy:

W̄scat ≡ Wscat

(e2/4πε0R)

= 1

2
(2π )3

∫ ∞

0
dω̄ω̄

∞∑
n=−∞

∫ ω̄

0
dk̄z

1

ω̄2 − k̄2
z

× [|B̂n(k̄z, ω̄)|2 + |D̂n(k̄z, ω̄)|2], (15)

where B̂n = Bn( e
4π

η0)−1, D̂n = Dn( e
4π

)−1, and the terms
|D̂n(k̄z, ω̄)|2 and |B̂n(k̄z, ω̄)|2 in the integrand are associated
with the TM and TE term, respectively. A detailed derivation
of Eq. (15) is presented in Appendix B. The integrand of
Eq. (15) yields the normalized spectrum:

dW̄scat

dω̄
= 1

2
(2π )3ω̄

∞∑
n=−∞

∫ ω̄

0
dk̄z

1

ω̄2 − k̄2
z

× [|B̂n(k̄z, ω̄)|2 + |D̂n(k̄z, ω̄)|2]. (16)

The integration of k̄z in Eqs. (15) and (16) accounts only for
the radially propagating waves, k̄2

z < ω̄2, as they are the sole
contributors to the scattered radiation. In addition, the matrix
is invertible (i.e., nonzero determinant) for every value of
k̄z and ω̄ in this region, ensuring Bn(k̄z, ω̄) and Dn(k̄z, ω̄) have
converging values.

C. Guided radiation

In addition to radially scattered waves, the electron’s
evanescent fields also excite the cylinder’s guided modes,
which in turn carry energy Wguided in both axial (z) directions
equally, thus the factor 2 in the explicit expression

Wguided = 2 × lim
z→∞

∫ ∞

−∞
dt
∫ ∞

0
dρρ

∫ π

−π

dφ

× (
Ẽ (sec)

ρ H̃ (sec)
φ − Ẽ (sec)

φ H̃ (sec)
ρ

)
. (17)

In the integrand we may identify the longitudinal compo-
nent of the Poynting vector S̃z = Ẽ (sec)

ρ H̃ (sec)
φ − Ẽ (sec)

φ H̃ (sec)
ρ .

The various integrals may be performed analytically in the
Fourier domain by employing the orthogonality of the various
eigenfunctions, as well as the Cauchy residue theorem. The
detailed process is long and tedious and it does not contribute
to the understanding of the physics process involved. For this
reason, in the remainder of this subsection we highlight the
main steps of our analysis, whereas the details are presented
in Appendix C.

As a first step, each one of the space- and time-domain
field components (Ẽ (sec)

ρ , H̃ (sec)
φ , Ẽ (sec)

φ , H̃ (sec)
ρ ) is converted

into the Fourier domain. The corresponding functions may be
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formally expressed as

X (z̄) =
∫ ∞

−∞
dk̄z

X̄ (k̄z )

(k̄z )
e− jk̄z z̄

=
∞∑

s=1

X̄ (k̄n,s) (18)

×
∫ ∞

−∞
dk̄z

e− jk̄z z̄

(k̄z = k̄n,s) + (
k̄2

z − k̄2
n,s

)[
∂

∂ k̄2
z

]
k̄2

z =k̄2
n,s

=
∞∑

s=1

2k̄n,s
X̄ (k̄n,s)

̇n,s

∫ ∞

−∞
dk̄z

e− jk̄z z̄

k̄2
z − k̄2

n,s

(19)

whose main contributions come from the zeros of the deter-
minant (k̄z = k̄s) ≡ 0; s = 1, 2, . . . ,∞ represents the radial
index of the eigenmode, and in what follows we denote the
first derivative of the determinant as ̇n,s ≡ [∂/∂ k̄z]k̄z=k̄n,s

.
Note that dependence on the normalized frequency (ω̄) is
hidden in this notation.

As mentioned above, these roots lie strictly in the range
ω̄ < k̄z <

√
εrω̄, indicating that the fields of the correspond-

ing modes oscillate in the cylinder’s interior and decay
exponentially in its exterior. In addition, for any given value
of the variables n, k̄z, and ω̄, and obviously for s, the various
modes (for different radial indices) form an orthonormal set
with respect to the following orthogonality relation [30]:∫ ∞

0
dρρ[Eρ,sH∗

φ,s′ − Eφ,sH∗
ρ,s′ ](ρ) = δs,s′ , (20)

where δs,s′ is the Kronecker delta function. The calligraphic
terms represent the corresponding field components satisfying
the corresponding boundary conditions with one difference:
the amplitude is chosen such that the diagonal terms are unity.

The next step is to use Cauchy’s residue theorem, as well
as the various modes’ orthogonality, to express the normalized
energy carried by the guided modes,

W̄guided ≡ Wguided

e2/4πε0R

= 1

2
(4π )3

∫ ∞

0
dω̄

∞∑
n=−∞

∞∑
s=1

1

̇2
n,s

× Re

{∫ ∞

0
d ρ̄ρ̄[ÊρĤ∗

φ − ÊφĤ∗
ρ ]k̄z=k̄n,s

}
, (21)

where Êν and Ĥν are the nondimensionalized field compo-
nents normalized by the determinant, given by the following
relations:

E (sec)
ν = e

4π
η0

Êν

n
,

H (sec)
ν = e

4π

Ĥν

n
, ν ∈ {ρ, φ}. (22)

Consequently, the guided waves’ spectrum is determined by

dW̄guided

dω̄
= 1

2
(4π )3

∞∑
n=−∞

∞∑
s=1

1

̇2
n,s

× Re

{∫ ∞

0
d ρ̄ρ̄[ÊρĤ∗

φ − ÊφĤ∗
ρ ]k̄z=k̄n,s

}
. (23)

The expressions for the guided energy [Eq. (22)] and
spectrum [Eq. (23)], together with their scattered equivalents
[Eqs. (15) and (16), respectively], provide a complete descrip-
tion of the radiation emitted following the point particle’s
motion in the vicinity of the dielectric rod. By conservation
of energy, the sum of energy radiated by the scattered and
guided waves is equal to the work done on the particle by the
decelerating force exerted by the secondary fields. In addition
to deceleration, the secondary fields also apply a transverse
kick, deflecting the particle from its original, straight trajec-
tory (in the x direction). The change in momentum due to
the transverse kick has been characterized for a line source
in Ref. [22], but is omitted from this paper due to space
considerations.

In the section that follows, the aforementioned quantities
will be evaluated and their dependence on the system param-
eters will be considered.

III. NUMERICAL ANALYSIS

In this section we employ the analytic formulation de-
veloped in the previous section to assess numerically the
integral expressions for the energy radiated in the system
by the radially scattered waves [Eq. (15)] and the guided
modes [Eq. (22)], as well as their respective frequency spectra
[Eqs. (16) and (23)]. The dependence of these quantities is
examined with respect to the following parameters which
characterize the system: For convenience, from now on γ − 1
will be referred to as “kinetic energy,” or simply “energy.”
Since all length quantities can be normalized with respect to
the cylinder’s radius R, the radius itself is not an additional
independent parameter in the problem. We denote the ratio
between the electron’s impact parameter and R as η = h/R.

Typical scales of interest for the system’s parameters
are now addressed. Considered values of εr lie inside the
range 2 � εr � 12, as it covers the dielectric coefficients of
most materials used in optical fibers and optical acceleration
structures. For instance, a typical value for the relative per-
mittivity of fused silica (SiO2) is εr ≈ 2.1 and that of silicon
(Si) is εr ≈ 12.1 [31]. We consider in our investigation both
low but moderately relativistic energies (0.01 < γ − 1 < 1),
as present in electron microscopes, and high ultrarelativistic
energies (γ − 1 � 1) that are relevant to optical accelerators.
Below γ − 1 = 0.01 the cylinder’s response can be safely
considered quasistatic, with both scattered and guided radi-
ation being negligible, therefore no special attention is paid
towards this regime.

An additional characteristic value of interest is the cylin-
der’s Ĉerenkov velocity, βc = 1/

√
εr , which is the phase

velocity of light inside the dielectric medium. The correspond-
ing Ĉerenkov energy is defined as γc − 1 = 1/

√
1 − β2

c − 1.
Analyzing the behavior of the scattered and guided radiation
for energies below and above γc − 1 allows us to determine
if there exists any qualitative difference between “pure” and
“Ĉerenkov-assisted” scattered or guided radiation.

A. Preliminary assumption: Frequency-dependent permittivity

In the idealistic formulation of the problem, the cylinder
has a constant relative permittivity εr over all frequencies.
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FIG. 2. Comparison between the scattered and guided energies normalized to total energy. (a–c) Normalized scattered and guided energies
vs normalized distance from the cylinder (η − 1) for multiple kinetic energies, plotted for (d) εr = 2, (e) εr = 4, and (f) εr = 12. The inset
in panel (c) zooms on the range 0 < η − 1 < 0.1 and distances below which the guided energy becomes dominant are marked on it. (d)–(f)
Normalized scattered and guided energies vs kinetic energy (γ − 1) for multiple distances from the cylinder, plotted for (a) εr = 2, (b) εr = 4,
and (c) εr = 12. The Ĉerenkov energy γc − 1 for each permittivity is denoted as a reference value. Energies where the scattered and guided
energy curves intersect and the maximal peak location for the guided energy are marked in panel (c).

However, from convergence considerations it is assumed in
the analysis that follows that the permittivity drops down to 1
above a certain “cutoff frequency” ωco, expressed in normal-
ized frequencies by

εr (ω̄) =
{
εr, ω̄ < ω̄co

1, ω̄ > ω̄co
. (24)

The following simplifies computations by requiring us to in-
tegrate in frequency only up to ω̄co instead of up to infinity, as
modes with frequencies exceeding ω̄co “see” vacuum rather
than a cylindrical obstacle.

In order to assign a physically reasonable value to ω̄co,
we note that most materials relevant to optical fibers and
optical acceleration structures (with the exception of fused
quartz) are essentially transparent in the far UV, namely, for
wavelengths below 200 nm [31]. Assuming a lower threshold
of λco = 200 nm for the wavelength and a cylinder radius of
R = 1 μm (typical for optical structures) yields a normalized
cutoff frequency of ω̄co = 10π . It was numerically verified
that, following this assumption, taking azimuthal harmonics
in the range −40 � n � 40 and radial harmonics in the range
1 � s � 40 (in the case of guided radiation) inside the sum-
mations is sufficient for convergence. More details regarding
the convergence of our numerical computations and the incor-
poration of losses are presented in Appendix H and I. Beyond
the dependence specified in Eq. (24), the dielectric coefficient
of the material is assumed to be frequency independent, ignor-
ing the various resonances of the material(s) involved.

B. Radiated energy comparison

We begin by comparing between the energy emitted in the
form of scattered waves, Wscat, and that carried by guided
modes, Wguided, as a function of εr, η, and γ − 1. It is in-
sightful to plot the relative portion of each energy type out
of the total emitted energy Wtotal = Wscat + Wguided rather than
their separate values, as presented in Fig. 2. From Figs. 2(a)–
2(c) it can be seen that for large distances from the cylinder
(η � 1) the scattered energy is clearly the dominant contribu-
tion to the emitted energy. However, for small distances (η ≈
1) the picture is slightly more complex: For low permittivities
the scattered energy remains dominant, but, as permittivity
increases, the contribution of guided modes becomes more
significant and can even exceed that of the scattered waves,
as depicted in Fig. 2(f). This suggests that mode excitation
inside the cylinder by the point particle’s evanescent fields
is significant only for cylinders with large dielectric coeffi-
cients and in the case that the particle “grazes” the cylinder’s
surface. The following is in agreement with the fact that
the cylinders with larger εr support more guided modes for
any given frequency, and that a smaller impact parameter
leads to stronger evanescent fields impinging the rod dur-
ing the particle’s approach. However, the latter also applies
to the scattered radiation, making the stronger dependence
of the guided energy in η a nontrivial result.

Figures 2(d)–2(f) reveal that the guided energy is most sig-
nificant for moderately relativistic energies (roughly 10−1 <

γ − 1 < 101 in orders of magnitude) and gradually becomes
less apparent as energy increases or alternatively approaches
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Analytical approximation

FIG. 3. Analytical approximation of the guided energy normal-
ized to total energy. The colored solid lines are numerical plots of
the normalized guided energy (in log scale) vs normalized distance
from the cylinder (η − 1) for γ = 10 and multiple permittivities, and
the black dashed lines are the corresponding analytical fits based on
Eq. (25), yielding a decent approximation.

the quasistatic limit, yet the exact energy range strongly
depends on the choice of η and εr . To quote some con-
crete examples, the guided energy constitutes more than 20%
of the total energy in the ranges 0.04 < γ − 1 < 0.1 and
0.4 < γ − 1 < 8 for εr = 4 and η = 1.05, and in the range
0.2 < γ − 1 < 2 for εr = 12 and η = 2. For sufficiently large
permittivities and small enough distances, the guided energy
can remain comparable to the scattered energy even for ul-
trarelativistic energies, as observed for εr = 12 and η = 1.01.
From a practical perspective, the following results indicate
that guided mode excitation can be significant in electron
microscopy systems characterized by low electron energies
(order of 100 keV), whereas in optical acceleration structures
characterized by higher energies (order of 10 MeV) the lead-
ing contribution to the wakefield comes from the scattered
waves, as long as the electron does not graze the structure. It is
also observed that the energies where the guided mode contri-
bution reaches its maximum lie in most cases in the vicinity of
the Ĉerenkov energy, differing by no more than a single order
of magnitude. This indicates a possible relation between mode
excitation and a Ĉerenkov-like mechanism for the emission of
radiation in this form, as was shown in previously considered
configurations [20,32].

Since the exact expressions for the energy components
are not given in closed form and require long computation
times to evaluate, obtaining analytical expressions for the
following quantities is of great importance, as they provide
useful scaling laws with minimal computational effort. Most
normalized energy curves illustrated in Fig. 3 exhibit compli-
cated behavior, yet for the case of γ = 10 a rough analytical
approximation for the relative portion of the guided energy
was found, taking the following form:

Wguided

Wtotal
≈ c1

e−c2(η−1)

(η − 1)c3
, (25)

where c1, c2, and c3 are constants dependent on εr and γ −
1. Plots of the analytical fit compared to the numerical

computation for γ = 10 and multiple permittivities are pre-
sented in Fig. 3, yielding a decent approximation (relative
integrated square error of less than 3%) in the range 0.01 <

η − 1 < 2. For εr = 2, 4, and 12 the constants for the fits in
Fig. 3 read, respectively, c1 ≈ 0.003, 0.026, and 0.075; c2 ≈
1.31, 1.10, and 0.86; and c3 ≈ 0.51, 0.65, and 0.45. The
overall amplitude c1 is observed to roughly scale linearly with
εr and the decay rate c2 decreases with εr , demonstrating the
strong εr dependence of the guided energy’s relative portion.
In general, the following approximation exemplifies the strong
η dependence of the guided radiation’s relative contribution
and shows that it decays exponentially with the distance
(divided by a power). This approximation breaks up when
considering smaller values of γ and expanding the distance
range to large values of η, leading to a significant discrepancy.

C. Spectrum comparison

Our next step is to compare between the frequency spectra
of the scattered and guided radiation and their dependence
on the system parameters. The preceding comparison of the
normalized energy portions (recall Fig. 2) allows us to identify
multiple regions of interest, where plotting the corresponding
spectra may reveal further insight on the various radiation
types.

Plots of the scattered and guided radiation spectra in
multiple regions are presented in Fig. 4. For low permittiv-
ities [Fig. 4(a)] both the scattered and guided spectra are
mostly smooth, containing only a few peaks. As permittiv-
ity increases, significant quasiperiodic resonant peaks start
to emerge, as seen in Fig. 4(b). These peaks are geometry
dependent, as their locations depend only the cylinder’s per-
mittivity εr , regardless of the particle’s position and energy.
Resonant behavior is apparent for both scattered and guided
spectra, yet the reason for their presence is fundamentally
different: In the case of scattered radiation, propagating
waves inside the cylinder interfere differently for different
frequencies, causing certain frequencies to be scattered more
significantly and other frequencies to be attenuated. The res-
onances in the scattered spectrum correspond to frequencies
of increased scattering. On the other hand, resonances in the
guided spectrum are associated with the excitation of new
eigenmodes, propagating along the rod’s axis.

For high energies and large impact parameters [Fig. 4(c)],
the scattered radiation is much more significant than its guided
counterpart, with the scattered spectrum resembling the cross
section of a TE plane wave (i.e., magnetic field parallel to
the cylinder’s axis) scattered from an identical cylinder (see
Ref. [32] pp. 79–83). The following is in accordance with the
fact that the amplitude ratio of the longitudinal components of
the primary field (E (p)

z , H (p)
z ) approaches the free-space wave

impedance, as in a plane wave. The wide resonant peaks are
periodic, with the normalized distance between adjacent peaks
roughly being ω̄ ∼ π/(

√
εr − 1). On top of those wide

peaks are smaller resonances, stemming from oscillations in
the determinant from Eq. (13), and are more complicated
to characterize. The mean spacing between these resonances
is nevertheless observed to scale like ω̄ ∝ 1/

√
εr , which

is equal to the cylinder’s Ĉerenkov velocity. We note that
the scattered spectrum in this regime also bears visual
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FIG. 4. Comparison between the spectra of the scattered and guided radiation. The spectra are plotted as a function of the normalized
frequency ω̄ = ωR/c for multiple regimes of interest: (a) small permittivity, low energy, and small distance from the cylinder (scattered
radiation dominant). (b) Medium permittivity, low energy, and small distance from the cylinder (scattered radiation dominant). (c) Medium
permittivity, high energy, and large distance from the cylinder (scattered radiation dominant). (d) High permittivity, low energy, and small
distance from the cylinder (guided radiation dominant). The inset zooms on the range 0 � ω̄ � 2, showing “antiphase” alternation between
the scattered and guided spectral peaks. Curves with small values are scaled by a multiplicative factor for clarity.

resemblance to the spectrum induced by a charged line, as
studied in Ref. [22].

Figure 4(d) demonstrates that the guided radiation can be-
come more significant than scattering in the case of a small
impact parameter, low (yet relativistic) energy, and a large
permittivity. An intriguing observation seen from the inset is
that for low frequencies the scattered and guided spectra seem
to be in “antiphase,” that is, the scattered spectrum attains a lo-
cal maximum roughly where the guided spectrum is at a local
minimum, and vice versa. The following may be intuitively
explained in the framework of conservation of energy: The
particle’s evanescent fields inject energy into the system (rod
and vacuum), with part of it being scattered and the remainder
being confined to the rod. Therefore, for frequencies with
significant scattering we would expect weaker confinement to
the cylinder and thus less substantial mode excitation, and vice
versa.

As with the radiated energy, approximate forms and scal-
ing laws for the frequency spectrum of both radiation types
are also desired. The spectrum of the scattered radiation is
addressed first. For low energies, an approximation of the

following form was found:

dW̄scat

dω̄
� a

[(
1 − 1

2
J2

0 (u) − 1

2
jinc2(u)

)2
]

u=ηbω̄/β

× exp

(
−2

η − 1

γ β
ω̄

)
, (26)

where jinc(u) ≡ 2J1(u)/u, a and b are coefficients dependent
on εr , η, and γ − 1, and the quantity γ β is proportional to
the particle’s relativistic momentum. The first term in the
product can be thought of as the cylinder’s low-frequency
response. In addition, in the limit ω̄ → 0 this term exhibits
a ω̄4 dependence, similar to the fourth-power dependence
present in dipole radiation and in Rayleigh scattering. The
second term is a decaying exponential in ω̄, dictated by the
particle’s evanescent fields.

For high energies, we utilize the plane-wave scattering re-
semblance of the spectrum observed in Fig. 4(c) and construct
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Approximation

Approximation

Approximation

Approximation

FIG. 5. Approximation for the scattered radiation spectrum. The proposed approximations (black dashed line) are compared to the
numerical spectra (colored solid lines) for multiple regimes and system parameter values: (a) Low energy [based on Eq. (26)], multiple η.
(b) Low energy [based on Eq. (26)], multiple εr . (c) High energy [based on Eq. (27)], η. (d) High energy [based on Eq. (27)], multiple εr .
Curves with small values are scaled by a multiplicative factor for clarity.

a similar approximation as follows:

dW̄scat

dω̄
� aSTE

Plane(ω̄) × exp

(
−2

η

γβ
ω̄

)
, (27)

where STE
plane(ω̄) is the scattering cross section of a TE plane

wave scattered from an identical cylinder, as formulated in
Ref. [32] pp. 79–83. Here, substituting η inside the exponen-
tial instead of η − 1 is more appropriate, since the evanescent
fields’ penetration into the cylinder is more significant for high
energies, reaching the cylinder’s interior rather than decaying
close to its surface. Therefore, choosing the particle’s distance
from the cylinder’s axis (namely, η) is more reasonable com-
pared to the particle’s distance from the surface (η − 1).

The proposed approximations are compared to the ex-
act, numerically evaluated spectra for multiple values of
εr, η, and γ − 1 in Fig. 5, yielding a decent fit for values
of η not too close to 1 and values of εr not too high. As
a concrete example, for εr = 2, 4, and 12 the constants for
the fits in Fig. 5(a) read a � 0.010, 0.012, and 0.013 and b �
1.16, 0.84, and 0.75, respectively. The low-energy approxi-
mation [Eq. (26)] successfully captures both low-frequency
behavior (including the first peak) and high-frequency ex-
ponential decay, but does not incorporate the geometric
resonances, as witnessed in Fig. 5(b) for εr = 12. In addi-
tion, for low energies both the maximal peak’s location and
height strongly increase with εr and as η gets closer to 1. For
high energies, an explicit expression for the maximal peak’s

approximate location can be found. By approximating the
plane-wave cross section with a first-order Struve function
(see Sec. 15.32 in Ref. [33]) and solving for its maximum,
we obtain a simple expression for the peak location which is
independent of η and γ , reading

ω̄max � 1.81√
εr − 1

. (28)

Figure 5(c) shows that, similar to low energies, for high
energies the maximal peak height also strongly increases
as η approaches 1. Explicitly, for η = 2.0, 1.4, and 1.2 the
normalization factors for the fits in this plot read a ≈
0.81, 1.36, and 1.89, respectively. Figure 5(d), however, de-
picts a rather weak dependence of the maximal peak’s height
in εr . Practically speaking, the independence of the maximal
peak’s location in the particle’s motion parameters (namely,
γ − 1 and η) for high energies makes beam diagnostics
in this regime based on the scattered spectrum a difficult
task.

Further insight is obtained from comparing between the
contributions of the TE and TM components of the scattered
energy, as presented in Eq. (15). As it turns out, the dominant
contribution comes from the TE component. For a detailed
discussion about the dominance of the TE term and its origin,
we refer the reader to Appendix D.

In the case of the guided radiation, the spectrum may pro-
vide insight on the radiation’s modal distribution, that is, the
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FIG. 6. Mode distribution along the guided radiation spectrum. The spectrum is plotted for η = 1.05, γ − 1 = 100, and multiple per-
mittivities: (a) εr = 2, (b) εr = 4, and (c) εr = 12. The insets focus on the range 0 � ω̄ � 5 and the mode types corresponding to the first
couple of peaks are denoted, demonstrating that the dominant contribution comes from the TE01 (n = 0, s = 1), TM01 (n = 0, s = 2), HE11

(n = ±1, s = 1), and EHnm (|n| � 1, even s) modes. A detailed description of the conversion between our (n, s) notation and the notation
common in the literature for the eigenmodes of a cylindrical dielectric waveguide is presented in Appendix G.

extent to which each cylinder eigenmode is excited following
the particle’s approach. As stated earlier, each resonant peak
in the guided spectrum corresponds to the excitation of a
specific mode. Figure 6 displays the spectrum in the case
that the particle is close to the cylinder (η ≈ 1) for multiple
permittivities, with the corresponding mode type (as formu-
lated in Ref. [34] p. 139) of the first few peaks being denoted.
The first couple of peaks are smooth, and become gradually
sharper as frequency increases, until a discontinuity appears.
Therefore, the peak maximum for high frequencies is effec-
tively at the cutoff frequency of the corresponding mode. The
first peak corresponds to the ‘fundamental mode,” HE11 (n =
±1, s = 1), which has no cutoff frequency. The second peak
belongs to the TE01 and TM01 modes (n = 0, s = 1), which
have no longitudinal electric- or magnetic-field component,
respectively. It is observed that the remainder of the significant
peaks are effectively contributed only by the EHnν modes
(|n| � 1, even s), which are hybrid modes with a dominant
TM component.

The following plots show that the peaks’ heights remain
comparable even for large azimuthal harmonics (n) for small
impact parameters, indicating that a large number of modes
must be considered in the analysis of the guided radiation.
Moreover, this number increases with εr , roughly scaling as√

εr − 1. For low permittivities it is sufficient to consider only
EH modes with a radial index of s = 1, whereas for higher
permittivities larger values of s must be taken into account.

Although the cylinder’s dispersion equation n(ω̄, k̄z ) = 0
cannot be solved analytically, the cutoff frequencies of the
TE01, TM01, and EHnm modes have simple expressions,
allowing us to easily characterize the guided spectrum’s
significant peaks apart from the fundamental mode HE11,
whose peak is located before those of the former modes.
Referring to Eqs. (5.45) and (5.48) in Ref. [34], the following
cutoff frequencies, which are effectively the peaks’ locations,
are given by

ω̄n,m = jn,m√
εr − 1

, (29)

where jn,m is the mth root of the nth-order Bessel function,
Jn(x), n = 0, 1, 2, . . ., and m = 1, 2, . . ..

A more thorough examination, presented in Appendix E,
reveals that the dominant contribution to the spectrum comes
from nonpositive values of n, which correspond to nonrotat-
ing (n = 0) or clockwise-rotating (n < 0) waves for positive
frequencies. The following asymmetry between positive and
negative harmonics may be attributed to clockwise-rotating
dipoles (for n = −1) or higher multiples (for n < −1) induced
inside the cylinder by the particle’s fields during its motion in
the positive x direction. Such asymmetric angular content was
also found to apply for the scattered radiation.

D. Effect of a finite-size bunch

The preceding analysis addresses the radiation emitted as
the cylinder is impinged by the evanescent fields of a point
charge, yet realistic electron beams moving inside optical ac-
celerators have some spatial extent. To this end, we introduce
a simple model for a finite-size bunch, composed of a uniform
cylindrical charge distribution with an axis parallel to the x
axis, and characterized by a width of 2x and a radius of r .
Since direct contact between the bunch and the structure is un-
desired, the bunch radius is constrained to satisfy r < h − R.
By virtue of superposition, the fields induced by the bunch
are given by integrating the fields of a point particle over the
entire charge distribution. For the considered bunch geometry,
the superposition translates in Fourier space to multiplication
by a “bunch factor,” with the bunch’s fields given as a function
of x and r as follows:

X (x,r ) = X (x = 0,r = 0)

× sinc

(
1

β

ω

c
x

)
Iinc

(
1

γ β

ω

c
r

)
,

X ∈ {E (p)
z , H (p)

z

}
, (30)

where sinc(x) = sin(x)/x, and we define the function
Iinc(x) = 2I1(x)/x. The fact that the factor corresponding to
the finite bunch radius r is independent of kz is nontrivial. A
detailed derivation of the bunch factor in Eq. (30) is presented
in Appendix F. The secondary fields induced by the bunch
may subsequently be retrieved by substituting the modified
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FIG. 7. The effect of a finite-size bunch on the radiation spectrum. The spectra of the scattered and guided radiation are plotted for multiple
normalized bunch size parameters (̄ = /R). (a) Scattered spectrum for multiple bunch widths ̄x and and bunch radius ̄r = 0. (b) Guided
spectrum for multiple bunch widths ̄x and bunch radius ̄r = 0. (c) Scattered spectrum for multiple kinetic energies and bunch radii ̄r and
bunch width ̄x = 0. The inset demonstrates the existent but negligible effect of ̄r on the spectrum for high energies. (d) Guided spectrum
for multiple kinetic energies and bunch radii ̄r and bunch width ̄x = 0.

primary field components from Eq. (30) inside the matrix
equation depicted by Eq. (9).

The spectrum of the scattered and guided radiation excited
by the considered bunch geometry is plotted for multiple nor-
malized bunch widths ̄x = x/R and normalized radii ̄r =
r/R in Fig. 7. The multiplication by a sinc function dictated
by the bunch width x introduces nulls in both spectra, as
apparent in Figs. 7(a) and 7(b). The null locations correspond
to sinc arguments that are integer multiples of π , explicitly
reading

ω̄m = π
β

̄x
m, m = 0, 1, 2, . . . . (31)

The effect of a finite bunch width remarkably resembles that
of an antenna array, with the interaction of each infinitesimal
bunch element with the cylinder acting as a separate antenna,
consequently leading to an “array factor” in the form of a
sinc function. We note that location of the first nonzero null,
ω̄1 = πβ/̄x, allows for the estimation of the bunch velocity
β or width x in a simple manner, given that the other pa-
rameter is known with high certainty. In the case of a finite
bunch radius, Figs. 7(c) and 7(d) show that r leads to a
minor decrease in the exponential decay rate by a factor of
2̄r/γ β, as also predicted by the previously defined “Iinc”
function in Eq. (30). The following may be attributed to the
portion of the bunch that approaches the cylinder at a closer

distance, leading to more significant field excitation. Although
this effect appears both for low and high energies, it is rather
negligible in the case of high energies due to the large value
of the bunch’s (normalized) momentum γ β.

E. Photon generation

We now examine the scattered and guided radiation emit-
ted by the system in terms of the fundamental quantum of
electromagnetic energy—the photon. Such an investigation is
prompted by the potential of free electron-structure interac-
tions in the realization of efficient single-photon sources [9].
It is warranted to define the emitted photon spectral density
per electron, �(ω̄), such that integrating over all normalized
frequencies yields the total number of emitted photons, Nph.
Explicitly, Nph is given by

Nph =
∫ ∞

0
dω̄�(ω̄). (32)

Recalling that the energy carried by a single photon with
frequency ω is h̄ω (h̄ is the reduced Planck constant), the total
radiated energy may be expressed as

Wtotal =
∫ ∞

0
dNphh̄ω = h̄c

R

∫ ∞

0
dω̄ω̄�(ω̄). (33)

Using Eq. (33) and the definition of the normalized energy [as
in Eqs. (15) and (22)] yields an expression for �(ω̄) in terms

063514-11



MATAN HALLER AND LEVI SCHÄCHTER PHYSICAL REVIEW A 107, 063514 (2023)

(a) (b)

FIG. 8. Number of photons emitted per electron as scattered and guided waves. (a) Number of scattered photons as a function of normalized
kinetic energy (γ − 1), for multiple permittivities and impact parameters. (b) Same as the previous panel, but for the guided photons. Here, the
curves for η = 2 are too small to be seen in the given scale. The inset displays the ratio between the number of guided and scattered photons for
the parameter choice εr = 12, η = 1.05, showing that the number of guided photons exceeds its scattered counterpart at the curve’s maximal
peak.

of the normalized spectrum:

�(ω̄) = α
1

ω̄

dW̄

dω̄
, (34)

where α = e2/4πε0 h̄c is the fine-structure constant, roughly
equal to 1/137. Substituting the scattered or guided spectra
inside Eq. (34) gives the photon distribution corresponding to
each radiation type, and using Eq. (32) yields the respective
emitted photon numbers.

The number of photons emitted via both scattered and
guided mechanisms is plotted in Fig. 8 as a function of the
particle’s kinetic energy (γ − 1), for multiple values of εr

and η. Similar to the radiated energy, the photon number
also exhibits a strong dependence in both the dielectric rod’s
permittivity, εr , and the particle’s impact parameter, η. For
high energies (γ > 10) and large impact parameters (η � 1),
the scattered photon number can be reasonably approximated
by

N scat
ph � a ln(bγ ), (35)

where a and b are coefficients dependent on εr and η.
As a concrete example, the coefficients obtained for
η = 2 and εr = 2, 4, and 12 [as in Fig. 8(a)] read a ≈
0.0048, 0.0052, and 0.0054 and b ≈ 0.26, 0.60, and 1.4016,
respectively. In contrast, the number of guided photons is
observed to “saturate” for high energies, with the limiting
values strongly dependent on εr [see Fig. 8(b)].

As with the radiated energy, in most regimes the photons
are emitted predominantly in the form of scattered waves.
However, the inset of Fig. 8(b) reveals that for sufficiently
large cylinder permittivity, small impact parameter, and mod-
erately relativistic energies, the number of guided photons
becomes higher than its scattered counterpart. From a prac-
tical perspective, we note that the optical setups required for
measurement and manipulation of guided photons are much
simpler than those for photons radiating in free space, as
the latter require consideration of the observation angle and
aperture size.

In terms of order of magnitude, for high energies and
small impact parameters, the number of photons emitted per a
single electron can reach roughly 0.08 scattered photons, and
roughly 0.03 guided photons. The following photon numbers
are smaller than 1, thus the proper way to interpret this result
is as follows: The fields induced by a point particle of charge
q are proportional to q by virtue of Maxwell’s equations’
linearity, therefore the radiated energy (and consequently, the
emitted photon number) is proportional to q2. This implies
that a point particle of charge q = −4e, or equivalently, a
dense charged bunch with the same charge and spatial dimen-
sions much smaller than the minimal wavelength 200 nm, will
roughly emit a single scattered (i.e., radiating in free space)
photon when grazing the dielectric rod. Similarly, a dense
charge distribution of charge q = −20e will roughly excite
12 guided photons, which will be confined to the rod and
propagate along its axis—six in each direction forming an
excellent coupler to a detector.

IV. DISCUSSION

In this paper, the radiation emitted by a point particle (or
finite-size bunch) moving near an infinite dielectric rod was
characterized, with both the radiation due to radially scattered
waves and radiation carried axially by excited cylinder eigen-
modes being considered. Our comparison between the relative
portions of the scattered and guided radiation out of the total
emitted energy reveals multiple regimes of interest, with the
relation between both radiation types in each regime neatly
summarized in Table I.

If so, the only regime in which radiation in the form of
guided modes exceeds the scattered radiation is, in the case
of a small distance from the cylinder, low (yet relativistic)
energy and large cylinder permittivity. Otherwise, scattered
radiation dominates, or is at least comparable to its guided
counterpart. In the case of high energies, the ratio between the
guided and total energy may be roughly approximated by a
decaying exponential in η − 1, divided by a power.
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TABLE I. The dominant radiation mechanism (scattered or
guided) in every regime of interest for the parameters γ − 1, η, and
εr . Guided radiation is dominant in the regime of low energy, small
distance from the cylinder, and large cylinder permittivity. In all other
regimes, the scattered radiation dominates.

Low energies High energies
(0.1 < γ − 1 < 10) (γ − 1 � 1)

Small distances Small εr : Small εr :
(η ≈ 1) Scattered dominant Scattered dominant

Large εr : Large εr :
Guided dominant Both mechanisms

comparable

Large distances Scattered Scattered
(η � 1) dominant dominant

Studying the frequency spectra reveals a simple, yet pow-
erful approximation for the scattered spectrum, given by a
product of the cylinder’s “geometric response” (in the case of
high energies, the cross section of a scattered plane wave),
and a decaying exponential corresponding to the particle’s
evanescent fields [see Eqs. (26) and (27)]. These approxi-
mations have been found to decently capture the scattered
spectrum’s overall trend, and in the case of high energies
also its resonant behavior, as long as the particle does not
graze the dielectric rod (i.e., η �= 1). However, the low-energy
approximation does not account for the geometric resonances
that emerge for large rod permittivities.

As for the guided radiation, the various peaks present in
the guided spectrum were found to each be uniquely mapped
to a specific cylindrical eigenmode, with the significant peaks
contributed by the fundamental mode HE11, the decoupled
TE01 and TM01 modes, and the hybrid EHnm modes, which
have a dominant TM component. Moreover, the locations of
peaks corresponding to the EH modes, which were observed
to be the most significant, have been analytically characterized
in terms of these modes’ cutoff frequencies. The prominence
of EH modes (which are “TM-like”) in the guided radiation
is in sharp contrast to the scattered case, where the main
contribution to the radiation was found to come from the TE
component in the Poynting vector. It was additionally found
that both the scattered and guided waves are mainly composed
of waves rotating clockwise, which correspond to negative
azimuthal harmonics (n). This azimuthal asymmetry has been
intuitively associated with clockwise-rotating multipoles in-
side the rod, with the direction of rotation dictated by the
particle’s motion in the positive x direction.

Next, the effect of a finite-size cylindrical bunch on the
spectrum was considered, with the bunch width x introduc-
ing periodic nulls to the spectrum and the bunch radius r

slowing down its exponential decay rate. Then, the emitted
scattered and guided energies were evaluated in terms of pho-
tons, showing that a coherent bunch of only a few electrons
is sufficient for exciting a single photon, either radiating in
free space or guided along the dielectric rod. In addition, an
analytical approximation for the number of scattered pho-
tons in the case of high particle energy has been found,

TABLE II. Summary of the main approximations obtained in this
work. Each quantity is referred to the equation inside the paper which
contains its corresponding approximation.

Quantity Approximation

Fraction of guided energy out of Eq. (25)
total, high energies (γ − 1 � 1)
Scattered spectrum, low energies Eq. (26)
(0.1 < γ − 1 < 10)
Scattered spectrum, high energies Eq. (27)
(γ − 1 � 1)
EHnν mode resonance locations in Eq. (29)
guided spectrum
Number of scattered photons, Eq. (35)
high energies (γ − 1 � 1)

which scales as ln(bγ ) for a coefficient b that depends on εr

and η.
Perhaps the results of this paper that have the highest

significance to future endeavors are the various approxi-
mations obtained for the problem’s quantities of interest,
analytic and quasianalytic. Their importance stems from
their potential use as scaling laws for the radiation emit-
ted in more realistic settings, such as in optical acceleration
structures. The main approximations are summarized in
Table II.

We stress that the above scaling laws apply only to dielec-
tric materials that are mostly transparent below the far UV
(i.e., wavelengths below 200 nm), following our assumption
that the integration frequency range may be truncated at the
corresponding normalized cutoff frequency, ω̄co = 10π (re-
call Sec. III A). This limits the model’s validity for certain
materials, which exhibit significant dielectric response for
even shorter wavelengths. An example for such material is
fused quartz, whose dielectric coefficient attains resonances
at wavelengths of 60, 106, and 119 nm [31]. In addition,
more realistic computations must incorporate the frequency
dependence of εr in various materials (such as the significant
288-nm resonance in silicon [31]), instead of assuming a
“flat” dielectric response. Nevertheless, our results allow us
to roughly assess the emitted wakefield through both scat-
tered and guided mechanisms inside dielectric acceleration
structures.
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APPENDIX A: FOURIER TRANSFORM OF THE
LONGITUDINAL PRIMARY FIELD COMPONENTS

In this section, we derive analytical expressions for the
Fourier transform of the longitudinal (z) components of the
primary electric and magnetic fields, E (p)

z and H (p)
z , as de-

picted in Eq. (1). Assuming the point particle is located at x =
x0, y = h, and z = z0 at time t = 0 and moves at a constant
velocity v = βcx̂ (see Fig. 1), these components are given in
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space and time coordinates by

Ẽ (p)
z (r, t ) = − e

4πε0

γ (z − z0)

[γ 2(x − x0 − vt )2 + (y − h)2 + (z − z0)2]3/2
,

(A1)
H̃ (p)

z (r, t ) = − e

4π

γ v(y − h)

[γ 2(x − x0 − vt )2 + (y − h)2 + (z − z0)2]3/2
,

where γ = 1/
√

1 − β2 is the Lorentz factor.
We perform a Fourier transform from the cylindrical φ and z coordinates and time coordinate t , to the coordinates n, kz, and

ω, respectively. The Fourier transform of the field components is defined according to the following convention:

E (p)
z (ρ, n, kz, ω) = 1

(2π )3

∫ ∞

−∞
dte− jωt

∫ ∞

−∞
dze jkzz

∫ π

−π

dφe jnφẼ (p)
z (r, t ),

H (p)
z (ρ, n, kz, ω) = 1

(2π )3

∫ ∞

−∞
dte− jωt

∫ ∞

−∞
dze jkzz

∫ π

−π

dφe jnφH̃ (p)
z (r, t ). (A2)

We begin by evaluating E (p)
z (ρ, n, kz, ω): Using the relations x = ρ cos φ and y = ρ sin φ between the defined Cartesian and

cylindrical coordinates, and defining

ξ (φ, t ) =
√

γ 2(ρ cos φ − x0 − vt )2 + (ρ sin φ − h)2, (A3)

we get

E (p)
z (ρ, n, kz, ω) = − e

4πε0

1

(2π )3
γ

∫ ∞

−∞
dte− jωt

∫ π

−π

dφe jnφ

∫ ∞

−∞
dz

(z − z0)e jkzz

[ξ 2(φ, t ) + (z − z0)2]3/2
. (A4)

The integral with respect to z may be simplified as follows:∫ ∞

−∞
dz

(z − z0)e jkzz

[ξ 2(φ, t ) + (z − z0)2]3/2
=
∫ ∞

−∞
dze jkzz ∂

∂z

(
− 1√

ξ 2(φ, t ) + (z − z0)2

)
= jkz

∫ ∞

−∞
dz

e jkzz√
ξ 2(φ, t ) + (z − z0)2

= jkz

∫ ∞

−∞
dz

e jkzz

ξ (φ, t )
√

1 + ( z−z0
ξ (φ,t )

)2
= jkz

∫ ∞

−∞
du

e jkz (z0+ξ (φ,t )u)

1 + u2
= e jkzz0 jkz

∫ ∞

−∞
du

e jkzξ (φ,t )u

√
1 + u2

.

(A5)

Using the following integral identity from Ref. [35],

K0(x) =
∫ ∞

0

cos(xt )√
t2 + 1

dt = 1

2

∫ ∞

−∞

e jxt

√
t2 + 1

dt, x > 0, (A6)

we get ∫ ∞

−∞
dz

(z − z0)e jkzz

[ξ 2(φ, t ) + (z − z0)2]3/2
= e jkzz0 jkz × 2K0[|kz|ξ (φ, t )]. (A7)

Substituting back in Equation (A4) yields

E (p)
z (ρ, n, kz, ω) = − e

4πε0

2 jkz

(2π )3
γ e jkzz

∫ π

−π

dφe jnφ

∫ ∞

−∞
dte− jωt K0[|kzξ (φ, t )|]. (A8)

The argument of K0(ζ ) may be reformulated as follows:

|kz|ξ (φ, t ) = |kz|
√

γ 2(ρ cos φ − x0 − vt )2 + (ρ sin φ − h)2 =
√

(τ − τ0)2 + τ 2, (A9)

where we define

τ = |kz|γ (x0 + vt ), τ0 = |kz|γ ρ cos φ, τ = |kz|γ (ρ sin φ − h). (A10)

Thus, the integral with respect to t may be simplified as follows:∫ ∞

−∞
dte− jωt K0[|kz|ξ (φ, t )] =

∫ ∞

−∞

dτ

|kz|γ v
exp

[
− j

ω

v

(
τ

γ |kz| − x0

)]
K0[
√

(τ − τ0)2 + τ 2]

= exp
(

j
ω

v
x0

) ∫ ∞

−∞

d τ̃

|kz|γ v
exp

(
− j

ω

γ v|kz| (τ̃ + τ0)

)
K0(
√

τ̃ 2 + τ 2)

= 1

|kz|γ v
exp

(
j
ω

v
x0

)
exp

(
− j

ω

v
ρ cos φ

)∫ ∞

−∞
d τ̃ exp

(
− j

ω

γ v|kz| τ̃
)

K0(
√

τ̃ 2 + τ 2). (A11)

063514-14



SCATTERED AND GUIDED RADIATION EMITTED BY … PHYSICAL REVIEW A 107, 063514 (2023)

Invoking the following integral identity [36],∫ ∞

0
K0(α

√
x2 + β2) cos (γ x)dx = 1

2

∫ ∞

−∞
K0(α

√
x2 + β2)e− jγ xdx = π

2

e−β
√

α2+γ 2√
α2 + γ 2

, Re{α} > 0, Re{β} > 0, (A12)

yields (assuming ρ < h)∫ ∞

−∞
dte− jωt K0[|kz|ξ (φ, t )] = π

|kz|γ v
exp

(
j
ω

v
x0

)
exp

(
− j

ω

v
ρ cos φ

)
exp[−|τ |

√
1 + (ω/γ v|kz|)2]√

1 + (ω/γ v|kz|)2

= π

γ v
exp

(
j
ω

v
x0

)
exp

(
− j

ω

v
ρ cos φ

)exp
[−√k2

z + (ω/γ v)2(h − ρ sin φ)
]

√
k2

z + (ω/γ v)2
. (A13)

Substituting back in Eq. (A4), we get

E (p)
z (ρ, n, kz, ω) = − e

4πε0

jkz

(2π )2

1

v
√

k2
z + (ω/γ v)2

exp

⎡
⎣ j

ω

v
x0 −

√
k2

z +
(

ω

γ v

)2

h + jkzz0

⎤
⎦

×
∫ π

−π

dφe jnφ exp

(
− j

ω

v
ρ cos φ

)
exp

⎡
⎣
√

k2
z +

(
ω

γ v

)2

ρ sin φ

⎤
⎦. (A14)

We employ the Jacobi-Anger expansion,

e− ja cos φ =
∞∑

ν=−∞
Jν (a)e jν(φ− π

2 ), ea sin φ =
∞∑

ν=−∞
Iν (a)e jν(φ− π

2 ), (A15)

in order to simplify the integral with respect to φ:∫ π

−π

dφe jnφ exp
(
− j

ω

v
ρ cos φ

)
exp

⎡
⎣
√

k2
z +

(
ω

γ v

)2

ρ sin φ

⎤
⎦

=
∞∑

μ=−∞

∞∑
ν=−∞

Jμ

(ω

v
ρ
)

Iν

⎡
⎣
√

k2
z +

(
ω

γ v

)2
⎤
⎦e− j π

2 (μ+ν)
∫ π

−π

dφe j(n+μ+ν)φ. (A16)

Orthogonality of the harmonics {e jmx}∞m=0 over the interval [π, π ] implies∫ π

−π

dφe j(n+μ+ν)φ = 2πδn+μ+ν, (A17)

where δ is Kronecker’s delta function. Therefore,∫ π

−π

dφe jnφ exp

(
− j

ω

v
ρ cos φ

)
exp

⎡
⎣
√

k2
z +

(
ω

γ v

)2

ρ sin φ

⎤
⎦ = 2πe j π

2 n
∞∑

μ=−∞
Jμ

(ω

v
ρ
)

I−n−μ

⎡
⎣
√

k2
z +

(
ω

γ v

)2

ρ

⎤
⎦. (A18)

We now utilize Graf’s addition theorem [37],
∞∑

m=−∞
Jν+m(x)Jm(y)e jmψ =

(
x − ye− jψ

x − ye jψ

)ν/2

Jν (
√

x2 + y2 − 2xy cos ψ ), (A19)

and further simplify Eq. (A18):

∫ π

−π

dφe jnφ exp

(
− j

ω

v
ρ cos φ

)
exp

⎡
⎣
√

k2
z +

(
ω

γ v

)2

ρ sin φ

⎤
⎦

= 2πe j π
2 n

∞∑
μ−∞

Jμ

(
ω

v
ρ

)
In+μ

⎡
⎣
√

k2
z +

(
ω

γ v

)2

ρ

⎤
⎦ = 2π

∞∑
μ=−∞

Jn+μ

⎡
⎣ j

√
k2

z +
(

ω

γ v

)2

ρ

⎤
⎦Jμ

(
ω

v
ρ

)
e− j π

2 μ

= 2π

(√
k2

z + (ω/γ v)2 − ω/v√
k2

z + (ω/γ v)2 + ω/v

)n/2

Jn

⎡
⎣
√(

ω

c

)2

− k2
z ρ

⎤
⎦. (A20)
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Substituting back in Eq. (A14), we get the following analytical expression for the Fourier transform of the longitudinal primary
electric field:

E (p)
z (ρ, n, kz, ω) = − e

4πε0

jkz

2π

1

v
√

k2
z + (ω/γ v)2

exp

⎡
⎣ j

ω

v
x0 −

√
k2

z +
(

ω

γ v

)2

h + jkzz0

⎤
⎦

×
(√

k2
z + (ω/γ v)2 − ω/v√

k2
z + (ω/γ v)2 + ω/v

)n/2

Jn

⎡
⎣
√(

ω

c

)2

− k2
z ρ

⎤
⎦. (A21)

The Fourier transform of the longitudinal magnetic field, H (p)
z (ρ, n, kz, ω), is evaluated in a similar manner:

H (p)
z (ρ, n, kz, ω) = − e

4π

1

(2π )3
γ v

∫ ∞

−∞
dte− jωt

∫ π

−π

dφe jnφ

∫ ∞

−∞
dze jkzz (ρ sin φ − h)

[ξ 2(φ, t ) + (z − z0)2]3/2

= − e

4π

1

(2π )3
γ v

∫ ∞

−∞
dte− jωt

∫ π

−π

dφe jnφ

∫ ∞

−∞
dze jkzz ∂

∂h

(
1√

ξ 2(φ, t ) + (z − z0)2

)

= ∂

∂h

(
− e

4π

1

(2π )3
γ v

∫ ∞

−∞
dte− jωt

∫ π

−π

dφe jnφ

∫ ∞

−∞
dze jkzz ∂

∂h

1√
ξ 2(φ, t ) + (z − z0)2

)
. (A22)

From Eq. (A5) we observe that

H (p)
z (ρ, n, kz, ω) = 1

ε0

1

jkz
v

∂

∂h
E (p)

z (ρ, n, kz, ω) = − 1

ε0

1

jkz
v

√
k2

z +
(

ω

γ v

)2

E (p)
z (ρ, n, kz, ω), (A23)

leading to the following analytical expression for H (p)
z (ρ, n, kz, ω):

H (p)
z (ρ, n, kz, ω) = e

4π

1

2π
exp

⎡
⎣ j

ω

v
x0 −

√
k2

z +
(

ω

γ v

)2

h + jkzz0

⎤
⎦(√k2

z + (ω/γ v)2 − ω/v√
k2

z + (ω/γ v)2 + ω/v

)n/2

Jn

⎡
⎣
√(

ω

c

)2

− k2
z ρ

⎤
⎦.

(A24)

The expressions in Eqs. (A21) and (A24) are then used to retrieve the coefficients An, . . . , Dn of the secondary field, as described
in the main text.

It is insightful to define the “primary field impedance,” Z (n, kz, ω), as the ratio between E (p)
z and H (p)

z , explicitly reading

Z (n, kz, ω) � E (p)
z (ρ, n, kz, ω)

H (p)
z (ρ, n, kz, ω)

= − 1

ε0

jkz

v
√

k2
z + (ω/γ v)2

= − jη0
1

β

kz√
k2

z + (ω/γ v)2
, (A25)

where η0 is the free-space wave impedance. In the ultrarelativistic limit (γ → ∞), we have

Z (n, kz, ω)
γ→∞−−−→ − jη0

kz

|kz| , (A26)

that is, the ratio between the longitudinal electric- and magnetic-field components approaches that of a plane wave (in absolute
value).

APPENDIX B: DERIVATION OF THE SCATTERED ENERGY

In this section, we derive the expression presented in Eq. (15) for the energy radiated by the radially scattered waves. The
radially emitted energy is determined by integrating the radial (ρ) component of the secondary fields’ Poynting vector over a
cylindrical surface of radius ρ with the same axis as the dielectric rod, and taking the limit ρ → ∞, explicitly reading

Wscat = lim
ρ→∞ ρ

∫ ∞

−∞
dt
∫ ∞

−∞
dz
∫ π

−π

dφ
(
Ẽ (sec)

φ H̃ (sec)
z − Ẽ (sec)

z H̃ (sec)
φ

)
. (B1)

Invoking Parseval’s identity yields a summation over the secondary field components in Fourier space:

Wscat = (2π )3 lim
ρ→∞ ρ

∫ ∞

−∞
dω

∫ ω/c

−ω/c
dkz

∞∑
n=−∞

(
E (sec)

φ H (sec)
z − E (sec)

z H (sec)
φ

)
, (B2)

where the integration with respect to kz is limited to the range corresponding to radially propagating waves, |kz| <
|ω|
c , as they

are the sole contributors to the scattered radiation.

063514-16



SCATTERED AND GUIDED RADIATION EMITTED BY … PHYSICAL REVIEW A 107, 063514 (2023)

In the far-field limit (ρ → ∞), the ∝ ρ−1 terms of E (sec)
φ and H (sec)

φ may be neglected, yielding the following approximate
forms:

E (sec)
φ (ρ, n, kz, ω) ≈ − j

ωμ0

kvac
Dn(kz, ω)K̇n(kvacρ), H (sec)

φ (ρ, n, kz, ω) ≈ j
ωε0

kvac
Bn(kz, ω)K̇n(kvacρ). (B3)

Substituting back in Eq. (B2), we get

Wscat = (2π )3 lim
ρ→∞ ρ

∫ ∞

−∞
dωω

∫ ω/c

−ω/c
dkz

∞∑
n=−∞

(− j)
K∗

n (kvacρ)K̇n(kvacρ)

kvac
[ε0|Bn(kz, ω)|2 + μ0|Dn(kz, ω)|2]. (B4)

The product K∗
n (kvacρ)K̇n(kvacρ) is simplified using the large-argument asymptotic expansion for the modified Bessel function

of the second kind [29], and noting that kvac is imaginary since |kz| < ω
c :

K∗
n (kvacρ)K̇n(kvacρ) ≈

{(√
π

2ζ
e−ζ

)∗[
−
√

π

2ζ

(
1 + 1

2ζ

)
e−ζ

]}
ζ=kvacρ

≈ − π

2|kvacρ|
∣∣e−kvacρ

∣∣2 = − π

2(− j)kvacρ
, (B5)

where once again higher-order terms in ρ−1 have been neglected, as they vanish in the limit ρ → ∞. Substituting back in
Eq. (B4) yields

Wscat = π

2
(2π )3 lim

ρ→∞ ρ

∫ ∞

−∞
dωω

∫ ω/c

−ω/c
dkz

∞∑
n=−∞

1

−k2
vacρ

[ε0|Bn(kz, ω)|2 + μ0|Dn(kz, ω)|2]

= (2π )4
∫ ∞

0
dωω

∫ ω/c

0
dkz

∞∑
n=−∞

1
ω2

c2 − k2
z

[ε0|Bn(kz, ω)|2 + μ0|Dn(kz, ω)|2]

= (2π )4c2ε
1

R

∫ ∞

0
dω̄ω̄

∞∑
n=−∞

∫ ω̄

0
dk̄z

1

ω̄2 − k̄2
z

[ε0|Bn(k̄z, ω̄)|2 + μ0|Dn(k̄z, ω̄)|2], (B6)

where ω̄ = ωR
c and k̄z = kzR are the normalized quantities introduced in the main text.

We introduce the following normalization for the secondary field coefficients Bn and Dn:

B̂n = Bn

(
e

4π
η0

)−1

, D̂n = Dn

(
e

4π

)−1

. (B7)

Substituting back, we get

Wscat = e2

4πε0R

1

2
(2π )3

∫ ∞

0
dω̄ω̄

∞∑
n=−∞

∫ ω̄

0
dk̄z

1

ω̄2 − k̄2
z

[|B̂n(k̄z, ω̄)|2 + |D̂n(k̄z, ω̄)|2]. (B8)

Therefore, the normalized scattered energy is given by

W̄scat �
Wscat

e2/4πε0R
= 1

2
(2π )3

∫ ∞

0
dω̄ω̄

∞∑
n=−∞

∫ ω̄

0
dk̄z

1

ω̄2 − k̄2
z

[|B̂n(k̄z, ω̄)|2 + |D̂n(k̄z, ω̄)|2]. (B9)

APPENDIX C: DERIVATION OF THE GUIDED ENERGY

In this section, we derive the expression presented in Eq. (22) for the energy radiated by the cylinder’s guided modes in the
axial direction. The following is determined by integrating the longitudinal (z) component of the secondary fields’ Poynting
vector over two circular bases with infinite radii and perpendicular to the z axis, located at offsets ±z from the origin, and taking
the limit z → ∞, explicitly reading

Wguided = lim
ρ→∞ 2

∫ ∞

−∞
dt
∫ ∞

0
dρρ

∫ π

−π

dφ
(
Ẽ (sec)

ρ H̃ (sec)
φ − Ẽ (sec)

φ H̃ (sec)
ρ

)
, (C1)
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with integration being performed over a single base and the result subsequently multiplied by a factor of 2 due to left-right
symmetry with respect to the z axis. Fourier expanding each component yields∫ ∞

−∞
dt
∫ ∞

0
dρρ

∫ π

−π

dφ
(
Ẽ (sec)

ρ H̃ (sec)
φ − Ẽ (sec)

φ H̃ (sec)
ρ

)

=
∫ ∞

−∞
dt
∫ ∞

0
dρρ

∫ π

−π

dφ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞∑
n=−∞

∫ ∞

−∞
dω

∫ ∞

−∞
dkzE

(sec)
ρ (ρ, n, kz, ω)e j(ωt−nφ−kzz)

×
∞∑

n′=−∞

∫ ∞

−∞
dω′

∫ ∞

−∞
dk′

zH
(sec)
φ (ρ, n′, k′

z, ω
′)e j(ω′t−n′φ−k′

zz)

−
∞∑

n=−∞

∫ ∞

−∞
dω

∫ ∞

−∞
dkzE

(sec)
φ (ρ, n, kz, ω)e j(ωt−nφ−kzz)

×
∞∑

n′=−∞

∫ ∞

−∞
dω′

∫ ∞

−∞
dk′

zH
(sec)
ρ (ρ, n′, k′

z, ω
′)e j(ω′t−n′φ−k′

zz)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∫ ∞

0
dρρ

∞∑
n=−∞

∞∑
n′=−∞

∫ ∞

−∞
dω

∫ ∞

−∞
dω′

∫ ∞

−∞
dkz

∫ ∞

−∞
dk′

z

[
E (sec)

ρ (ρ, n, kz, ω)H (sec)
φ (ρ, n, kz, ω)

− E (sec)
φ (ρ, n, kz, ω)H (sec)

ρ (ρ, n, kz, ω)
] ∫ ∞

−∞
dte j(ω+ω′ )t

∫ π

−π

dφe− j(n+n′ )φe− j(kz+k′
z )z, (C2)

with orthogonality of the Fourier modes simplifying the cumbersome iterated integration as follows:∫ ∞

−∞
dt
∫ ∞

0
dρρ

∫ π

−π

dφ
(
Ẽ (sec)

ρ H̃ (sec)
φ − Ẽ (sec)

φ H̃ (sec)
ρ

)

= (2π )2
∫ ∞

0
dρρ

∞∑
n=−∞

∫ ∞

−∞
dω

∫ ∞

−∞
dkz

∫ ∞

−∞
dk′

z

[
E (sec)

ρ (ρ, n, kz, ω)H (sec)
φ (ρ,−n, k′

z,−ω) − E (sec)
φ (ρ, n, kz, ω)

× H (sec)
ρ (ρ,−n, k′

z,−ω)
]
e− j(kz+k′

z )z. (C3)

Since the fields in space and time coordinates are real valued (as physical quantities), their Fourier transforms satisfy

N∗(ρ, n, kz, ω) = N (ρ,−n,−kz,−ω), N ∈ {E (sec)
ρ , E (sec)

φ , H (sec)
ρ , H (sec)

φ

}
(C4)

and ∫ ∞

−∞
dω

∞∑
n=−∞

∫ ∞

−∞
dkzN (ρ, n, kz, ω)e j(ωt−nφ−kzz) = 2

∫ ∞

0
dω

∞∑
n=−∞

∫ ∞

−∞
dkzRe{N (ρ, n, kz, ω)e j(ωt−nφ−kzz)}. (C5)

Therefore, Eq. (C2) may be rephrased as follows:

∫ ∞

−∞
dt
∫ ∞

0
dρρ

∫ π

−π

dφ
(
Ẽ (sec)

ρ H̃ (sec)
φ − Ẽ (sec)

φ H̃ (sec)
ρ

) = 2(2π )2
∫ ∞

0
dρρ

∫ ∞

0
dω

∞∑
n=−∞

Re

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞

−∞
dkze

− jkzzE (sec)
ρ (ρ, n, kz, ω)

×
∫ ∞

−∞
dqze

jqzzH∗(sec)
φ (ρ, n, qz, ω)

−
∫ ∞

−∞
dkze

− jkzzE (sec)
φ (ρ, n, kz, ω)

×
∫ ∞

−∞
dqze

jqzzH∗(sec)
ρ (ρ, n, qz, ω)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(C6)

The integration of the secondary field components with respect to kz is obstructed for every value of n and ω by the presence
of poles, {kn,s(ω)}∞s=1, along the real axis. These poles are the zeros of the determinant n(kz, ω) of the coefficient matrix [see
Eq. (13)], and correspond to the cylinder’s eigenmodes. It is also important to note that n(kz, ω) is purely real in the range
ω2/c2 < k2

z < εrω
2/c2, and is an even function of n, kz, and ω.
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In this scenario, it is convenient to define the field components multiplied by the determinant, namely,

N (ρ, n, kz, ω) = N̄ (ρ, n, kz, ω)

n(kz, ω)
, N ∈ {E (sec)

ρ , E (sec)
φ , H (sec)

ρ , H (sec)
φ

}
. (C7)

The advantage of such a representation is that N̄ (ρ, n, kz, ω) is nonsingular, with all singularities encoded inside the determinant.
Next, we Taylor expand the determinant near its poles, since the main contribution to 1/n comes from their vicinity.

Explicitly,

1

n(kz, ω)
≈

∞∑
s=1

1

n(kn,s(ω), ω)︸ ︷︷ ︸
0

+[ ∂
∂k2

z
n(kz, ω)

]
k2

z =k2
n,s

(
k2

z − k2
n,s

) =
∞∑

s=1

2kn,s

̇n,s

1

k2
z − k2

n,s

, (C8)

where ̇n,s = ∂n
∂kz

(kn,s, ω), and the ω argument of kn,s(ω) is omitted for clarity. Now, the inverse transforms of the field

components with respect to kz may be evaluated. We begin with the integral containing E (sec)
ρ :∫ ∞

−∞
dkze

− jkzzE (sec)
ρ (ρ, n, kz, ω) =

∫ ∞

−∞
dkze

− jkzz
Ē (sec)

ρ (ρ, n, kz, ω)

n(kz, ω)
=

∞∑
s=1

2kn,s

̇n,s
Ē (sec)

ρ (ρ, n, kn,s, ω)
∫ ∞

−∞
dkz

e− jkzz

k2
z − k2

n,s︸ ︷︷ ︸
G(z;kn,s )

. (C9)

The integral in G(z; kn,s) is evaluated using residue analysis. First, simplifying a bit,

G(z; kn,s) =
∫ ∞

−∞
dkz

e− jkzz

k2
z − k2

n,s

= 1

2kn,s

(∫ ∞

−∞
dkz

e− jkzz

kz − kn,s
−
∫ ∞

−∞
dkz

e− jkzz

kz + kn,s

)
. (C10)

The integrands in the above integrals have two poles on the real axis, located at kz = ±kn,s. Assuming without loss of generality
that z > 0, the poles should be shifted away from the real line by introducing a negative imaginary part, in order of the integral
to be well defined, Explicitly, we have

±kn,s → ±kn,s − jδ, δ > 0. (C11)

The choice of a negative imaginary part corresponds to a lossy medium inside the cylinder, which is necessary for the uniqueness
theorem to hold.

After the poles have been shifted, the real axis is closed into a semicircular integration contour in the complex plane, which
contains the shifted poles (that is, closing the lower half plane). Then, Cauchy’s residue theorem is invoked, and the limit δ → 0
is taken. Explicitly, the evaluation of G(z; kn,s) proceeds as follows:

G(z; kn,s) = lim
δ→0+

1

2kn,s

(∫ ∞

−∞
dkz

e− jkzz

kz − kn,s + jδ
−
∫ ∞

−∞
dkz

e− jkzz

kz + kn,s + jδ

)

= lim
δ→0+

1

2kn,s

[
−2π jRes

(
e− jkzz

kz − kn,s + jδ
; kn,s − jδ

)
+ 2π jRes

(
e− jkzz

kz + kn,s + jδ
; −kn,s − jδ

)]

= lim
δ→0+

1

2kn,s
(−2π j)(e− j(kn,s− jδ)z − e− j(−kn,s− jδ)z ) = lim

δ→0+

2π

kn,s
e−δz sin(kn,sz) = − 2π

kn,s
sin(kn,sz), (C12)

with a negative sign added to the residue since the integration path is oriented clockwise. Substituting back in Eq. (C9), we get∫ ∞

−∞
dkze

− jkzzE (sec)
ρ (ρ, n, kz, ω) = −

∞∑
s=1

4π

̇n,s
Ē (sec)

ρ (ρ, n, kn,s, ω) sin(kn,sz). (C13)

Next, we evaluate the integral containing H∗(sec)
φ :∫ ∞

−∞
dqze

jqzzH∗(sec)
φ (ρ, n, qz, ω) =

∞∑
s=1

2kn,s

̇n,s
H̄∗(sec)

φ (ρ, n, kn,s, ω)
∫ ∞

−∞
dqz

e jqzz

q2
z − k2

n,s︸ ︷︷ ︸
G(−z;kn,s )

. (C14)

From the observation that G(z; kn,s) is symmetric with respect to z, it can be immediately deduced that the above integral results
in an identical expression to Eq. (C13). The integrals containing E (sec)

φ and H∗(sec)
ρ are evaluated in a similar manner.

Substituting back in Eq. (C6) yields

Wguided = lim
z→∞ (4π )2

∫ ∞

0
dω

∞∑
n=−∞

∞∑
s,s′=1

(4π )2

̇n,ṡn,s′
sin(kn,sz) sin(kn,s′z)Re{Is,s′ }, (C15)
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where Is,s′ denotes

Is,s′ =
∫ ∞

0
dρρ

[
Ē (sec)

ρ (kn,s)H̄∗(sec)
φ (kn,s′ ) − Ē (sec)

φ (kn,s)H̄∗(sec)
ρ (kn,s′ )

]
(ρ), (C16)

which is essentially an inner product between the induced fields corresponding to different radial numbers s and s′.
It is known that for every value of n, kz, and ω, the various modes of the dielectric rod waveguide (with different radial

numbers z) form an orthogonal set with respect to the inner product depicted in Eq. (C16) [30]. Inspecting a specific eigenvalue
kn,s, the corresponding normalized fields Ē (sec)

ρ , Ē (sec)
φ , H̄ (sec)

ρ , and H̄ (sec)
φ are derived from coefficients Ān, B̄n, C̄n, and D̄n which

satisfy [according to Eq. (12)]

(
Ān

η0C̄n

)
=
(

M22 −M12

−M21 M11

)(
η0H (eff)

φ

E (eff)
φ

)
, (C17)

(
B̄n

η0D̄n

)
= 1

Kn

⎡
⎣( Ān

η0C̄n

)
In − n(kn,s(ω), ω))︸ ︷︷ ︸

0

(
E (p)

z

η0H (p)
z

)⎤⎦ =
(

Ān

η0C̄n

)
In

Kn
, (C18)

with E (eff)
φ and η0H (eff)

φ defined in Eq. (12). The coefficients Ān and C̄n are observed to satisfy

(
M11 M12

M21 M22

)(
Ān

η0C̄n

)
= n(kn,s(ω), ω))︸ ︷︷ ︸

0

I2×2

(
η0H (eff)

φ

E (eff)
φ

)
=
(

0

0

)
, (C19)

thus both Ān and C̄n and B̄n and D̄n [as seen from Eq. (C18)] constitute solutions to the homogeneous electromagnetic problem.
If so, the components Ē (sec)

ρ , Ē (sec)
φ , H̄∗(sec)

ρ , and H̄∗(sec)
φ , although induced following an inhomogeneous excitation (namely, the

point charge), solve the homogeneous eigenvalue problem of the cylindrical dielectric waveguide when substituting kz = kn,s(ω).
This implies that the aforementioned mode orthogonality relation applies also to the normalized secondary field components,
therefore

Is,s′ = 0, ∀s �= s′. (C20)

Equation (C20) allows us to discard cross terms in the summation of s and s′ in Eq. (C15), yielding

Wguided = lim
z→0

(4π )2
∫ ∞

0
dω

∞∑
n=−∞

∞∑
s=1

(
4π

̇n,s

)2

sin2 (kn,sz)Re

{∫ ∞

0
dρρ

(
Ē (sec)

ρ H̄∗(sec)
φ − Ē (sec)

φ H̄∗(sec)
ρ

)
kz=kn,s

}
. (C21)

In the limit z → ∞, the argument of sin(kn,sz) changes rapidly with kn,s, thus sin2(kn,sz) may be approximated by its average
value during a single period, that is, sin2(kn,sz) ≈ 1

2 .
As with the previously calculated scattered radiation, we introduce the following normalized field components:

Êν = Ē (sec)
ν

(
e

4π
η0

)−1

, Ĥν = H̄ (sec)
ν

(
e

4π

)−1

, ν ∈ {ρ, φ}. (C22)

Substituting back in Eq. (C21), along with the “average-power” approximation for sin2(kn,sz), in the asymptotic limit (z → ∞)
we get

Wguided = 1

2
(4π )2η0e2

∫ ∞

0
dω

∞∑
n=−∞

∞∑
s=1

1

̇2
n,s

Re

{∫ ∞

0
dρρ(ÊρĤ∗

φ − ÊφĤ∗
ρ )kz=kn,s

}

= 1

2
(4π )3 e2

4πε0R

∫ ∞

0
dω̄

∞∑
n=−∞

∞∑
s=1

1

̇2
n,s

Re

{∫ ∞

0
d ρ̄ρ̄(ÊρĤ∗

φ − ÊφĤ∗
ρ )k̄z=kk̄n,s

}
, (C23)

where ρ̄ = ρ/R, and now ̇n,s denotes the derivative of n,s with respect to k̄z = kzR. Therefore, the normalized guided energy
is given by

W̄guided � Wguided

e2/4πε0R
= 1

2
(4π )3 e2

4πε0R

∫ ∞

0
dω̄

∞∑
n=−∞

∞∑
s=1

1

̇2
n,s

Re

{∫ ∞

0
d ρ̄ρ̄(ÊρĤ∗

φ − ÊφĤ∗
ρ )k̄z=kk̄n,s

}
. (C24)
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TE

TM

FIG. 9. Comparison between the relative portions of the TE and
TM components out of the total scattered energy. The relative por-
tions of W (TE)

scat (solid curves) and W (TM)
scat (dashed curves) are plotted

as a function of the particle’s normalized kinetic energy, γ − 1, for
multiple dielectric coefficients: εr = 2 (purple), εr = 4 (green), and
εr = 12 (blue). An impact parameter of η = 1.4 was used in all
simulations.

APPENDIX D: COMPARISON BETWEEN THE TE AND
TM COMPONENTS OF THE SCATTERED RADIATION

The expressions in Eqs. (B4) and their substitution in the
expression of the scattered energy [see Eq. (B2)] show that
the ∼|Bn|2 term is proportional to E (sec)

z H∗(sec)
φ , whereas the

∼|Dn|2 term is proportional to E (sec)
φ H∗(sec)

z . The former does
not depend on the longitudinal (z) magnetic field and is thus
denoted as TM. Similarly, the latter does not depend on the
longitudinal electric field, and is thus denoted as TE. It is the
purpose of this section to compare the TE and TM contribu-
tions to the scattered radiation.

From Eq. (B9) we can identify the normalized TE and TM
contributions to the scattered energy, that is, W̄scat = W̄ (TE)

scat +
W̄ (TM)

scat , where

W̄ (TE)
scat = 1

2
(2π )3

∫ ∞

0
dω̄ω̄

∞∑
n=−∞

∫ ω̄

0
dk̄z

1

ω̄2 − k̄2
z

|D̂n(k̄z, ω̄)|2,

W̄ (TM)
scat = 1

2
(2π )3

∫ ∞

0
dω̄ω̄

∞∑
n=−∞

∫ ω̄

0
dk̄z

1

ω̄2 − k̄2
z

|B̂n(k̄z, ω̄)|2.

(D1)

The relative portions of W̄ (TE)
scat and W̄ (TM)

scat out of the to-
tal scattered energy are plotted as a function of γ − 1 in
Fig. 9 for multiple values of εr . While the exact behavior of
W̄ (TE)

scat and W̄ (TM)
scat is rather complicated, it can be seen that

the TE contribution to the scattered energy is more signif-
icant than TM. The dominance of the TE contribution can
be explained by the formation of dipole moments (or higher
multipoles) inside the rod, with their orientations rotating with
the change in the particle’s position during its motion. These
circulating multipoles generate significant azimuthal electric
fields (E (sec)

φ ) and longitudinal magnetic fields (H (sec)
z ), both of

which are associated with the TE term. In the limit γ → ∞,
the ratio between the two terms approaches 1, in alignment
with the fact that the ratio between the primary electric and

magnetic (time free-space wave impedance) fields also ap-
proaches unity, as in a plane wave.

APPENDIX E: CONTRIBUTION OF AZIMUTHAL
HARMONICS TO THE RADIATION

The expressions for both scattered and guided radiation
include a summation over all indices n = 0,±1,±2, . . .,
which correspond to the family {e− jnφ}∞n=−∞ of waves ro-
tating azimuthally around the cylinder. Given ω is positive,
positive values of n represent waves rotating counterclock-
wise, whereas negative values of n represent waves rotating
clockwise.

Taking a specific term of this sum yields the contribution of
a specific azimuthal harmonic to the emitted radiation, which
explicitly reads for the scattered and guided components

W̄scat,n = 1

2
(2π )3

∫ ∞

0
dω̄ω̄

∫ ω̄

0
dk̄z

1

ω̄2 − k̄2
z

× [|B̂n(k̄z, ω̄)|2 + |D̂n(k̄z, ω̄)|2], (E1)

W̄guided,n = 1

2
(4π )3

∫ ∞

0
dω̄

∞∑
s=1

1

̇2
n,s

× Re

{∫ ∞

0
d ρ̄ρ̄(ÊρĤ∗

φ − ÊφĤ∗
ρ )k̄z=k̄n,s

}
. (E2)

The contributions of the various azimuthal harmonics to the
scattered and guided energies are presented in Fig. 10 for
multiple regimes of interest. For low energies (γ − 1 � 1)
and large distances from the cylinder (η � 1), the dominant
contribution to the energy comes in both mechanisms from the
n = −1 harmonic, which corresponds to a clockwise-rotating
wave with the symmetry of a dipole. The following may be
readily explained by the formation of dipole moments inside
the cylinder, with the clockwise rotation dictated by the point
particle’s direction of motion. However, for higher energies
and smaller impact parameters, contributions due to higher
harmonics become more significant, and a larger number of
harmonics must be taken into account during computation.
For example, for εr = 4, γ − 1 = 100, and η = 1.1, the scat-
tered radiation roughly spans over harmonics in the range
n = −40, . . . , 40.

An important feature common to all regimes is the large
asymmetry between positive and negative harmonics, with
the energy contributed primarily by negative values of n. As
mentioned above, negative harmonics correspond to waves
rotating clockwise around the cylinder, and can once again
be attributed to clockwise-rotating dipoles (and additional
multipoles of higher order for higher energies), induced inside
the cylinder by the particle’s fields during its motion.

APPENDIX F: BUNCH FACTOR OF A UNIFORM,
CYLINDRICAL CHARGED BUNCH

In this section, we derive the factors that multiply the
primary fields’ Fourier components in order to account for
a uniform cylindrical bunch, as presented in Eq. (30) in the
main text. We begin by considering an arbitrary bounded
charge distribution � with charge density ρe(r) at time t = 0
(different from the radial coordinate ρ), moving at a constant
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(a) (b)

(c) (d)

Guided

Scattered

Guided

Scattered
Guided

Scattered

FIG. 10. Contribution of the various azimuthal harmonics to the radiated energy. The plots show the contributions to the normalized
scattered and guided energy, W̄scat and W̄guided, as a function of the harmonic index n, in the following regimes. (a) Low energy, large distance
from the cylinder. (b) High energy, large distance. (c) Low energy, small distance. (d) High energy, small distance. Curves with small values
are scaled by a multiplicative factor for clarity.

velocity v = βcx̂ similar to the point particle. By virtue of superposition, and assuming the observation point lays strictly below
the bunch �, the Fourier transform of the longitudinal components of the corresponding primary electric field is given by
[according in Eq. (A21)]

E (bunch)
z (ρ, n, kz, ω) =

∫
�

dr′ρe(r′)
1

4πε0

jkz

2π
exp

⎡
⎣ j

ω

v
x′ −

√
k2

z +
(

ω

γ v

)2

y′ + jkzz
′

⎤
⎦

×
(√

k2
z + (ω/γ v)2 − ω/v√

k2
z + (ω/γ v)2 + ω/v

)n/2

Jn

⎡
⎣
√(

ω

c

)2

− k2
z ρ

⎤
⎦

= E (p)
z (ρ, n, kz, ω) × �(n, kz, ω; �), (F1)

where E (p)
z (ρ, n, kz, ω) is the primary field of a point particle with charge −e and impact parameter y = h [as presented in

Eq. (A21)], and �(n, kz, ω; �) is a bunch factor, incorporating the bunch’s geometry and charge distribution. The bunch factor
explicitly reads

�(n, kz, ω; �) = 1

−e

∫
�

dr′ρe(x′, h + y′, z′) exp

⎡
⎣ j

ω

v
x′ −

√
k2

z +
(

ω

γ v

)2

y′ + jkzz
′

⎤
⎦. (F2)

Similarly, for the primary magnetic field we have

H (bunch)
z (ρ, n, kz, ω) = H (p)

z (ρ, n, kz, ω) × �(n, kz, ω; �). (F3)

In what follows, we determine �(n, kz, ω; �) for a cylindrical bunch with uniform charge density (total charge −e) and an
axis parallel to the x axis. As described in the main text, the cylindrical bunch is characterized by a width of 2x and a base radius
of r , with the bunch radius constrained to satisfy r < h − R to prevent direct contact between the bunch and the dielectric
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rod. The bunch’s geometry may be conveniently parametrized as follows:

� =

⎧⎪⎪⎨
⎪⎪⎩(x, h + r cos θ, r sin θ ) :

− x � x � x,

0 � r � r,

0 � θ < 2π

⎫⎪⎪⎬
⎪⎪⎭. (F4)

Substituting back in Eq. (F2), we get

�(n, kz, ω; x,r ) = 1

2π2
r x

∫ π

−π

dθ ′
∫ r

0
dr′r′

∫ x

−x

exp

⎡
⎣ j

ω

v
x′ −

√
k2

z +
(

ω

γ v

)2

r′ cos θ ′ + jkzr
′ sin θ ′

⎤
⎦

= 1

2x

∫ x

−x

dx′ exp

(
j
ω

v
x′
)

︸ ︷︷ ︸
�x (n,kz,ω;x )

× 1

π2
r

∫ r

0
dr′r′

∫ π

−π

dθ ′ exp

⎡
⎣
√

k2
z +

(
ω

γ v

)2

r′ cos θ ′ + jkzr
′ sin θ ′

⎤
⎦

︸ ︷︷ ︸
�r (n,kz,ω;r )

.

(F5)

The factor �x(n, kz, ω; x), corresponding to the bunch’s finite width, is rather simple to evaluate:

�x(n, kz, ω; x ) = 1

2x

∫ x

−x

dx′ exp

(
j
ω

v
x′
)

= exp
(

j ω
v
x
)− exp

(− j ω
v
x
)

2 j ω
v
x

= sinc

(
ω

v
x

)
, (F6)

where sinc(x) � sin x/x. As for the factor �r (n, kz, ω; r ) corresponding to the bunch’s finite radius, evaluation is more
complicated. The integral with respect to θ ′ may be simplified using the following integral identity [adapted from Ref. [3]
Sec. 3.338 Eq. (4)]: ∫ π

−π

dθ exp(a cos θ + jb sin θ ) = 2π I0(
√

a2 − b2) a, b ∈ R, (F7)

yielding

�r (n, kz, ω; r ) = 1

π2
r

∫ r

0
dr′r′2π I0

(
ωr′

γ v

)

= 2

2
r

(γ v

ω

)2
∫ ωr

γ v

0
duuI0(u)

= 2

2
r

(γ v

ω

)2
× ωr

γ v
I1

(
ωr

γ v

)

= 2
I1(ωr/γ v)

ωr/γ v

= Iinc

(
ω

γ v
r

)
, (F8)

where we define Iinc(x) � 2I1(x)/x. Putting it all together, the
bunch factor corresponding to the cylindrical bunch is given
by

�(n, kz, ω; x,r )

= �x(n, kz, ω; x )�r (n, kz, ω; r )

= sinc

(
1

β

ω

c
x

)
Iinc

(
1

γ β

ω

c
r

)
. (F9)

APPENDIX G: NAMING CONVENTIONS FOR
CYLINDRICAL WAVEGUIDE MODES

It is the purpose of this section to reconcile the naming
scheme used to denote the guided modes in a cylindrical,

dielectric waveguide in our theoretical analysis with the
convention commonly used in the literature. In our formu-
lation, each mode corresponds to two integer indices: an
azimuthal harmonic n = 0,±1,±2, . . ., which describes the
mode’s rotatory behavior around the cylinder, and a radial
harmonic s = 1, 2, 3, . . ., which describes the mode’s oscil-
latory behavior in the radial direction. On the other hand,
it is common in the literature (e.g., textbooks on optical
fibers) to categorize the modes also by the polarization: For
n = 0 (i.e., circular symmetric waves), the modes can be
decoupled into pure TE and pure TM components, labeled
as TE0m and TM0m, where m =, 1, 2, 3, . . .. The first (i.e.,
smallest kz) mode for n = 0 is of TE polarization, and the
higher-order modes have alternating polarizations. Therefore,
the TE0m and TM0m modes correspond to odd and even values
of s, respectively. For values of n larger than zero, the modes

TABLE III. Conversion between the different naming schemes
for the guided modes of a cylindrical dielectric waveguide. Each row
and column correspond to specific values of n and s, and the corre-
sponding cell contains the mode’s name according to the convention
common in the literature.

n = 0 n = ±1 n = ±2 n = ±3 n = ±4

s = 1 TE01 HE11 HE21 HE31 HE41

s = 2 TM01 EH11 EH21 EH31 EH41

s = 3 TE02 HE12 HE22 HE32 HE42

s = 4 TM02 EH12 EH22 EH32 EH42

s = 5 TE03 HE13 HE23 HE33 HE43
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(a) (b)

FIG. 11. Dispersion curves of the dielectric cylinder’s guided modes. The dispersion curves (colored solid lines) are plotted in normalized
coordinates k̄z = kzR, ω̄ = ωR/c for a cylinder relative permittivity of εr = 12 and the azimuthal harmonics (a) n = 0 and (b) n = ±1. The
mode types of the first few bands are also denoted. The black dashed lines correspond to the lines ω̄ = k̄z and k̄z/

√
εr , with the various

dispersion curves strictly lying between the two.

can no longer be separated into TE and TM components.
These modes are called hybrid modes, and can also be divided
into two types: HEnm modes, which have a dominant TE com-
ponent (but nonvanishing TM component), and EHnm modes,
which have a dominant TM component (but nonvanishing TE
component). Similar to the case for n = 0, the first mode for a
given value of n > 0 is of the HE type, with the higher-order
modes alternating between EH and HE. Therefore, the HEnm

and EHnm modes also correspond to odd and even values of s,
respectively.

Table III demonstrates the conversion between the two
naming schemes for select values of s, and Fig. 11 displays
the dispersion curves (mode frequency ω as a function of its
wave number kz) for n = 0 and 1.

APPENDIX H: EFFECT OF A LOSSY MEDIUM
ON THE SCATTERED RADIATION

This section is devoted to the inspection of the scattered
spectrum in the presence of losses inside the dielectric cylin-
der. Losses may be easily incorporated by adding a negative

imaginary part to the dielectric coefficient, corresponding to
the following transformation:

εr → εr − jδ, δ � 0. (H1)

The value of δ can be chosen to match the dielectric losses
of realistic materials. Our discussion is, however, motivated
mainly by numerical considerations: When evaluating the
scattered energy and spectrum of values of εr and for η ≈ 1,
significant numerical noise begins to emerge. Figure 12 dis-
plays the scattered spectrum for multiple “loss magnitudes”
δ for η ≈ 1.05, γ = 1.2, and εr = 4, 12—a choice of param-
eters leading to significant numerical artifacts in the absence
of losses. The following plots demonstrate that introducing
losses removes numerical noise from the spectrum and retains
only the “authentic” resonant peaks, with negligible effect on
the spectrum’s overall height. In our simulation, for εr = 4
taking δ = 10−2 is sufficient in order to remove numerical
noise, yet for εr = 12 taking δ = 10−1 is required. The fol-
lowing are the values of δ used in the numerical computations
which produce the results presented in the main text.

(a) (b)

FIG. 12. Scattered spectrum in the presence of losses. The spectrum is plotted for multiple “loss magnitudes” δ � 0, with the lossy
dielectric coefficient given by εr − jδ. The parameters γ = 1.2 and η = 1.05 were used in simulation, with the real part of the permittivity
being (a) εr = 4 and (b) εr = 12.
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(a) (b)

Each band includes 

an additional 10 

radial modes

FIG. 13. Evaluated energy as a function of the truncation bounds of the harmonics. (a) Scattered energy resulting from summation of
harmonics in the range n = −Nmax, . . . , Nmax as a function of Nmax, plotted for both γ = 1.2 (blue with circular markers) and γ = 101 (red
with square markers). (b) Guided energy resulting from summation of azimuthal and radial harmonics in the ranges n = −Nmax, . . . , Nmax and
s = 1, . . . , Smax, respectively, as a function of Nmax and Smax, plotted for both γ = 1.2 and 101. The first band corresponds to Smax = 10 (i.e.,
only the first ten radial modes included in summation), with ten additional modes added in each additional band, reaching up to Smax = 40.

APPENDIX I: CONVERGENCE OF THE NUMERICAL
COMPUTATIONS

Numerical evaluation of scattered [see Eq. (B9)] and
guided [see Eq. (C24)] energies requires summing over az-
imuthal harmonics n = 0,±1,±2, . . ., with the guided energy
also requiring summation over the radial harmonics s =
1, 2, 3, . . .. In practice, both summations must be truncated at
some limit bound Nmax and Smax, such that only indices in the
range n = −Nmax, . . . , Nmax and s = 1, . . . , Smax participate
in the summation. In this section, we determine the values
of Nmax and Smax required for sufficient convergence for both
the scattered and guided energies, following the preliminary
assumption that the (normalized) frequency may be truncated
from above by ω̄co = 10π .

Figure 13 plots the evaluated scattered and guided energy
as a function of truncation bounds, Nmax for the scattered
energy, and both Nmax and Smax for the guided energy, for
both low and high energies. The parameters εr = 12 and η =
1.05 were used in simulation, as they essentially represent
the extreme case in terms of the number harmonics required
for convergence. It can be seen that for both energies the
curves “plateau” for Nmax = 30 in the case of scattered ra-
diation, and Nmax = 40 for guided radiation, indicating that
Nmax = 40 is sufficient for convergence in terms of the az-
imuthal harmonics. As for the guided radiation [see Fig. 5(b)],
the curves approach a limiting height at about Smax = 40,
therefore taking the first 40 radial modes yields decent
convergence.
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