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Surface-polariton excitation and energy losses by a charged particle in cylindrical waveguides
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We investigate the emission of surface polaritons (SPs) by a charged particle moving inside a dielectric
cylinder parallel to its axis. It is assumed that the cylinder is immersed into a homogeneous medium with
negative dielectric permittivity in the spectral range under consideration. The SP modes are present for the
positive dielectric function of the cylinder material. In order to find the electromagnetic fields corresponding to
SPs, the respective contributions to the components of the Green tensor are separated. The expressions for scalar
and vector potentials and for electromagnetic-field strengths are provided inside and outside the cylinder. Those
fields are expressed in terms of the SP eigenmodes of the waveguide and we give detailed analysis for their
properties. The SP energy fluxes through the plane perpendicular to the cylinder axis are evaluated in the interior
and exterior media. The energy flux is directed towards the charge motion inside the cylinder and towards the
opposite direction in the exterior region. The relativistic effects may essentially increase the radiated energy.
Important features of relativistic effects include the possibility of essential increase of the radiated energy, the
narrowing of the confinement region of the SP fields near the cylinder surface in the exterior region, the enlarging
of the frequency range for radiated SPs, and the decrease of the cutoff factor for radiation at small wavelengths
compared with the waveguide radius. The general results are specified for the Drude dispersion in the exterior
medium. By using the Green tensor we also evaluate the total-energy losses of the charged particle for the
general case of the interior and exterior dielectric functions. The corresponding results are compared with those
previously discussed in the literature. The numerical data are presented in terms of scale-invariant quantities that
allow us to clarify the features of the SP radiation for different values of the waveguide radius.
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I. INTRODUCTION

The study of various aspects of generation and propaga-
tion of surface polaritons (SPs; we use the term “surface
polariton” and the related terminology in the sense clarified in
Ref. [1]) is an active field of research. They present coupled
excitations of the electromagnetic field and medium polar-
ization localized near the interface between two media. SPs
are generated in the spectral range where the real parts of
dielectric permittivities for neighboring materials have oppo-
site signs. The significant attention attracted by this type of
surface waves is related to their remarkable properties such
as the enhancement of the electromagnetic energy density, the
possibility of concentrating the corresponding fields beyond
the diffraction limit for light waves, and the high sensitivity
to the electromagnetic characteristics of contacting materi-
als. Further specification of the type of SP is done based
on the identification of the polarization mechanism in the
negative-permittivity medium. An example of a polarizable
system is an electron gas in metals. The respective class
of surface waves is known as surface-plasmon polaritons
(see, for example, Refs. [1–5]). Other negative-permittivity
materials supporting SP-type waves are ionic crystals, semi-
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conductors, and organic dielectrics. Another possibility is
to use artificially constructed materials referred to as meta-
materials [6]. The spectral range for SPs can be tuned by
the choice of the negative-permittivity medium or by us-
ing various mechanisms for changing the number density of
charge carriers. In particular, the metamaterials and doped
semiconductors allow one to excite SPs in terahertz- and
microwave-frequency ranges. Another possibility is to use
subwavelength microstructured interfaces. The unique prop-
erties of SPs have resulted in a wide range of applications
that include biosensing, surface imaging, data storage, solar
cells, surface enhanced Raman spectroscopy, nanophotonics,
information processing systems, medicine, and so forth.

Extensive applications of SPs in various fields of science
and technology motivate the development of efficient methods
for excitation of that type of waves with controllable char-
acteristics. Available techniques for coupling electromagnetic
waves in free space to SPs, widely discussed in the litera-
ture [2–4,7], include prism and grating coupling, near-field
scattering excitation, and tight-focus excitation. SP modes in
waveguides can also be excited by using guided photonic
modes from another waveguide. Another source for SPs is
provided by a beam of charged particles passing through or
near the interface between negative- and positive-permittivity
media. In fact, the first experimental signatures for existence
of SPs were obtained in measurements of electron-beam
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energy losses of aluminum and magnesium. High-quality
narrow electron beams of scanning electron microscopes
and transmission electron microscopes (TEMs) provide an
excellent source in plasmonic devices with subnanometer
resolution (see Refs. [8,10]), essentially higher than the res-
olutions realized with sources based on optical beams. The
emission of SPs is one of the channels for energy losses by
charged particles. In particular, motivated by applications in
various research and technological fields, the spectral dis-
tribution of total-energy losses, including channels of very
different nature, has attracted a great deal of attention (for
reviews see, e.g., Refs. [8,9]). Different types of geometries
for separating surfaces have been discussed, including planar,
spherical, and cylindrical geometries and structured interfaces
such as gratings. The corresponding length scales vary in
rather wide intervals ranging from tens of nanometers (e.g.,
for carbon nanotubes and fullerenes) to millimeter and cen-
timeter sized objects like waveguides and resonators.

The energy losses of charged particles traveling paral-
lel to the axis of a cylindrical interface have been widely
discussed in the literature (see, e.g., Refs. [8,11–34] and ref-
erences therein), mainly within the framework of dielectric
response theory. Carbon nanotubes are among the interesting
realizations of the corresponding setup. The excitation of SPs
in those structures by fast electrons has been studied, for
example, in Refs. [35–39]. The corresponding results have
important applications in the microscopy and spectroscopy of
materials and surfaces. The study of the electron energy-loss
spectrum provides a useful tool in investigations of features
of both surface and bulk collective excitations. The interac-
tion between charged particles and cylindrical interfaces is of
utmost importance in the physics of particle accelerators. In
most of the existing literature dealing with that interaction, the
total-energy losses have been considered which, in addition
to the radiation of SPs, include other channels as well. Our
main concern in the present paper is to investigate the energy
fluxes of the radiated SPs and their distribution in negative-
and positive-permittivity media. The total-energy losses are
separately considered as well by using the Green tensor of
the electromagnetic field from Ref. [40]. The corresponding
results are in agreement with those for the spectral density
of the energy-loss probability previously considered in the
literature.

The organization of the paper is as follows. In the next
section, we describe the problem setup, and the components
of the electromagnetic Green tensor required for evaluation
of fields are presented. The contributions in the components
coming from SPs are explicitly separated. In Sec. III, by using
the expressions for the Green tensor components, formulas
are derived for the scalar and vector potentials and for the
electric and magnetic fields corresponding to radiated SPs.
The properties of the cylinder eigenmodes for SPs are dis-
cussed. The general expressions are specified for the special
case of axial motion. In Sec. IV the energy fluxes through the
plane perpendicular to the cylinder axis are investigated for
SPs. The energy fluxes in the interior and exterior regions are
evaluated separately and the corresponding numerical results
are presented. Section V considers energy losses by a charged
particle for the general case of interior and exterior dielectric
permittivities. A numerical example is provided for a vacuum
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FIG. 1. The problem geometry and the notations.

cylindrical hole inside a Drude-like material. We then present
our conclusions in Sec. VI.

II. PROBLEM SETUP AND THE CONTRIBUTION OF
SURFACE POLARITONS TO THE GREEN TENSOR

Consider a point charge q moving by a constant velocity v

parallel to the axis of a cylinder with dielectric permittivity
ε0 and with the radius rc (see Fig. 1). The distance of the
charge trajectory from the axis will be denoted by r0 < rc and
it will be assumed that the cylinder is immersed into a homo-
geneous medium with dielectric permittivity ε1 (the magnetic
permeabilities for both the cylinder and surrounding medium
will be taken to be the unit). In accordance with the problem
symmetry we will use cylindrical coordinates (r, φ, z) with the
axis z along the axis of the cylinder. In the present paper we
are interested in the radiation from the charge in the form of
SPs.

Denoting by x = (t, r) the spacetime point, the cylindrical
components of the vector potential A(x) are expressed in
terms of the electromagnetic-field Green tensor Gil (x, x′) as

Ai(x) = − 1

2π2c

∫
d4x′

3∑
l=1

Gil (x, x′) jl (x
′), (2.1)

where x′ = (t ′, r′) and the current density is given by the
expression

jl (x) = δ3l
qv

r
δ[r − r0(t )], (2.2)

where r0(t ) = (r = r0, φ = 0, z = vt ) determines the loca-
tion of the charge.

For the Green tensor we use the partial Fourier expansion

Gil (x, x′) = 2Re

[ ∞∑
n=−∞

∫ ∞

−∞
dω

∫ ∞

0
dkz Gil,n(ω, kz, r, r′)

× ein�φ+ikz�z−iω�t

]
, (2.3)

with �φ = φ − φ′, �z = z − z′, and �t = t − t ′. Here the
relation Gil,−n(−ω,−kz, r, r′) = G∗

il,n(ω, kz, r, r′) is used to
transform the integral over the region −∞ < kz < +∞ to the
integral over 0 � kz < ∞. In the problem under consideration
the Fourier components Gi3,n(ω, kz, r, r′) are required, evalu-
ated for r′ = r0. The corresponding expressions are given in
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Ref. [40] (for applications of the Green tensor from Ref. [40]
in investigations of the Cherenkov and synchrotron radiations
from a charge rotating around/inside a dielectric cylinder see
Refs. [41–45] and references therein). They are presented in
the form

Gl3,n(ω, kz, r, r0) = −
∑
p=±1

pl−1

il
C(p)

n Jn+p(λ0r), l = 1, 2,

G33,n(ω, kz, r, r0) = π

2i

[
Jn(λ0r<)Hn(λ0r>)

−V H
n

V J
n

Jn(λ0r0)Jn(λ0r)

]
(2.4)

for the region r < rc and by

Gl3,n(ω, kz, r, r0) = −
∑

p

pl−1

il
C(p)

n Hn+p(λ1r), l = 1, 2,

G33,n(ω, kz, r, r0) = Jn(λ0r0)

rcV H
n

Hn(λ1r) (2.5)

in the region r > rc. Here, l = 1, 2, 3 correspond to the
cylindrical components (r, φ, z), Jn(y) and Hn(y) = H (1)

n (y)
are the Bessel and Hankel functions, r< = min(r, r0), r> =
max(r, r0), and

V F
n = Fn(λ0rc)∂rc Hn(λ1rc) − Hn(λ1rc)∂rc Fn(λ0rc), (2.6)

with F = J, H , and

λ2
j = ω2ε j/c2 − k2

z , j = 0, 1. (2.7)

The coefficients in (2.4) and (2.5) are defined by the relations

C(p)
n = kzJn(λ0r0)Hn(λ1rc)

2rcαn(ω, kz )V J
n V J

n+p

{
Hn+p(λ1rc), r < rc

Jn+p(λ0rc), r > rc
, (2.8)

where

αn(ω, kz )= ε0

ε1 − ε0
+ 1

2

∑
l=±1

[
1− λ1

λ0

Jn+l (λ0rc)Hn(λ1rc)

Jn(λ0rc)Hn+l (λ1rc)

]−1

.

(2.9)
The equation αn(ω, kz ) = 0 determines the electromag-

netic eigenmodes of the cylinder. It has solutions only under
the condition λ2

1 < 0. The corresponding fields exponentially
decay in the exterior medium. There are two types of cylin-
der eigenmodes. For the first one, corresponding to guiding
modes, we have λ2

0 > 0 and the radial dependence of the fields
inside the cylinder is given by the Bessel functions Jn(λ0r)
and Jn±1(λ0r). For the second type of the modes λ2

0 < 0 and
they correspond to SPs. The corresponding radial dependence
inside the cylinder is expressed in terms of the modified Bessel
functions In(|λ0|r) and In±1(|λ0|r). Here we are interested in
the radiation of SPs for which λ2

j < 0. Introducing the modi-
fied Bessel functions, the function determining the dispersion
relation is presented as

αn(ω, kz ) = ε0

ε1 − ε0

+ 1

2

∑
l=±1

[
1 + |λ1

|λ0|
In+l (|λ0|rc)Kn(|λ1|rc)

In(|λ0|rc)Kn+l (|λ1|rc)

]−1

.

(2.10)

From here, as a necessary condition for the presence of the
roots for the equation αn(ω, kz ) = 0 we get ε1/ε0 < 0. This
condition requiring opposite signs for the dielectric permittiv-
ities of neighboring media is well known for planar interfaces.
We will denote by kz = kn(ω) the positive roots of the equa-
tion αn(ω, kz ) = 0. As it will be seen below, in the problem
under consideration for the radiated SPs one has ω = kzv.
This means that the eigenvalues of kz for the radiated SPs are
determined by the intersection of the dispersion curve kn(ω)
with the line kz = ω/v in the (ω, kz ) plane. In the discussion
below those eigenvalues will be denoted by kn,s, where s
enumerates the roots for a given n. In the problem at hand
the charge moves in the medium with permittivity ε0 and
the most promising case to escape the nonradiation energy
losses and multiple scattering would be the motion in an
empty cylindrical hole with ε0 = 1. Motivated by this, we will
specify the consideration for the case ε1 < 0 < ε0 assuming
that the dielectric functions for both the media are real. The
total-energy losses for general complex functions ε0(ω) and
ε1(ω) will be discussed below in Sec. V. With that choice, for
a given value of β0 = (v/c)

√
ε0, the roots with respect to

u = kzrc = ωrc/v (2.11)

are functions of the combinations ε1/ε0 and β0. Denoting
those roots by un,s = kn,src, we get un,s = un,s(ε1/ε0, β0). In
particular, they do not depend on the cylinder radius.

In the integral over kz in (2.3) the integrand has poles at the
eigenmodes of the cylinder corresponding to αn(ω, kz ) = 0.
The specification of the integration contour is required near
those poles. In order to do that we introduce a small imaginary
part for the dielectric permittivity in the exterior medium,
writing it in the form ε1 = ε′

1 + iε′′
1 , where ε′′

1 = ε′′
1 (ω) =

sgn(ω)|ε′′
1 (ω)|. For the function αn(ω, kz ) this gives

αn(ω, kz ) ≈ αn(ω, kz )|ε1=ε′
1
+ iε′′

1∂ε1αn(ω, kz )|ε1=ε′
1
. (2.12)

We have numerically checked that ∂ε1αn(ω, kz )|ε1=ε′
1
< 0 for

roots kz = kn,s. Taking the limit ε′′
1 → 0, it can be seen that

near the poles, corresponding to the radiated SPs, the factor
1/αn(ω, kz ) in the integrand for the Green tensor should be
understood as 1/αn(ω, kz ) ≈ 1/[αn(ω, kz ) − sgn(ω)i0]. In or-
der to separate the respective contribution to the Green tensor
we use the relation

1

αn(ω, kz ) − sgn(ω)i0

= P 1

αn(ω, kz )
+ sgn(ω)iπδ[αn(ω, kz )], (2.13)

where the symbol P means that the corresponding part in the
integral should be understood in the sense of the principal
value.

Let us denote by G(P)
il (x, x′) the part of the Green ten-

sor coming from SPs. In addition, we will denote by
G(P)

il,n(ω, kz, r, r′)/αn(ω, kz ) the parts in the Fourier compo-
nents containing the factor 1/αn(ω, kz ). Those parts only
contribute to the radiation of SPs. The part G(P)

il (x, x′) is de-
termined by the contribution of the last term in (2.13) to the
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integral over kz in (2.3):

G(P)
il (x, x′) = − 2π Im

[ ∞∑
n=−∞

∑
s

∫ ∞

−∞
dω sgn(ω)

× G(P)
il,n(ω, kz, r, r′)

|∂kzαn(ω, kz )| ein�φ+ikz�z−iω�t |kz=kn,s

]
.

(2.14)

In particular, as it is seen from (2.4) and (2.5),
G(P)

33,n(ω, kz, r, r0) = 0 for both the exterior and interior
regions.

III. ELECTROMAGNETIC FIELDS

Having the contribution of SPs to the Green tensor we can
find the related electromagnetic fields.

A. Vector and scalar potentials

Substituting the representation (2.14) in (2.1) and by using
(2.2), for the vector potential corresponding to the radiated
SPs we get

A(P)
l (x)

= 2qv

c
Im

[ ∞∑
n=−∞

∑
s

G(P)
l3,n(kzv, kz, r, r0)

|∂kzαn(ω, kz )|ω=kzv

einφ+ikz (z−vt )
∣∣
kz=kn,s

]
.

(3.1)

The expressions for G(P)
i3,n(kzv, kz, r, r0) are obtained from (2.4)

and (2.5):

G(P)
l3,n(kzv, kz, r, r0)

= − i−l

2rc

∑
p

pl−1In(γ0ur0/rc)Kn(γ1u)
Rn+p(u, r/rc)

uW I
n W I

n+p
,

(3.2)

for l = 1, 2, and G(P)
33,n(kzv, kz, r, r0) = 0. In (3.2) we use the

notations (2.11) and

Rn(u, r/rc) =
{

Kn(γ1u)In(γ0ur/rc), r < rc,

In(γ0u)Kn(γ1ur/rc), r > rc.
, (3.3)

with

γ j =
√

1 − β2ε j, β = v/c, (3.4)

and

W I
n = −γ1In(γ0u)Kn+1(γ1u) − γ0In+1(γ0u)Kn(γ1u). (3.5)

For SPs under consideration λ j = i|kz|γ j and the function
αn(ω, kz ) = αn(kzv, kz ) ≡ αn(u) for those modes is written in
the form

αn(u) = ε0

ε1 − ε0
+ 1

2

∑
l=±1

[
1 + γ1

γ0

In+l (γ0u)Kn(γ1u)

In(γ0u)Kn+l (γ1u)

]−1

.

(3.6)
Note that we have assumed ε1 < 0 < ε0 and, hence, γ0 < 1
< γ1.

The insertion of (3.2) in (3.1) gives

A(P)
l (x) = 2qv

crc

∞
′∑

n=0

∑
s

Qn(u)
∑
p=±1

Rn+p(u, r/rc)

pl−1uW I
n+p

cos (uξ/rc)

× sin (lπ/2 − nφ)|u=un,s , (3.7)

for l = 1, 2, A(P)
3 (x) = 0, and the prime on the summation sign

means that the term n = 0 should be taken with an additional
coefficient 1/2. Here

un,s = kn,src, ξ = vt − z, (3.8)

and

Qn(u) = Kn(γ1u)

W I
n ᾱn(u)

In(γ0ur0/rc). (3.9)

In (3.9) and in what follows we use the notation

ᾱn(u) = |∂uαn(ω, u/rc)|ω=uv/rc . (3.10)

Note that one has

W I
n+p = −γ1In+p(γ0u)Kn(γ1u) − γ0In(γ0u)Kn+p(γ1u),

(3.11)
and Eq. (3.6) for the function αn(u) is rewritten in the form

αn(u) = ε0

ε1 − ε0
− 1

2
γ0In(γ0u)

∑
p=±1

Kn+p(γ1u)

W I
n+p

. (3.12)

As expected, the vector potential is continuous at the cylinder
surface r = rc. It is important to note that, in general, the
function ᾱn(u) differs from the derivative α′

n(u) of the function
(3.12). By using (3.11), the equation αn(kzv, kz ) = 0 for SP
eigenmodes u = un,s is reduced to (see also Refs. [46,47] and
Ref. [48] for the corresponding guiding modes)[

γ1
I ′
n(γ0u)

In(γ0u)
− γ0

K ′
n(γ1u)

Kn(γ1u)

][
ε0γ1

I ′
n(γ0u)

In(γ0u)
− ε1γ0

K ′
n(γ1u)

Kn(γ1u)

]

=
(

nβ

u

ε0 − ε1

γ0γ1

)2

, (3.13)

where the prime stands for the derivative of functions with
respect to the argument.

The spectral component of the scalar potential ϕ(P)(x),
denoted here as ϕ(P)

ω , with ω = un,sv/rc and ϕ(P)
ω =∫∞

−∞ dt ϕ(P)(x)eiωt/2π , is found by using the relation ϕ(P)
ω =

−(ic/ωε)∇ · A(P)
ω in separate regions r > rc and r < rc. This

gives

ϕ(P)(x) = − 2q

rc

∞
′∑

n=0

∑
s

Qn(u)
∑
p=±1

R(e)
p,n(u, r/rc)

uW I
n+p

× sin (uξ/rc) cos (nφ)|u=un,s , (3.14)

with the notation

R(e)
p,n(u, r/rc) =

{
γ0

ε0
Kn+p(γ1u)In(γ0ur/rc), r < rc

− γ1

ε1
In+p(γ0u)Kn(γ1ur/rc), r > rc

.

(3.15)
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We can check that the spectral components of the scalar po-
tential obey the boundary condition

ε0∂rϕ
(P)
ω

∣∣
r=rc−0 − ε1∂rϕ

(P)
ω

∣∣
r=rc+0 = i(ε0 − ε1)

ω

c
A(P)

ω1

∣∣
r=rc

,

(3.16)
where the expression for the spectral component of the
vector potential on the cylinder surface directly follows
from (3.7).

It is important to mention that the potentials ϕ(P)(x) and
A(P)(x) are the parts of the total fields corresponding to
radiated SPs. The total fields can be found by using the
relation (2.1) and the components (2.4) and (2.5) for the
electromagnetic-field Green tensor. The part in the fields
coming from the first term in the square brackets of Eq. (2.4)
for the component G33,n(ω, kz, r, r0) corresponds to the field
generated by a charged particle moving in a homogeneous
medium with dielectric permittivity ε0. Denoting by A(0)(x) =
(0, 0, A(0)

3 (x)) the corresponding vector potential, we
get

A(0)
3 (x)=− qv

2ic

∫ ∞

−∞
dkze

ikz (z−vt )
∞∑

n=−∞
einφJn(λ0r<)Hn(λ0r>).

(3.17)
The series over n in this expression is summed by using
the addition theorem for the cylinder functions (see, for ex-
ample, Ref. [49]). By taking into account that λ0 = ikzγ0,
the sum of the series is equal to 2K0(kzγ0r⊥)/(π i), where
r⊥ = √

r2 + r2
0 − 2rr0 cos φ is the distance of the observa-

tion point (r, φ, z) from the trajectory of the charge. For the
spectral component of the vector potential, A(0)

ω3 , this gives
A(0)

ω3 = qei ω
v

zK0( ω
v
γ0b)/(πc). The corresponding scalar poten-

tial is obtained from the relation ϕ(0)
ω = −(ic/ωε0)∂zA

(0)
ω3 and

one gets ϕ(0)
ω = A(0)

ω3/(βε0). The spectral component of the
electric-field strength is found by using the formula E(0)

ω =
iωA(0)

ω /c − ∇ ϕ(0)
ω . In particular, for the z projection we

find

E (0)
ω3 = − iqω

πv2

(
1

ε0
− β2

)
ei ω

v
zK0

(
ω

v
γ0r⊥

)
. (3.18)

For z = 0 this result differs from the corresponding expression
given in Ref. [48] [see Eq. (13.32)] by an additional coeffi-
cient 1/

√
2π which is related to different coefficients in the

definition of the Fourier transformation.

B. Magnetic and electric fields

The cylindrical components of the magnetic field H are
found from the relation H = ∇ × A. Denoting the part related
to SPs by H(P) and by making use of the recurrence relations
for the modified Bessel functions one obtains

H (P)
l (x) =

∞∑
n=0

∑
s

H (P)
l,n (un,s) sin (un,sξ/rc) cos(π l/2 − nφ),

H (P)
3 (x) =

∞∑
n=0

∑
s

H (P)
3,n (un,s) cos (un,sξ/rc) sin (nφ), (3.19)

where

H (P)
l,n (u) = −2δn

qβ

r2
c

Qn(u)
∑
p=±1

Rn+p(u, r/rc)

plW I
n+p

,

H (P)
3,n (u) = 2δn

qβ

r2
c

Qn(u)
∑
p=±1

R(m)
p,n (u, r/rc)

pW I
n+p

, (3.20)

and δ0 = 1/2, δn = 1 for n > 1. In (3.20) we have defined the
function

R(m)
p,n (u, r/rc) =

{
γ0Kn+p(γ1u)In(γ0ur/rc), r < rc

−γ1In+p(γ0u)Kn(γ1ur/rc), r > rc
,

(3.21)
for the exterior and interior regions. It can be checked that the
magnetic field is continuous on the cylinder surface.

From the relation Eω = iωAω/c − ∇ ϕω we find the spec-
tral components of the electric field for radiated SPs. The
corresponding Fourier expansions have the form

E (P)
l (x) =

∞∑
n=0

∑
s

E (P)
l,n (un,s) sin (un,sξ/rc) sin (π l/2 − nφ),

E (P)
3 (x) =

∞∑
n=0

∑
s

E (P)
3,n (un,s) cos (un,sξ/rc) cos(nφ), (3.22)

where l = 1, 2. The Fourier components are expressed as

E (P)
l,n (u) = δn

q

r2
c

Qn(u)
∑

p,p′=±1

1 + pp′β2
0

pl−1

Kn+p′ (γ1u)

ε0W I
n+p′

× In+p(γ0ur/rc), r < rc,

E (P)
l,n (u) = δn

q

r2
c

Qn(u)
∑

p,p′=±1

1 + pp′β2ε1

pl−1

In+p′ (γ0u)

ε1W I
n+p′

× Kn+p(γ1ur/rc), r > rc, (3.23)

and

E (P)
3,n (u) = −2δnq

r2
c

∑
p=±1

Qn(u)

W I
n+p

R(e)
p,n(u, r/rc). (3.24)

It can be checked that the components E (P)
2 (x) and E (P)

3 (x)
for the electric field and the component D(P)

1 (x) for the dis-
placement vector are continuous on the boundary r = rc. The
expressions for separate components can be further simplified
by using the relations∑

p=±1

Kn+p(γ1u)

W I
n+p

= 2ε0/(ε1 − ε0)

γ0In(γ0u)
,

∑
p=±1

In+p(γ0u)

W I
n+p

= 2ε1/(ε0 − ε1)

γ1Kn(γ1u)
, (3.25)

which directly follows from αn(u) = 0 in combination with
(3.12). Note that both the electric and magnetic fields, in
addition to the transversal components, have longitudinal
components.

The expressions for the fields are further simplified on the
axis of the cylinder. The cylindrical coordinates are degen-
erate for r = 0 and, in order to take the limit r → 0, we
first transform the fields to Cartesian coordinates (x, y, z),
where the x axis corresponds to φ = 0 and for the location of
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the charge one has (x, y, z) = (r0, 0, vt ). In this way, for the
nonzero Cartesian components of the electric and magnetic
fields on the cylinder axis, r = 0, one finds

H (P)
y = 2qβ

r2
c

∑
s

Q1(u)

W I
0

K0(γ1u) sin (uξ/rc)|u=u1,s ,

E (P)
x = 2q

r2
c

∑
s

Q1(u)

[
β2

W I
0

K0(γ1u) − γ0/(ε0 − ε1)

I1(γ0u)

]

× sin (uξ/rc)|u=u1,s ,

E (P)
z = − q

r2
c

∑
s

γ0Q0(u)

ε0W I
1

K1(γ1u) cos (uξ/rc)|u=u0,s . (3.26)

Hence, on the axis the electric and magnetic fields are orthog-
onal and the magnetic field is transversal.

We recall that for given β0 and ε1/ε0 the eigenmodes un,s

do not depend on the cylinder radius rc. The eigenvalues for
the SP wavelength are expressed as λSP = λn,s = 2πrc/un,s.
The dependence of the Fourier components E (P)

l,n (un,s) and

H (P)
l,n (un,s) on the cylinder radius appears in the form of the co-

efficient q/r2
c and in the form of the ratios r0/rc and r/rc in the

arguments of the modified Bessel functions. Note that the de-
pendence on the impact parameter r0 comes from the function
In(γ0ur0/rc) in the definition (3.9) for Qn(u). Hence, for fixed
values of the other parameters the absolute values |E (P)

l,n (un,s)|
and |H (P)

l,n (un,s)| monotonically increase with increasing r0 <

rc. The fields in the negative-permittivity medium depend
on the radial coordinate through the functions Kn(γ1un,sr/rc)
and Kn±1(γ1un,sr/rc) and, hence, they are exponentially sup-
pressed at distances r � λn,s/(2πγ1). For a given wavelength,
the SP fields in the negative-permittivity medium are mainly
localized near the cylinder surface within the region of the
thickness � λn,s/(2πγ1). In the problem at hand γ1 > 1 and
the localization radius can be essentially smaller than the
wavelength. Note that the parameter γ1 increases with increas-
ing β and the localization near the cylinder surface in the
exterior region is stronger for relativistic electrons (for the
discussion of relativistic effects in radiation of SPs see also
Ref. [8]).

C. Properties of the modes

The electromagnetic fields for SPs are expressed in terms
of the corresponding eigenmodes of the cylinder. In this sub-
section the properties of those modes are discussed. We can
consider the equation αn(u) = 0, with αn(u) from (3.6), as an
equation determining the ratio ε1/ε0 for given values u and
β0: ε1/ε0 = fn(u, β0). Let us clarify the asymptotic properties
of the roots interpreted in that way. For large values of u,
assuming that γ ju � 1, by using the asymptotic expressions
for the modified Bessel functions (see, for example, Ref. [49])
in (3.6) we get

αn(u) ≈ ε0

ε1 − ε0
+
(

1 + γ1

γ0

)−1(
1 + 1

2γ0u

)
. (3.27)

From here it follows that in the limit u → ∞ the roots of the
equation αn(u) = 0 with respect to ε1/ε0 tend to the limiting

value 1/(β2
0 − 1). Note that to the leading order one has

γ1/γ0 ≈ −ε1/ε0. (3.28)

This is an exact relation in the limit of a planar boundary. By
taking into account that u = 2πrc/λSP, we see that the large
values for u correspond to wavelengths much smaller than the
cylinder radius. We could expect that in this limit the curvature
effects of the separating boundary will be weak.

In the opposite limit u � 1 and for the modes with n = 0
one finds

α0(u) ≈ ε1

ε1 − ε0
+ 1

4
u2γ 2

1 ln(uγ1). (3.29)

This shows that for those modes the roots with respect to ε1/ε0

tend to zero. For n � 1 and u � 1 the asymptotic expressions
for the function αn(u) have the form

α1(u) ≈ 1 + ε1/ε0

2(ε1/ε0 − 1)
− γ 2

1 u2

16
− 1

4
γ 2

0 u2 ln(γ1u),

αn(u) ≈ 1 + ε1/ε0

2(ε1/ε0 − 1)
+ u2 2 + [(n − 1)ε1 − (n + 1)ε0]β2

8n(n2 − 1)
,

(3.30)

with n � 2 in the second line. From here we conclude that for
n � 1 the roots ε1/ε0 tend to −1.

Now let us consider the properties of SP modes for large
values of n. By using the uniform asymptotic expansions of
the modified Bessel function for large values of the order [49],
to the leading order we get

αn(u)≈ ε0

ε1−ε0
+ 1

2

∑
l=±1

⎛
⎜⎝1 + γ 2

1

γ 2
0

√
1 + u2γ 2

0 /n2 − l√
1 + u2γ 2

1 /n2 + l

⎞
⎟⎠

−1

.

(3.31)

First let us consider the possibility of the modes with uγ j � n
when the leading-order term is reduced to

αn(u) ≈ ε1 + ε0

ε1 − ε0
+ O(1/n2). (3.32)

From here it follows that for large n the corresponding modes
are present if the ratio ε1/ε0 is sufficiently close to −1:
ε1/ε0 ≈ −1 + O(1/n2). For the modes with uγ j of the or-
der n � 1, solving the equation αn(u) = 0, with αn(u) from
(3.31), we get

un,s ≈ n

(
β2

0ε1

ε0 + ε1
− 1

)−1/2

. (3.33)

In the region under consideration the neighboring roots with
respect to n are approximately equidistant.

In Fig. 2 we have presented the distribution of the roots for
the equation αn(u) = 0 with respect to ε1/ε0 as functions of
u. On the left panel the graphs are plotted for n = 0 and 1 (the
dashed and full curves, respectively) and for fixed values of
β0 (the numbers near the curves). The right panel presents the
graphs for different values of n (the numbers near the curves)
and for β0 = 0.9. The numerical data confirm the features
clarified by the asymptotic analysis: ε1/ε0 tends to −1 + δ0n

in the limit u → 0 and ε1/ε0 → 1/(β2
0 − 1) for u → ∞.
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FIG. 2. The roots of the eigenmode equation for SPs with respect to the ratio ε1/ε0 as functions of u = kzrc. The dashed and full curves on
the left panel correspond to the modes with n = 0 and 1, respectively, and the numbers near the curves are the values of β0. The right panel is
plotted for β0 = 0.9 and for different values of n (the numbers near the curves).

We have considered the general properties of SP modes
without fixing the dispersion law for the dielectric func-
tions ε j (ω). Figure 2 displays the function ε1/ε0 = fn(u, β0)
for different values of β0 and n. Given the dielectric
functions ε j (ω) = ε j (uv/rc), the eigenvalues for u are de-
termined by the intersections of the graphs for the functions
ε1(uv/rc)/ε0(uv/rc) and fn(u, β0). As an example we will
consider the Drude model for the exterior medium assum-
ing that the dispersion of the material of the cylinder in the
frequency range under consideration is weak. The simplest
example would be the motion of the charge in an empty
cylindrical hole with ε0 = 1. Denoting by ωp and η the plasma
frequency and the characteristic collision frequency, the func-
tion ε1 = ε1(ω) is expressed as

ε1(ω) = 1 − ω2
p

ω2 + iηω
. (3.34)

In accordance with the assumption made above, to clarify
the qualitative features we will ignore the imaginary parts
of both dielectric permittivities ε0 and ε1(ω). The effect of
the imaginary parts on the energy losses of the charge in the
problem at hand will be considered in Sec. V below. The
dispersion described by (3.34) is the most popular model in
theoretical considerations of SPs. Putting η = 0 in (3.34),
for the upper frequency of SPs one gets ω < ωp and for the
charge velocity we have β < 1/

√
ε0. In terms of the vari-

able (2.11) this constraint is reduced to u < rcωp/v. From
the features of the distribution of the roots un,s, described
above for general real ε0 and ε1, it follows that for a given
β0 and rcωp/c � 1 for the roots corresponding to ω/ωp one
has ω/ωp ≈ 1/

√
1 + ε0/γ

2
0 . In the opposite limit rcωp/c � 1

the roots with respect to ω/ωp tend to 1 for n = 0 and to
1/

√
1 + ε0 for n � 1. Again, based on the general analysis

presented above, we can see that for fixed rcωp/c and for
large values of n one has ε1(ω)/ε0 ≈ −1 or, in terms of the
angular frequency, ω/ωp ≈ 1/

√
1 + ε0. In accordance with

the interpretation given above, specified for the special case at

hand, the radiation modes u = un,s are determined by the in-
tersection of the curves ε1 = 1 − (rcωp/v)2/u2 and fn(u, β0).
As seen from Fig. 2, for the corresponding example there is a
unique solution and we can omit the index s for un,s and the
summation over s in the expressions for the fields given above.

In Fig. 3 the roots of the eigenvalue equation for SPs with
respect to the ratio ω/ωp are depicted as functions of the
combination ωprc/c for the dispersion law (3.34) ignoring the
absorption. For the region r < rc we have taken ε0 = 1. The
left panel presents the curves for the modes n = 0 (dashed
lines) and n = 1 (full lines). The numbers near the curves are
the values of β. The right panel displays the location of the
roots for β = 0.5 and for the modes n = 1, 2, 3, 5, 10 (the
numbers near the curves). The numerical data confirm the
asymptotic analysis given above.

As it has been discussed above, for large values of n we
can have two qualitatively different cases for the behavior
of the modes un,s. For given ε0 and ε1, when ε1 is not too
close to −ε0, the roots linearly increase with increasing n [see
(3.33)]. This type of behavior for r0/rc = 0.95 is illustrated in
the left panel of Fig. 4. The corresponding values for the pair
(ε1/ε0, β0) are presented in the figure. In the second case, the
permittivity ε1 is close to −ε0 [see (3.32)] and for large n one
has un,s � n. This case is realized, for example, by the disper-
sion law (3.34) with η = 0 and for the motion of the charge
in vacuum, ε0 = 1. The results of the corresponding numer-
ical evaluations for ω/ωp, with the values of the parameters
r0/rc = 0.95 and β = 0.9, are presented in the right panel of
Fig. 4. The numbers near the points correspond to the values
of rcωp/c. For large n the ratio ω/ωp tends to 1/

√
2 (dashed

line, corresponding to 1/
√

1 + ε0 in the asymptotic analysis
given above) and ε1(ω) tends to −ε0 = −1. In the right panel
of Fig. 4, for the n = 0 mode in the case rcωp/c = 1 one
has ω/ωp ≈ 0.852. With decreasing β the distribution of the
modes near the line 1/

√
2 becomes narrower. This feature can

also be seen from Fig. 3.
In the nonrelativistic limit, assuming that β2|ε j | � 1, to

the leading order, we can replace γ0 and γ1 in (3.6) by 1. The
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FIG. 3. The frequencies of SP modes vs the combination ωprc/c in the case of the Drude model of dispersion for ε1(ω) and for ε0 = 1. The
dashed and full curves on the left panel correspond to the modes n = 0 and 1, respectively. The numbers near the curves are the corresponding
values of β. The graphs on the right panel are plotted for different values of n (the numbers near the curves) and for β = 0.5.

corresponding expression is simplified by using the Wron-
skian relation for the modified Bessel function and we get

αn(u) ≈ ε0

ε1 − ε0
− uIn(u)K ′

n(u). (3.35)

Hence, in the nonrelativistic limit the equation determining
the eigenmodes for the SPs reads

uIn(u)K ′
n(u) = ε0

ε1 − ε0
. (3.36)

This equation can also be written in the form uI ′
n(u)Kn(u) =

ε1/(ε1 − ε0). Combining these two forms we get another
equivalent representation:

ε1

ε0
= I ′

n(u)Kn(u)

In(u)K ′
n(u)

. (3.37)

This form has been used, for example, in Ref. [21]. Similar to
the interpretation given above, we can consider (3.36) as an

equation that determines the ratio ε1/ε0 as a function of u for
a given n: ε1/ε0 = fn(u). By making use of the properties of
the modified Bessel functions we can see that limu→∞ fn(u) =
−1 for all n, f0(0) = 0, and fn(0) = −1 for n > 0. In addition
we have fn(u) > fn+1(u) and −1 < fn(u) < 0 for 0<u<∞.
The function f0(u) is monotonically decreasing, whereas the
functions fn(u) with n > 0 have the maximum f (m)

n < 0, 0 �
fn(u) � f (m)

n , which decreases with increasing n. From this
analysis we conclude that in the nonrelativistic limit SP modes
are present in the range −1 � ε1/ε0 < 0 for n = 0 and in
the range −1 � ε1/ε0 � f (m)

n for n > 0. The allowed region
for ε1/ε0 becomes narrower with increasing n. All those fea-
tures are seen from the left panel of Fig. 5 where we have
displayed the function ε1/ε0 = fn(u) for different values of
n (the numbers near the curves). The right panel in Fig. 5
presents the dependence of the frequency of the SPs on the
parameter rcωp/v for the model of dispersion (3.34) (with

FIG. 4. SP modes as functions of n for the ratio r0/rc = 0.95. The left panel presents the roots with respect to u = kzrc for given values
of the pair (ε1/ε0, β0). On the right panel the modes with respect to the ratio ω/ωp are depicted in the Drude model (3.34) with η = 0. The
numbers near the points are the values of rcωp/c.
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FIG. 5. The left panel presents the function ε1/ε0 = fn(kzrc ) for SPs in the nonrelativistic limit of the charge motion. The right panel
describes the dependence of the ratio ω/ωp on the quantity rcωp/v for the Drude model of dispersion in the same limit. The numbers near the
curves are the corresponding values for n.

η = 0) and for ε0 = 1 in the nonrelativistic limit. The numbers
near the curves are the values of n. In the limit rcωp/v → 0
we have ω/ωp → 0 for n = 0 and ω/ωp → 1/

√
2 for n > 0.

In the opposite limit rcωp/v → ∞ we get ω/ωp → 1/
√

2 .
Comparing with the data presented in Figs. 2 and 3 we see
that the relativistic effects may essentially enlarge the regions
for ε1/ε0 in the general case and for ω/ωp in the Drude model
allowing the existence of the SP modes.

D. Fields for a charge moving along the cylinder axis

The expressions for the electromagnetic fields correspond-
ing to the generated SPs are essentially simplified in the
special case of the charge motion along the axis of the cylinder
corresponding to r0 = 0. The dependence of the fields on r0

enters in the expressions for the fields in the form of the
modified Bessel function In(γ0ur0/rc) in (3.9). From here we
conclude that the only nonzero contribution comes from the
mode with n = 0 and the fields do not depend on the angular
coordinate φ. Of course, that is a direct consequence of the
problem symmetry in the special case at hand. For the function
(3.12) one gets

α0(u) = ε0γ1I1(γ0u)K0(γ1u) + ε1γ0I0(γ0u)K1(γ1u)

(ε0 − ε1)W I
1

, (3.38)

and the equation determining the eigenmodes for SPs takes
the form

I1(γ0u)K0(γ1u)

I0(γ0u)K1(γ1u)
= −ε1γ0

ε0γ1
. (3.39)

In the nonrelativistic limit the latter is reduced to (3.37)
with n = 0. Note that we have 0 < γ0 < 1 < γ1. Under these
conditions the function in the left-hand side of (3.39) is mono-
tonically increasing from zero for u = 0 and approaching 1 in
the limit u → ∞. From here it follows that the SP modes are
present under the condition 1/(β2

0 − 1) < ε1/ε0 < 0 and there
is a single mode for given β2

0 and ε1/ε0 obeying that condition.

From the general formulas, by using Eq. (3.39), for the
nonzero components of the potentials we get

ϕ(P)(x) = q

rc
Q(u)R(0)(u, r/rc) sin (uξ/rc),

A(P)
1 (x) = − q

rc
βεQ(u)R(1)(u, r/rc) cos (uξ/rc), (3.40)

where ε = ε0 for r < rc, ε = ε1 for r > rc, and

Q(u) = 2ε1(ε0 − ε1)−2γ0

uI1(γ0u)ᾱ0(u)
. (3.41)

The dependence on the radial coordinate is expressed in terms
of the functions

R(0)(u,w) =
{ I0(γ0uw)

I0(γ0u) , w < 1
K0(γ1uw)
K0(γ1u) , w > 1

(3.42)

and

R(1)(u,w) =
{ I1(γ0uw)

γ0I0(γ0u) , w < 1

− K1(γ1uw)
γ1K0(γ1u) , w > 1

. (3.43)

For the nonzero components of the electric and magnetic
fields one finds

E (P)
1 (x) = H (P)

2 (x)

βε
= − q

r2
c

uQ(u)R(1)(u, r/rc) sin (uξ/rc),

E (P)
3 (x) = q

r2
c

uQ(u)R(0)(u, r/rc) cos (uξ/rc), (3.44)

where u is a root of Eq. (3.39). For the special case of axial
motion the electric and magnetic fields are orthogonal and the
magnetic field is transversal.

IV. ENERGY FLUXES FOR RADIATED
SURFACE POLARITONS

Having the expressions of the fields for radiated SPs, in
this section we evaluate the energy flux through the plane
perpendicular to the cylinder axis. The latter is determined by
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the Poynting vector and is given by

I ( f ) = c

4π

∫ 2π

0
dφ

∫ ∞

0
dr r[E(P) × H(P)] · nz, (4.1)

with nz being the unit vector along the z axis. We will
evaluate the fluxes in the interior and exterior regions with
the integrations over r ∈ [0, rc] and r ∈ [rc,∞), respectively.
Substituting the Fourier expansions (3.19) and (3.22), after
integration over φ we find

I ( f )(ξ ) = − c

4

∫ ∞

0
dr r

∞∑
n=0

∑
s,s′

sin (un,sξ/rc) sin (un,s′ξ/rc)

×[(1 + δ0n)E (P)
1,n (un,s)H (P)

2,n (un,s′ )

+(1 − δ0n)E (P)
2,n (un,s)H (P)

1,n (un,s′ )
]
, (4.2)

where the Fourier components are given by (3.20) and (3.23).
The energy flux through the plane z = const dur-

ing the time interval z/v � t � t0 is given by E ( f )
[z/v,t0] =∫ t0

z/v dt I ( f )(ξ ) = ∫ vt0−z
0 dξ I ( f )(ξ )/v. The difference of the

corresponding fluxes for the planes z = z1 and z = z2 > z1 is
expressed as

E ( f )(t0, z1, z2) = E ( f )
[t1,t0] − E ( f )

[t2,t0] = 1

v

∫ vt0−z1

vt0−z2

dξ I ( f )(ξ ),

(4.3)

where t j = z j/v, j = 1, 2. This difference characterizes the
energy radiated by the charge during the time interval t ∈
[t1, t2]. In the limit t0 → ∞ we use the result

lim
t0→∞

∫ vt0−z1

vt0−z2

dξ sin (uξ/rc) sin
(
u′ξ/rc

) = t2 − t1
2v

δu′u.

(4.4)
By using (4.2), for the mean energy flux (averaged in the
way described above) per unit time through the plane z =
const, given by I ( f ) = limt0→∞ E ( f )(t0, z1, z2)/(t2 − t1), we
get

I ( f ) = − c

8

∫ ∞

0
dr r

∞∑
n=0

∑
s

[
(1 + δ0n)E (P)

1,n (u)H (P)
2,n (u)

+ (1 − δ0n)E (P)
2,n (u)H (P)

1,n (u)
]

u=un,s
. (4.5)

We write the total-energy flux in the form

I ( f ) =
∞∑

n=0

∑
s

(
I ( f )
i,n,s + I ( f )

e,n,s

)
,

where I ( f )
i,n,s and I ( f )

e,n,s are the energy fluxes on a given mode
u = un,s in the regions r < rc (interior) and r > rc (exterior).
Those separate contributions are obtained from (4.5) by using
the expressions for the Fourier components of the electric and
magnetic fields given in the previous section. The correspond-
ing radial integrals are reduced to [50]

∫ rc

0
dr rI2

n+p(γ0ur/rc) = r2
c

2

[
I2
n+p(γ0u) − In+2p(γ0u)In(γ0u)

]
,

∫ ∞

rc

dr rK2
n+p(γ1ur/rc) = r2

c

2

[
Kn+2p(γ1u)Kn(γ1u) − K2

n+p(γ1u)
]
. (4.6)

For the energy flux in the region r < rc we find

I ( f )
i,n,s = δn

q2v

4r2
c

Q2
n(u)

ε0

∑
p,p′=±1

(1 + pp′β2ε0)
Kn+p′ (γ1u)

W I
n+p′

Kn+p(γ1u)

W I
n+p

[
I2
n+p(γ0u) − In+2p(γ0u)In(γ0u)

]∣∣
u=un,s

. (4.7)

Note that by using the first relation in (3.25) one has

∑
p′=±1

(1 + pp′β2ε0)
Kn+p′ (γ1u)

W I
n+p′

= 2pε0

[
β2 Kn+1(γ1u)

W I
n+1

− p − β2
0

(ε0 − ε1)γ0In(γ0u)

]
. (4.8)

By taking into account that W I
n+p < 0, from (4.7) we see that the energy flux is always positive.

In a similar way, for the energy flux of SPs in the exterior region, r > rc, one gets

I ( f )
e,n,s = δn

q2v

4r2
c

Q2
n(u)

ε1

∑
p,p′=±1

(1 + pp′β2ε1)
In+p′ (γ0u)

W I
n+p′

In+p(γ0u)

W I
n+p

[
Kn+2p(γ1u)Kn(γ1u) − K2

n+p(γ1u)
]∣∣

u=un,s
. (4.9)

From the second relation in (3.25) we have

∑
p′=±1

(1 + pp′β2ε1)
In+p′ (γ0u)

W I
n+p′

= 2pε1

[
β2 In+1(γ0u)

W I
n+1

+ p − β2ε1

(ε0 − ε1)γ1Kn(γ1u)

]
. (4.10)

For the average total-energy flux on a given mode
kn,s = un,s/rc we have

I ( f )
t,n,s = I ( f )

i,n,s + I ( f )
e,n,s. (4.11)

By taking into account that for given values of β0 and ε1/ε0

the roots do not depend on rc and r0, we see that the depen-
dence of the energy fluxes on those parameters appears in the
form I2

n (γ0ur0/rc)/r2
c . In particular, for a fixed ratio r0/rc the

063513-10



SURFACE-POLARITON EXCITATION AND ENERGY … PHYSICAL REVIEW A 107, 063513 (2023)

fluxes decay as 1/r2
c with increasing radius of the cylinder. In

the nonrelativistic limit, to the leading order, the modes un,s

are roots of Eq. (3.37) and for given ε1/ε0 do not depend
on the charge velocity. In the same order, one has γ j ≈ 1,
j = 0, 1, and from (4.7) and (4.9) we conclude that the energy
fluxes behave as I ( f )

j,n,s ∝ β, j = i, e, for β � 1.
Let us consider the asymptotic behavior of the energy

fluxes for large values u = un,s. As it has been discussed
above, this asymptotic is realized in the range of dielectric
permittivities where

ε1/ε0 ≈ −γ −2
0 . (4.12)

For the asymptotic of the function ᾱn(u) at the points u = un,s

we get

ᾱn(u) ≈ ε1/ε0 + ε0/ε1 + 1 + 2β2
0 u/γ0

2γ0(1 − ε1/ε0)u2
. (4.13)

Note that in the numerator we have kept additional terms to in-
clude in the asymptotic analysis the region β2

0 u � 1. By using
the asymptotic expressions of the modified Bessel functions
for large argument [49] it can be seen that, to the leading order,

I ( f )
i,n,s ≈ 4δnq2v

r0rcε0

(1 − ε0/ε1)−2u3
n,sγ0e−2(1−r0/rc )γ0un,s(

ε1/ε0 + ε0/ε1 + 1 + 2β2
0 un,s/γ0

)2 . (4.14)

In a similar way, for the energy flux in the exterior medium
one gets

I ( f )
e,n,s ≈ −4δnq2v

r0rcε0

(1 − ε1/ε0)−2u3
n,sγ0e−2(1−r0/rc )γ0un,s(

ε1/ε0 + ε0/ε1 + 1 + 2β2
0 un,s/γ0

)2 .

(4.15)
For the total-energy flux this gives

I ( f )
t,n,s ≈ 4δnq2v

r0rcε0

u3
n,sγ0e−2(1−r0/rc )γ0un,s(

ε1/ε0 + ε0/ε1 + 1 + 2β2
0 un,s/γ0

)2

ε1 + ε0

ε1 − ε0
.

(4.16)
The energy flux is positive or negative in the medium with
positive or negative dielectric permittivity. From (4.12) it fol-
lows that ε1 + ε0 < 0 and the total-energy flux is positive.
The exponent in the asymptotic expressions (4.14) and (4.15)
is written as 2(1 − r0/rc)γ0un,s = 4π (rc − r0)γ0/λn,s and we
see that the energy fluxes for a given radiation wavelength
are exponentially suppressed if the distance of the charge
trajectory from the cylinder surface is much larger than the
wavelength. The suppression factor decreases with increasing
velocity of the charge. We could expect the exponential sup-
pression of energy fluxes for large values of un,s. The SP for
a given frequency is generated by the corresponding spectral
component of the charge proper field. For a charge moving
with constant velocity and at distances from the trajectory
larger than the wavelength the spectral component of the field
is exponentially small. The exponential factor in the asymp-
totic expressions (4.14) and (4.15) is directly related to the
corresponding suppression factor in the proper field of the
charge. Note that in obtaining the asymptotics for large u we
have used approximate expressions for the modified Bessel
functions which are valid for n � γ ju.

In order to see the features of the energy fluxes for large
values of the azimuthal quantum number n we use the cor-
responding uniform asymptotic expansions of the modified

Bessel functions [49]. Those expansions contain the exponen-
tial factor e−nη(x/n) for the function Kn(x) and the factor enη(x/n)

for In(x), where

η(x) =
√

1 + x2 + ln
x

1 + √
1 + x2

. (4.17)

For the related exponential factors in the expressions of the
energy fluxes we get

I ( f )
j,n,s ∝ e2n[η(γ0ur0/nrc )−η(γ0u/n)], j = i, e, (4.18)

with u = un,s. For γ ju � n the exponent in (4.18) is reduced
to the one in (4.14) and (4.15). Note that η′(x) = √

1 + x2/x
and the function η(x) is monotonically increasing for x > 0.
As a consequence, the exponent in (4.18) is negative. As it has
been already discussed in Sec. III, for large n two qualitatively
different possibilities are realized. If for the corresponding
frequencies the permittivity ε1 is sufficiently close to −ε0 [see
(3.32)], we have un,s � n and the arguments of the functions
η(x) in (4.18) are small. In this regime, to the leading order
one gets I ( f )

j,n,s ∝ (r0/rc)2n. In the second case, ε1 and −ε0 are
not too close and the modes un,s are approximated by (3.33).
The corresponding exponential factors in the expressions for
the energy fluxes are obtained from (4.18) by the replacement
u/n → 1/

√
β2

0ε1/(ε0 + ε1) − 1.
In the special case of the axial motion the SPs are radiated

only on the mode n = 0. For given β0 and ε1/ε0 there is a
single mode u = u0 and it is the root of Eq. (3.39). By using
that equation, the expressions for the interior and exterior
fluxes are simplified as

I ( f )
i,0 = q2v

2r2
c ε0

ε2
0

ε2
1

[ I1(γ0u)
I0(γ0u) + 1

γ0u

]2 − 1
γ 2

0 u2 − 1

(1 − ε0/ε1)4I2
1 (γ0u)ᾱ2

0 (u)
(4.19)

and

I ( f )
e,0 = − q2v

2r2
c ε1

γ 2
0

γ 2
1

[K1(γ1u)
K0(γ1u) − 1

γ1u

]2 − 1
γ 2

1 u2 − 1

(1 − ε0/ε1)4I2
1 (γ0u)ᾱ2

0 (u)
, (4.20)

with u = u0. We can see that I ( f )
e,0 < 0 < I ( f )

i,0 . By taking into
account that the root u0 does not depend on rc, we conclude
that for fixed values of the other parameters the energy fluxes,
as functions of the cylinder radius, behave like 1/r2

c .
We recall that for a given n the roots un,s are determined by

β0 and ε1/ε0: un,s = un,s(β0, ε1/ε0). From (4.7) and (4.9) it is
seen that the dimensionless combination ε0r2

c I ( f )
j,n,s/(q2v), with

j = i, e, t , is completely determined by the values β0, ε1/ε0,
and r0/rc. That combination corresponds to the energy flux
radiated by the charge from the part of the trajectory of the
length rc, measured in units of q2/ε0rc. In Fig. 6 we display
the energy fluxes for radiated SPs in the exterior and interior
regions as functions of un,s = 2πrc/λn,s, with λn,s being the
wavelength. In the numerical evaluation we have taken β0 =
0.9 and r0/rc = 0.95. The left and right panels correspond
to ε0/ε1 = −3 and −1.5, respectively. The plot markers cir-
cles, squares, and diamonds correspond to the interior, I ( f )

i,n,s,

exterior, I ( f )
e,n,s, and total, I ( f )

n,s , energy fluxes, respectively. The
modes un,s on the horizontal axis of the left panel corre-
spond to the modes with 0 � n � 45, whereas on the right
panel 0 � n � 60. In general, the roots un,s are not monotonic
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FIG. 6. Energy fluxes of the radiated SPs inside (circles) and outside (squares) the cylinder vs un,s. The points marked by diamonds
correspond to the total-energy flux. The graphs are plotted for β0 = 0.9, r0/rc = 0.95, and two values of the ratio of dielectric permittivities:
ε1/ε0 = −3 (left panel) and −1.5 (right panel).

functions of n, though that is the case for large n. For example,
in the case ε0/ε1 = −1.5 one has u0,s ≈ 2.61, u1,s ≈ 1.74,
and u2,s ≈ 2.46. As seen, the energy flux is directed along the
charge motion in the interior region (with positive dielectric
permittivity) and along the negative direction of the z axis
in the exterior region (with negative dielectric permittivity).
The total-energy flux is dominated by the contribution of the
interior region.

Figure 7 presents the dependence of the energy fluxes on
un,s for β0 = 0.75, r0/rc = 0.95. The left panel is plotted for
ε1/ε0 = −1.5 and for the right panel ε1/ε0 = −1.1. As it has
been already mentioned above, the energy fluxes are expo-
nentially suppressed for large values of un,s corresponding to
small wavelengths. The exponent of the suppression factor is
expressed as 2(1 − r0/rc)γ0un,s and the characteristic value of
un,s, given by 1/[2(1 − r0/rc)γ0], is equal to ≈23 and ≈15 for
the parameters corresponding to Figs. 6 and 7. These numbers
are in agreement with the numerical data in figures.

In Fig. 8 we have presented the energy fluxes for SPs
versus n, 0 � n � 80, in the case when the dispersion of
the dielectric function for the medium in the region r > rc

is described by (3.34) and for the interior region we have
taken ε0 = 1. The fluxes are evaluated for rcωp/c = 15 and
r0/rc = 0.95. The left and right panels are plotted for v/c =
0.9 and 0.5, respectively. For the example on the left panel
the frequencies ω = ωn monotonically increase with increas-
ing n and quickly converge to the limit 1/

√
2 for large n.

One has ωn/ωp ≈ 0.4611 for n = 0 and ωn/ωp ≈ 0.7041 for
n = 80. We have similar behavior in the example of the right
panel with ωn/ωp ≈ 0.6655 for n = 0 and ωn/ωp ≈ 0.7043
for n = 80. In both cases the function ε1(ω) tends to −1. As it
has been explained above, for the model of dispersion at hand
and for large n the eigenfrequencies of the radiated SPs are
localized in the narrow range near the frequency ωp/

√
2. The

data presented in Fig. 8 show that the main part of the energy
is radiated in that frequency range.

FIG. 7. The same as in Fig. 6 for β0 = 0.75. The left and right panels correspond to ε1/ε0 = −1.5 and −1.1, respectively.
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FIG. 8. Energy fluxes for the SPs as functions of n for the dielectric function (3.34) and for ε0 = 1. The points marked by circles, squares,
and diamonds correspond to the interior, exterior, and total-energy fluxes. For the parameters we have taken r0/rc = 0.95, rcωp/c = 15, and
β0 = 0.9 and 0.5 for the left and right panels, respectively.

In Figs. 9 and 10, the total-energy flux is displayed as a
function of the eigenfrequencies ωn/ωp of the surface polari-
tonic modes. As for the example in Fig. 8, we have taken ε0 =
1, ε1 = 1 − ω2

p/ω
2, and 0 � n � 80. The numerical evalua-

tion is done for r0/rc = 0.95, rcωp/c = 10. The left and right
panels of Fig. 9 correspond to β0 = 0.9 and 0.75. Corre-
spondingly, the left and right panel of Fig. 10 are plotted for
β0 = 0.5 and 0.25. Note that, in order to show the dependence
on the charge velocity, in Figs. 9 and 10 we have presented the
quantity (r2

c q2/c)I ( f )
t,n,s instead of (r2

c q2/v)I ( f )
t,n,s in Fig. 8.

The numerical examples, discussed above for the proper-
ties of the roots and for the energy fluxes, are presented in
terms of scale-invariant combinations of the parameters. This
allows us to specify the corresponding results for different
values of the cylinder radius. As already stated, for given
β0 and ε1/ε0 the SP eigenmodes with respect to u = kzrc

do not depend on the radius of the cylinder. The radiation

wavelength, λn,s = 2πrc/un,s, is controlled by the choice of
the waveguide radius. The recent advances in nanofabrication
allow us to design cylindrical waveguides with radii in a suffi-
ciently wide range, from millimeters to nanometers (see, e.g.,
Refs. [8,51,52]). One can control the wavelength of radiated
SPs by an appropriate choice of the waveguide radius and
negative-permittivity medium. Materials and artificially con-
structed subwavelength structures are available with plasma
frequency in the visible, infrared, and terahertz frequency
ranges. The electron beam in TEMs provides an example of
a high-quality source in a relatively wide energy range from
50 to 500 keV. The same beam from TEMs can be used to drill
nanometre-scale cylindrical holes in a medium.

Our main concern in the discussion above was the radiation
for a single charge. Based on the results obtained, we can
investigate the radiation from a bunch of N particles with
velocities vm, m = 1, 2, . . . , N , parallel to the cylinder axis.

FIG. 9. Total-energy flux vs the eigenfrequencies of the surface-polariton modes in the model with (3.34) and for ε0 = 1 for the values of
the parameters r0/rc = 0.95, rcωp/c = 10, and β = 0.9 and 0.75 for the left and right panels.
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FIG. 10. The same as in Fig. 9 for β = 0.5 (left panel) and β = 0.25 (right panel).

For the current density one has

jl (x) = δ3l q
N∑

m=1

vm

rm
δ[r − r0m(t )], (4.21)

where r0m(t ) = (rm, φm, zm + vmt ) in cylindrical coordinates.
Assuming that for all the particles rm < rc, the electromag-
netic fields corresponding to the radiated SPs are obtained
by summing the fields for separate charges. For example, the
formula for the components of the vector potential reads

A(P)
l (x) = 2q

crc

N∑
m=1

vm

∞
′∑

n=0

∑
s

Qm,n(u)
∑
p=±1

Rm,n+p(u, r/rc)

pl−1uW I
m,n+p

× cos (uξm/rc) sin [lπ/2 − n(φ − φm)]|u=um,n,s ,

(4.22)

where ξm = vmt − z + zm and the expressions for
Rm,n(u, r/rc), W I

m,n, and Qm,n(u) are obtained from the
corresponding expressions for the functions without the
index m by the replacements γ j → γm, j = √

1 − v2
mε j/c2

and r0 → rm. For monoenergetic bunches with transverse
beam size smaller than the radiation wavelength (the
specific condition will depend on the energy of the
beam as well) we can approximate the general formula
(4.22) taking vm = v, rm = r0, and φm = 0. In this
simple case the expressions for the radiation fields are
obtained from the formulas given in Sec. III making
the replacements cos(uξ/rc) → ∑

m cos(uξm/rc) and
sin(uξ/rc) → ∑

m sin(uξm/rc). For the energy flux through
the plane z = const we get an expression which is obtained
from (4.2) replacing the product of sin functions by∑

m,m′ sin(un,sξm/rc) sin(un,s′ξm′/rc). By using the same
averaging procedure, we can see that the energy fluxes
for SPs radiated by a bunch with longitudinal distribution
function f (z) are obtained from (4.7) and (4.9) adding the
factor N[1 + (N − 1)|g(u/rc)|2] in the right-hand sides,
where g(w) = ∫ +∞

−∞ dz e−iwz f (z) is the longitudinal bunch
form factor. The second term in the square brackets describes
the coherent effects in the radiation of SPs. Note that the
longitudinal form factor depends on the frequency and on

the monoenergetic bunch velocity in the form of the ratio
ω/v. This property is a direct consequence of homogeneity
of the problem under consideration along the z direction.
A similar longitudinal form factor appears also for other
types of radiation processes, such as Cherenkov radiation,
Smith-Purcell radiation, etc. (see, e.g., Refs. [53–57]). The
coherence effects have been used to increase significantly
the radiation intensity in different spectral ranges and also in
beam diagnostics. For the radiation wavelengths of the order
of transverse beam size or smaller the effect of the transverse
form factor on the coherence properties becomes significant.
In particular, the dependence on the energy of the beam is
more pronounced.

In the discussion above we have considered an idealized
problem where the dielectric permittivities of the media in-
side and outside the cylinder are taken to be real. A small
imaginary part of the permittivity of the exterior medium was
introduced in Sec. II in order to specify the contour of the
integration over kz near the poles, corresponding to the roots
of the eigenmode equation for SPs. The approach we have
described can be considered as a first step to the investigation
of the surface-polariton generation in more realistic setups
with energy losses. The damping of SPs arising from the
imaginary part of the dielectric permittivity medium is one
of the main limitations for practical applications in plasmonic
devices. The energy dissipation, primarily in the form of
Ohmic losses, limits the energy accumulated by SPs and may
significantly reduce their propagation distances (for various
decay channels of SP energy dissipation see, e.g., Ref. [58]).
In particular, that is the case for the commonly used plas-
monic materials in the optical range such as silver and gold.
Related to this, the development of various approaches and
mechanisms aiming to reduce or compensate the energy losses
remains among the main directions in plasmonics. They can
be categorized into three main groups [58–60]. The first one
is the choice of suitable material for the negative-permittivity
medium. The list of low loss plasmonic materials in midin-
frared and terahertz spectral ranges includes various kinds
of doped semiconductors, superconductors, transparent con-
ducting oxides, different types of metamaterials, topological
insulators, and two-dimensional Dirac materials like graphene
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(see, for example, Refs. [61–69] and references therein). An
important advantage with these classes of plasmonic materials
is the possibility to actively tune the plasma frequency. For
example, that can be done by the choice of doping level in
doped semiconductors and by electrostatic gating in graphene.
The second direction to reduce the dissipative losses of surface
plasmons corresponds to engineering the shape and size of
the structure along which the waves propagate. They include
grating-type structures with different geometries and metama-
terials with controllable electromagnetic characteristics. And
finally, the third direction of investigations uses gain media to
compensate the energy losses of SPs.

Note that Eqs. (2.4) and (2.5) are valid for the general case
of complex dielectric functions ε0 and ε1, and they can be used
for the evaluation of the electromagnetic fields in the problem
at hand without specifying those functions. The scheme is
similar to that we have described for the evaluation of the SP
contributions: first we evaluate the vector potential by using
Eq. (2.1) and then the scalar potential, electric, and magnetic
fields by standard formulas in classical electrodynamics. In
the next section that procedure is described for the axial com-
ponent of the electric field which determines the total-energy
losses of the charged particle.

V. ENERGY LOSSES

In the discussion of the properties of the radiated SPs we
have considered an idealized case where the imaginary part

of the dielectric functions was ignored. We can investigate
the total-energy losses by a charged particle for the general
case of dielectric permittivities by using Eqs. (2.3) and (2.4)
for the components of the Green tensor. Those expressions
are also valid for dielectric functions having imaginary parts.
Denoting by E(x) the electric field generated by the charge at
the spacetime point x = (t, r), the energy loss per unit length
along the trajectory of the charge (the work of the field on the
charge) is expressed as

dW

dz
= qE3(x)|r→r0(t ). (5.1)

By making use of the Fourier expansion for the axial compo-
nent of the electric field,

E3(x) =
+∞∑

n=−∞

∫ +∞

−∞
dkz E3,n(kz, r)eikz (z−vt )+inφ, (5.2)

and the properties of the Fourier component E3,n(kz, r), the
formula is rewritten as

dW

dz
= 2q lim

r→r0

+∞∑
n=−∞

Re

[∫ ∞

0
dkz E3,n(kz, r)

]
. (5.3)

The expression for E3,n(kz, r) can be found based on the
representations (2.4), by the scheme similar to that we have
used in Sec. III for the contributions of SPs in the case of real
dielectric functions ε0 and ε1.

In this way, the energy losses are presented in the form

dW

dz
= dW (0)

dz
− 4q2

πr2
c

Im

⎧⎨
⎩

∞∑
n=0

δn

∫ ∞

0
du

uγ 2
0

ε0W I
n

⎡
⎣W K

n + Kn(uγ1)

2γ0uαn(u)

∑
p=±1

Kn+p(uγ1)

W I
n+p

⎤
⎦I2

n (uγ0r0/rc)

⎫⎬
⎭, (5.4)

where

dW (0)

dz
= 2q2

π
lim
r→r0

Im

[ ∞∑
n=−∞

∫ ∞

0
dkz

kz

ε0
γ 2

0 In(γ0kzr<)Kn(γ0kzr>)

]
, (5.5)

with r> = max(r0, r) and r< = min(r0, r). In the second term
of (5.4) we have passed to the integration over u in accordance
with (2.11) and the notation

W K
n = γ0Kn(γ1u)Kn+1(γ0u) − γ1Kn(γ0u)Kn+1(γ1u) (5.6)

is introduced. Other notations are the same as those used in the
consideration above. However, now ε0 and ε1, in general, are
complex functions and, hence, the same is the case for γ0 and
γ1, defined in (3.4). The contribution (5.5) does not depend on
the cylinder radius rc and it corresponds to the energy losses in
a homogeneous medium with dielectric permittivity ε0 (bulk
losses). These energy losses have been extensively investi-
gated in the literature both theoretically and experimentally.
Here we note that most of the previous studies consider the
spectral density of the energy-loss probability per unit length,
dP(ω)/dz, with the relation dW/dz = ∫∞

0 dω ωdP(ω)/dz.
The series over n in (5.5) is summed by using the formula

from Ref. [50] and we get

dW (0)

dz
= 2q2

π
lim
r→r0

Im

[∫ ∞

0
dkz

kz

ε0
γ 2

0 K0
(
kz|r−r0|

√
1−β2

0

)]
.

(5.7)

For a transparent medium (ε0 is real) and under the condition
β2

0 < 1, the integrand is real and dW (0)/dz = 0. For a trans-
parent medium and under the Cherenkov condition β2

0 > 1 the
imaginary part of the Macdonald function in (5.7) is expressed
in terms of the Bessel function as πJ0(kz|r − r0|

√
β2

0 − 1)/2.
In this case the limit r → r0 can be taken directly in the
integrand and from (5.7) we get the standard expression for
the radiation intensity of the Cherenkov radiation in a homo-
geneous medium.

The second term on the right-hand side of (5.4) is in-
duced by the difference of the dielectric permittivity in the
region r > rc from ε0. By using the definitions for W I

n , W K
n ,

and αn(u), the corresponding expression is written in a more
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explicit form:

dW

dz
= dW (0)

dz
− 4q2

πr2
c

Im

{ ∞∑
n=0

δn

∫ ∞

0
du

u

ε0
γ 2

0 I2
n (uγ0r0/rc)

Kn(γ0u)

In(γ0u)

×
[
γ1

I ′
n(γ0u)

In(γ0u) − γ0
K ′

n(γ1u)
Kn(γ1u)

][
ε0γ1

K ′
n(γ0u)

Kn(γ0u) − ε1γ0
K ′

n(γ1u)
Kn(γ1u)

]− ( nβ

u
ε0−ε1
γ0γ1

)2

[
γ1

I ′
n(γ0u)

In(γ0u) − γ0
K ′

n(γ1u)
Kn(γ1u)

][
ε0γ1

I ′
n(γ0u)

In(γ0u) − ε1γ0
K ′

n(γ1u)
Kn(γ1u)

]− ( nβ

u
ε0−ε1
γ0γ1

)2

⎫⎬
⎭. (5.8)

This expression coincides with that obtained from the energy-loss probability found in [18]. Note that the zeros of the
denominator determine the SP eigenmodes [compare with (3.13)]. In the special case of the axial motion with r0 = 0 the only
nonzero contribution comes from the mode n = 0 and one gets

dW

dz
= dW (0)

dz
+ 2q2

πr2
c

Im

[∫ ∞

0
du

u

ε0
γ 2

0
ε0γ1K0(γ1u)K1(γ0u) − ε1γ0K1(γ1u)K0(γ0u)

ε0γ1K0(γ1u)I1(γ0u) + ε1γ0K1(γ1u)I0(γ0u)

]
. (5.9)

This result was obtained in Refs. [12,14].
Another special case corresponds to the nonrelativistic limit, β � 1 . Assuming that β2|ε j | � 1, j = 0, 1, to the leading

order we can put γ j = 1. In the same order, one gets W I
n ≈ −1/u, W K

n ≈ 0, and the function αn(u) is approximated by (3.35).
From (5.8), for the leading-order contribution to the energy losses we find

dW

dz
≈ dW (0)

dz
− 4q2

πr2
c

∞∑
n=0

δnIm

[∫ ∞

0
du

u

ε0

uKn(u)K ′
n(u)I2

n (ur0/rc)
ε0

ε0−ε1
+ uIn(u)K ′

n(u)

]
. (5.10)

The corresponding result for the energy-loss probability has been widely discussed in the literature (see
Refs. [9,15,16,19,21,24,28]).

For the numerical example of the energy losses we have considered the case where ε0 = 1 and the dielectric function for the
medium in the region r > rc is described by (3.34). In this special case one has dW (0)/dz = 0. Let us introduce the spectral
density of the energy loss per unit time, dE(l)(ω)/dω, in accordance with

dW

dz
= −1

v

∫ ∞

0
dω

dE(l)

dω
. (5.11)

By using (5.4) we get

dE(l)

dω
= 4q2

πrcγ 2

∞
′∑

n=0

Im

⎡
⎣u

W K
n

W I
n

+ γ Kn(uγ1)

2αn(u)

∑
p=±1

Kn+p(uγ1)

W I
n W I

n+p

⎤
⎦I2

n

(
ur0

γ rc

)
, (5.12)

where γ = 1/
√

1 − β2 is the relativistic factor and u =
rcω/v. Now, in the definitions of the functions W I

n , W K
n , and

αn(u) one has γ0 = 1/γ . In Fig. 11 the spectral density of
the energy loss dE(l)(ω)/dω is presented in units of q2/rc

versus the ratio ω/ωp. The graphs are plotted for η/ωp =
10−2, r0/rc = 0.95, β = 0.75, and rcωp/c = 10. We have also
displayed the separate contributions of the modes with differ-
ent n, dE(l)n(ω)/dω, 0 � n � 25, defined as dE(l)(ω)/dω =∑∞

n=0 dE(l)n(ω)/dω. For n � 1 the frequency corresponding
to the maximum of dE(l)n(ω)/dω increases with increasing n
and the maximal value of that quantity decreases with increas-
ing n. The curve with the minimal value for ω/ωp at the peak
corresponds to the mode n = 0.

VI. CONCLUSION

We have investigated the radiation emitted by a charge
uniformly moving inside a dielectric cylinder, parallel to its
axis, assuming that the cylinder is loaded in a homogeneous
medium. For evaluation of the electromagnetic fields gener-
ated inside and outside the cylinder the Green tensor from
Ref. [40] has been used. The corresponding expressions allow

us to study both the cases of the medium with negative di-
electric permittivity in the spectral range under consideration
inside and outside the cylinder. We have specified the investi-
gation for the second case that will include the possibility of
the charge motion in the vacuum. The required components
of the Green tensor Fourier image are expressed as (2.4) and
(2.5). Neglecting the imaginary part of dielectric permittivity,
the Fourier components have poles corresponding to SPs. The
respective contributions to the Green tensor are separated and
they have been used in evaluating the field potentials and
strengths inside and outside the cylinder. In general, both
the transversal and longitudinal components of the electric
and magnetic fields for excited SPs differ from zero. The
fields exponentially decay in the exterior medium and they
are mainly confined in the region of the thickness of the order
λSP/(2πγ1) near the cylinder surface. The localization radius
decreases with increasing velocity of the charge and it can be
essentially smaller compared with the radiation wavelength
λSP. The fields are expressed in terms of the eigenvalues
for the projection of the wave vector along the cylinder axis
and we have discussed their distribution as functions of the
parameters and in the asymptotic regions. In particular, in the
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FIG. 11. The spectral density of the energy loss per unit time as
a function of frequency. The graphs are plotted for ε0 = 1 and for the
dispersion of the function ε1(ω) described by (3.34). The values of
the parameters are given in the text. The contributions of the modes
with fixed n, 0 � n � 25, are plotted as well.

nonrelativistic limit the SP modes are present in the region
−1 � ε1/ε0 < 0 for the ratio of the dielectric functions. The
relativistic effects may essentially enlarge the region for ε1/ε0

allowing the existence of the SP modes. We have specified
the general consideration for the case of Drude dispersion in
the exterior medium. The impact parameter r0 enters in the
expressions for the fields through the function In(γ0ur0/rc)
in the definition (3.9) and, for a given frequency, the abso-
lute values for the components of the fields monotonically
increase with increasing r0. The general formulas are essen-
tially simplified in the special case of axial motion when
the only nonzero contribution to the radiation fields comes
from the mode with n = 0. In this special case the magnetic
field is transversal and the electric and magnetic fields are
orthogonal.

Having the electric and magnetic fields for SPs, in Sec. IV
we have evaluated the corresponding mean energy fluxes in
the exterior and interior regions, given by (4.7) and (4.9).
The exterior energy flux, corresponding to the negative-
permittivity medium, is negative (flux along the direction
opposite to the charge motion), whereas the flux inside the
cylinder (positive-permittivity medium) is positive (directed
along the direction of the charge motion). The total flux is
dominated by the interior contribution and it is positive. In
the nonrelativistic limit the energy fluxes are proportional to
the charge velocity. The relativistic effects may essentially
increase the radiated energy. Other important features of rel-
ativism include the narrowing of the confinement region of
the SP fields near the cylinder surface in the exterior region,
enlarging of the frequency range for radiated SPs, and the
decrease of the cutoff factor for radiation at small wave-
lengths compared with the cylinder radius. The energy fluxes
at those wavelengths are approximated by (4.14) and (4.15).

Relatively simple expressions for interior and exterior energy
fluxes, (4.19) and (4.20), are obtained in the special case of
the axial motion. The features clarified by asymptotic analysis
of exact formulas are confirmed by numerical data. We have
presented the latter in terms of dimensionless combinations
of the parameters that allow us to specify the results for dif-
ferent values of the waveguide radius and for different spectral
ranges. Given the radiation fields generated by a single charge,
the generalization is straightforward for a bunch of particles
moving parallel to the axis of the cylinder. For example, the
corresponding vector potential is expressed as (4.22). In the
special case of a monoenergetic bunch with transverse size
smaller than the radiation wavelength, the collective effects
in the energy fluxes on a given frequency appear through the
bunch longitudinal form factor.

By using the expressions for the components of the Green
tensor, we have also considered the total-energy losses for the
general case of dielectric functions of the exterior and interior
media with imaginary parts. The general formula is given by
(5.4) or, equivalently, by (5.8). The latter coincides with the
result obtained from the energy-loss probability previously
considered in the literature and includes various special cases
widely discussed before. Similar to the case of the SP energy
fluxes, the numerical analysis is provided in scale-invariant
form that allows us to specify the result for special cases of
the parameters (e.g., cylinder radius and plasma frequency for
the negative-permittivity medium).

In our consideration the exterior medium occupies the re-
gion rc < r < ∞. Based on the features described above, we
expect that the obtained expressions of the SP energy fluxes
for a given wavelength will approximate the corresponding
results for the medium with finite extension, rc < r < rext, if
the thickness of the cylindrical layer rext − rc is larger than the
confinement radius for the SPs on that wavelength. Note that
the Green tensor in the problem with a finite exterior layer
can be found based on the recurrence procedure developed
in Ref. [40] for a general number of coaxial cylindrical layers.
Another application of the results presented in this paper could
be the investigation of the transversal forces acting on the
charge in the case of paraxial motion. Those forces are of
interest in studies of beam stabilities in particle accelerators.
And finally, the problem we have considered is exactly solv-
able within the framework of classical electrodynamics and
the corresponding results may serve as a tool to verify the ac-
curacy of various approximate methods and simulations used
for the investigation of surface polaritons in more complicated
geometries of interfaces.
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