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Dispersion tuning of nonlinear optical pulse dynamics in gas-filled hollow capillary fibers
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We experimentally investigate the nonlinear optical pulse dynamics of ultrashort laser pulses propagating in
gas-filled hollow capillary fibers in different dispersion regimes, which are achieved by tuning the gas pressure.
When the pulse propagates in the anomalous dispersion regime we observe soliton dynamics accompanied with
soliton-plasma effects, such as self-compression, resonant dispersive-wave emission in the fundamental as well
as in higher-order modes, soliton blueshifting, and ionization-induced pulse splitting. Propagation of the pulse in
the vicinity of the zero-dispersion wavelength results in pulse splitting and subsequent cross-phase modulation
leading to the generation of an additional frequency-shifted band and a three-octave broad supercontinuum. In the
case of pulses propagating in normal dispersion we observe the generation of a broad and flat supercontinuum.
In this regime, the experimental results are less well described by simulations that consider only the propagation
dynamics inside the fiber. Free-space simulations of the beam propagation in the bulk gas, before the capillary
entrance, suggest that this discrepancy is caused by self-focusing and ionization altering the pulse spatial and
temporal shape, affecting both the coupling efficiency and the subsequent propagation inside the capillary.
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I. INTRODUCTION

Intense ultrashort pulse propagation within a medium is a
complex interplay between many linear and nonlinear effects.
The group-velocity dispersion (GVD) landscape often deter-
mines which of the many nonlinear processes occur, through
constraints on phase matching, and through contributions to
the spectral-temporal evolution of the pulse. While the role of
GVD has been extensively studied in solid-core optical fibers,
especially for supercontinuum generation [1], in gas-filled
photonic-crystal fibers [2], and in bulk material, for filamen-
tation [3], it has not been widely studied in gas-filled hollow
capillary fibers (HCFs), apart from its role in phase matching
of four-wave mixing [4,5]. Gas-filled HCFs have been most
widely used for pulse compressors based on spectral broaden-
ing through self-phase modulation (SPM) [6], in experiments
which have mostly used short HCF lengths (� 1 m) of large-
core diameter (�250 µm), pumped with relatively long pulses
(�30 fs). For these parameters the dispersion in capillaries can
be justifiably neglected, since the dispersion of HCFs signifi-
cantly decreases for larger core sizes, and it does not critically
influence the observed dynamics. In contrast, high-order op-
tical soliton dynamics have recently been demonstrated in
HCFs [7], primarily by making use of longer HCF lengths,
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shorter pump pulses, or longer pump wavelengths [8], all of
which act to enhance the role of GVD.

In this paper, we present an experimental and numerical
study of intense ultrafast pulse propagation in HCF over a
large gas pressure and pump pulse energy parameter space—
corresponding to several fundamentally different dispersion
regimes—all within the same optical setup. We achieve this
by using short (10-fs duration) pump pulses coupled into a
long (3-m length), large-core HCF (250-µm core diameter)
filled with argon. Using numerical simulations, which closely
reproduce the experimental results in most cases, we study the
influence of different physical processes on the characteristic
features seen in different spectra and how their contribution
is affected by the dispersion landscape in which ultrashort
pulses are propagating. In particular, when the pump pulse
propagates in the anomalous dispersion regime we observe a
breadth of soliton dynamics accompanied with soliton-plasma
effects, such as self-compression, resonant dispersive-wave
(RDW) emission in the fundamental as well as in higher-order
modes (HOMs), soliton blueshifting, and ionization-induced
pulse splitting. The propagation of the pulse in the vicinity
of the zero-dispersion wavelength (ZDW) results in pulse
splitting and subsequent cross-phase modulation (XPM) lead-
ing to the generation of an additional frequency-shifted band
and the generation of a three-octave broad supercontinuum.
In the case of pulses propagating in normal dispersion we
observe the generation of a broad and flat supercontinuum,
and identify the importance of the free-space dynamics of the
pump pulse before coupling into the fiber.

Many (but not all) of the dynamics we study in this pa-
per have been previously observed at much lower energy
in small-core microstructured (photonic crystal and antires-
onant) hollow-core fibers [9]. The key benefit of such fibers
is that they guide well even with very small core sizes and
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FIG. 1. Dispersion tuning in argon- and helium-filled HCF with
250-µm core diameter: changing the argon gas pressure from 28
to 3344 mbar and helium gas pressure from 628 mbar to 69.07 bar
tunes the dispersion regime in which a pump pulse at 800 nm is
propagating from anomalous to normal. A gray dot represents the
zero-dispersion wavelength for the three argon and helium pressures
shown: 400 nm for 28-mbar Ar or 628-mbar He, 800 nm for 467-
mbar Ar or 9.79-bar He, and 1300 nm for 3344-mbar Ar or 69.07-bar
He.

so are required when working at low pump energies (the
µJ level). In contrast, large-core gas-filled hollow capillary
fibers as studied here enable the use of much higher en-
ergy and are completely free of guidance resonances. In
fact, when the core size is suitably large, and the fibers are
perfectly stretched [10], HCFs are ideal waveguides, with
smooth and exceedingly broad guidance from the x-ray to
midinfrared spectra region. The resonances present in mi-
crostructured hollow-core fibers can complicate (and either
enhance beneficially or impede) the observed nonlinear op-
tical pulse dynamics [11,12]. Even though these resonances
are spectrally localized, they can modify the dispersion profile
in which the pump pulse is propagating and lead to phase-
matched generation of additional spectral components or even
impair soliton self-compression by introducing higher-order
dispersion and breaking up the self-compressing pulse.

Our dispersion tuning relies on the characteristic GVD
profile of gas-filled HCFs as a function of wavelength λ and
gas pressure p, given by [7,13]

β2(λ, p) = λ3

4πc2

(
ρ(p)

∂2χe

∂λ2
− u2

nm

2π2a2

)
(1)

with β2 being the GVD, ρ being the pressure-dependent gas
density relative to some standard conditions, χe being the
susceptibility of the filling gas species at those standard con-
ditions available through Sellmeier equations [14,15], unm the
mth zero of the Bessel function Jn−1, and a the core radius
of the HCF. Setting m = n = 1 selects the fundamental HE11

mode. There are two contributions to the dispersion of a
gas-filled HCF: the dispersive filling gas and the waveguide
dispersion, given by the first and the second term in Eq. (1),
respectively. The waveguide dispersion of an evacuated capil-
lary fiber is anomalous (β2 < 0) for all wavelengths, while
the gas dispersion is normal (β2 > 0) in the ultraviolet to
near-infrared range and can be controlled by the gas pres-
sure, shown in Fig. 1. Noble gases (such as helium, neon,

argon, krypton, and xenon) have dispersion curves with simi-
lar shapes across the visible and near-infrared spectral region,
but with different absolute magnitudes. They can be made
to approximately match, or be tuned in a similar way, by
tuning the gas pressure. Consequently, the results we show
in this paper for argon are readily transferable to other gases.
Larger differences do appear in the ultraviolet spectral re-
gion, closer to the electronic resonances, and do play a role
when generating very deep or vacuum ultraviolet light. The
dispersion landscape of gas-filled HCFs can be parametrized
by the ZDW λZD, defined by β2(λZD) = 0, and the pump
wavelength λp. For the dispersion profile of HCF, this means
anomalous dispersion for pump wavelengths longer than the
ZDW (λp > λZD) and normal dispersion for shorter pump
wavelengths (λp < λZD). In this paper we tune the ZDW from
400 to 1300 nm by varying the argon pressure in the HCF in
the range from 28 to 3344 mbar.

This paper is structured as follows. In the next section we
describe the experimental and numerical methods that we use.
In Sec. III A we describe results for pumping in the anomalous
dispersion regime. In Sec. III B we describe pumping around
the zero dispersion wavelength, and in Sec. III C we describe
our results for pumping in the normal dispersion region.

II. METHODS

A. Experimental setup

To observe soliton dynamics in capillaries with pump
pulses at a central wavelength of around 800 nm requires an
experimental arrangement which differs from most other non-
linear optics experiments performed previously in capillaries,
in that we require shorter pump pulses or longer fiber lengths.
Following Ref. [7], we employ two HCF stages, the first stage
solely used to compress the pulses available from our laser
system and a second stage, where we observe the dynamics of
ultrashort pulse propagation.

A detailed description of the setup can be found in Ref. [7].
In summary, we start with 3-mJ, 1-kHz, 26-fs-long linearly
polarized pulses at a central wavelength of 800 nm, produced
by a commercial Ti:sapphire oscillator and amplifier system.
As a first stage, we use a conventional HCF compressor,
consisting of a 1.7-m-long, 450-µm core diameter stretched
HCF, mounted in a gas cell, which is filled with 2.2-bar
helium, followed by six pairs of double-angle chirped mir-
rors for phase compensation and a pair of thin silica wedges
for fine tuning. At the output of the compressor the pulses
have a nearly transform-limited full width at half maximum
(FWHM) duration of 10 fs as characterized with a home-built
second-harmonic-generation frequency-resolved optical gat-
ing (FROG) device. The pulse energy can be controlled from
a few hundred nJ up to 1.05 mJ with a variable attenuator con-
sisting of a broadband λ/2-wave plate and Brewster reflection
from a silicon plate. The compressed pulses are then coupled
into a second, 3-m-long, 250-µm core diameter stretched HCF
filled with argon, where we vary the pressure from 28 to
3344-mbar, which tunes the ZDW in the range from 400 to
1300 nm. The theoretical linear throughput of this stage is
66 % and the coupling efficiency is 65 %, estimated from the
measured transmission of the evacuated HCF. However, we
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estimate from FROG measurements that only around 80 % of
the pulse energy is within the 10-fs compressed pulse, effec-
tively decreasing the available energy budget that contributes
to the nonlinear dynamics of the pump pulses in the second
stage. The remaining part of the pulse energy is not properly
compressed, and manifests in a spiky remnant in the pump
spectrum, which does not play a role in the observed nonlinear
pulse dynamics.

At each pressure we vary the input energy and record
the output spectrum and output energy of the second HCF
stage with two spectrometers (measurement ranges 200–1080
and 900–1700 nm), connected to an integrating sphere and
calibrated as a complete system over the entire measure-
ment range (with spectrally calibrated deuterium and tungsten
lamps). The spectra from the two spectrometers are combined
at 900 nm simply by scaling the two recorded spectra to the
used integration times and applying a premeasured calibration
curve. No other postprocessing is done; the output of the HCF
system is stable over the time necessary to record such an
energy scan (≈10 min).

B. Numerical simulations

The experimental data we record comprise the spectrum
at the output of the fiber at a set gas pressure as a func-
tion of pump pulse energy. We simulate our experiments by
numerically propagating laser pulses over the energy range
which we record in the experiment. This allows us to infer
the propagation dynamics from the simulations, provided the
experimental and the simulated spectra agree closely.

The simulations of pulse propagation through the HCF
use our open source full-field multimode unidirectional pulse
propagation code [7,16,17]. This model includes modal
dispersion and loss, intermodal coupling, a full vector
medium polarization model, photoionization (included using
Perelomov-Popov-Terent’ev (PPT) [18] ionization rates), and
plasma dynamics. The code has been tested and extensively
used for pulse propagation simulations with a wide range of
parameters previously. We have neglected spatially nonlocal
ionization effects [19], since the pulses we use are sufficiently
separated in time, at a repetition rate of 1 kHz. We do not use
any free parameters in our simulations. We use the experi-
mental fiber parameters and filling gas pressure, and the input
and coupled energy have been estimated from the measured
vacuum HCF transmission. We use 10-fs analytical sech2-
shaped pulses as input, based on the pulse duration obtained
from FROG measurements. While using the FROG-retrieved
pulses as input to the simulations would have given better
quantitative agreement between simulation and experiment,
we wanted to highlight the general nonlinear optical pulse dy-
namics, and hence have opted for nonmodulated, well-defined
analytical input pulses. The difference between simulation
and experiment can be observed most clearly around the pump
wavelength at 800 nm, but overall the dynamics are repro-
duced well. For these simulations, we initialized the input
fully in the fundamental (HE11) mode of the fiber, but we
modeled the nonlinear propagation dynamics through the fiber
for six modes (HE1m with m up to 6). The simulations allow us
to separately extract the spectral and temporal fields generated
in each of these higher-order modes through modal coupling.

The multimodal spectra or temporal profiles are obtained as
a superposition of the modes in the corresponding domain:
S(ω, z) = ∑

j |Ej (ω, z)|2 or P(t, z) = ∑
j |Ej (t, z)|2, where

Ej is the modal flux in the mode HE1 j in either the spectral or
temporal domains, S(ω) is the multimodal spectral power den-
sity, and P(t ) is the multimodal time-domain instantaneous
power.

While we routinely achieve good agreement between
experimental results and simulations, some experimental con-
ditions have proven harder to emulate numerically. A common
assumption when modeling nonlinear pulse propagation in
fibers is that the pump pulses do not exhibit any spatial,
spectral, or temporal modifications before being coupled into
the fiber core, and that all of the measured pump pulse energy
is coupled into the fundamental mode of the fiber. However,
this assumption breaks down whenever the pump pulse peak
power approaches the critical power for self-focusing Pcr or
when the pump intensity leads to significant photoionization.
In these cases the free-space propagation of the pump pulse
before coupling to the HCF would lead to its modification and
should be taken into account. In addition, for the higher gas
pressures used in our experiments, the pulse can broaden due
to gas dispersion or experience self-phase modulation even
before entering the HCF. To capture these effects, in Sec. III C,
we additionally model the free-space propagation of the pump
pulses before being coupled to the HCF, using a cylindrical-
symmetric version of the unidirectional pulse propagation
equation, which is also included in the pulse propagation
code used [16]. More details about these simulations can be
found in the Appendix. We simulate the free-space propa-
gation only over the last 20 cm before the fiber entrance,
where the beam has reached sufficient intensity for self-
focusing and ionization to start to play a role. After the field
is propagated in this way to the entrance of the fiber, we
have calculated the excitation of HCF modes by using the
non-normalized overlap integral (A3) between the full-spatial
electric field at the input of the fiber and of the different fiber
modes, which gives the frequency- and time-dependent modal
excitation for a chosen number of modes. The field in these
modes is then used for multimodal propagation simulation
through the HCF.

III. RESULTS

A. Pumping in the anomalous dispersion regime

First, we look at the case when the pump pulse propagates
well into the anomalous dispersion regime. As mentioned
previously, this corresponds to a pump wavelength longer than
the ZDW of the gas-filled fiber, in our case ZDWs shorter
than 800 nm. The propagation of ultrashort pulses in media
with positive nonlinear refractive index n2 and anomalous dis-
persion results in the formation of temporal optical solitons.
An important parameter in this regime is the corresponding
soliton order, which is a measure of the balance between the
effect of SPM and GVD:

N2 = Ld

LNL
, (2)

with Ld = τ 2
0 /|β2| and LNL = 1/γ P0, the dispersion and the

nonlinear lengths, being the characteristic length scales for
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28 mbar 28 mbar 28 mbar

66 mbar 66 mbar 66 mbar

143 mbar 143 mbar
143 mbar

FIG. 2. Experimental and simulated energy scans of pump dynamics in the anomalous dispersion regime: (a)–(c) experimental output
spectra, (d)–(f) simulated multimode output spectra, and (g)–(i) simulated multimode temporal profiles for a range of different pump energies,
at three different Ar filling pressures—(a), (d), (g) 28 mbar, (b), (e), (h) 66 mbar, and (c), (f), (i) 143 mbar—corresponding to ZDWs [indicated
by a vertical dashed gray line in (a)–(f)] of 400, 500, and 600 nm, respectively. The left y axis in (a)–(i) is in terms of pump pulse energy
and the right y axis is the corresponding soliton order N . The horizontal dashed gray line in (g)–(i) indicates N = 2.4. Specific features are
indicated as (i) a blueshifting soliton, (ii) HOM-RDW, and (iii) a recoil soliton.

GVD and SPM, respectively. γ is the nonlinear coefficient
(adjusted for gas density) and τ0 is the natural duration of
the pulse, e.g., τ0 = 0.567τFWHM for a sech2-shaped input
pulse [20]. Together with the ZDW, the soliton order can
be used as a measure of how much the dynamics are dom-
inated by SPM in both the anomalous and normal dispersion
regime [21]. N is, however, not well defined close to the ZDW,
where Ld approaches infinity.

Propagation in the anomalous dispersion regime is impor-
tant as a method of generating single- and subcycle pulses and
the emission of tunable frequency up-conversion. Previously,
the observation of soliton-effect self-compression and RDW
emission in HCF using both 800-nm pump pulses [7], and
further in the infrared using 1800-nm pump pulses [8], even
in a very compact setup [22] has been demonstrated. Further,
the generation of circularly polarized RDW emission was
demonstrated [23], as well as the use of pressure gradient
HCF setups to allow dispersion-free delivery to in-vacuum
targets [24].

Figure 2 shows a selection of new experimental re-
sults and corresponding simulations, which are chosen to
represent some useful and well-studied soliton dynamics:
self-compression [2,25], soliton-plasma interactions [26–29],
and emission of RDW radiation in the fundamental and
HOMs [30,31]. While all of the observed effects in this regime
have been studied elsewhere in the literature on the platform
of hollow-core photonic-crystal fibers or antiresonant fibers,

we want to outline the variety of possible dynamics and to
emphasize how small differences in dispersion, via the filling
gas pressure, can have very significant impact on the observed
dynamics. This also shows that not only self-compression and
RDW emission are possible to achieve in HCF, as shown in
Ref. [7], but the full variety of soliton-driven effects.

We have tuned the ZDW from 400 to 600 nm by chang-
ing the filling argon pressure from 28 to 143 mbar, and scan
the energy of the pump pulse coupled in the HCF for each
pressure. Figures 2(a)–2(c) show our experimental results,
Figs. 2(d)–2(f) show numerical simulations in the spectral
domain, and Figs. 2(g)–2(i) show them in the time domain.

The dynamics with 28 mbar Ar filling pressure in
Figs. 2(a), 2(d) and 2(g) are typical for soliton-plasma in-
teractions in the low soliton order regime—we observe a
blueshifting soliton, ejected from the pump pulse, that shifts
from 800 nm to approximately 600 nm in the spectral do-
main and accelerates (moves to negative delays) in the time
domain. The regime of soliton-plasma interaction is of sig-
nificant practical interest, as previous studies have identified
these dynamics as an efficient way to obtain tunable ultrashort
pulses in the visible and near-IR spectral regions [32–34].

Another process associated with the dynamics of self-
compressed solitons is resonant dispersive-wave emission.
This is a phase-matched process, and as such it strongly
relies on the dispersion profile in a wide spectral range to
determine the wavelength at which the emission will take
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place. Although our simulations for the 28 mbar filling argon
pressure show the emission of a RDW below 200 nm, this is
not covered by our measurement range. With increasing filling
gas pressure, up to 66 mbar, shown in Figs. 2(b), 2(e) and
2(h), the phase-matched wavelength is tuned to longer wave-
lengths and we can experimentally measure RDW emission
at around 210 nm. Simulations and other experimental studies
have shown that the RDWs are emitted in short pulses [35–37]
and are a promising technique to generate tunable ultrafast ra-
diation in the deep and vacuum ultraviolet spectral regions by
tuning the filling gas pressure. The RDW emission process is
fully coherent and can be highly stable, even in the presence of
energy and duration jitter with non–carrier-envelope-phase–
stabilized pump pulses [17]. However, since they are emitted
at a wavelength in the region of normal dispersion of the gas-
filled HCF, they usually quickly broaden, and their duration
at the output of the fiber is longer than their transform-limited
duration. This can be counteracted by using negative pressure
gradients (high pressure at the input of the HCF, vacuum at the
output of the HCF), which have been shown to maintain close
to transform-limited RDW pulse duration at the fiber output
[24,36].

Further increasing the filling gas pressure to 143 mbar in
Figs. 2(c), 2(f) and 2(i) shows the emission of RDWs in
HOM HE12 below 250 nm, which is shorter than the RDW
in the fundamental mode (325 to 250 nm depending on the
pump energy). The spectral content in each HOM can be ex-
tracted from the simulations. The emission of RDWs happens
around the point of soliton self-compression, because it relies
on the spectrum of the self-compressed soliton extending to
the phase-matched wavelength of the RDW to initiate en-
ergy transfer [38]. The generation of RDWs in higher-order
modes often occurs in these experiments [31]. RDW emis-
sion in a higher-order mode does not imply or require that
the self-compressing soliton that seeds this emission is in
a higher-order mode itself, merely that, at the compression
point, a RDW in a HOM is phase matched. It is also not a
result of conventional self-focusing or plasma-induced mode
coupling. The Kerr-induced nonlinear polarization always has
HOM content because it is the cube of the field. This process
is also different from the emission of a RDW in a HOM
directly from a self-compressing pulse propagating in the
same HOM, where the modal content of RDW is inherited
from the driving pulse and may lead to phase matching even
shorter RDW wavelengths [39]. RDW emission in HOMs nat-
urally occurs at shorter wavelengths than in the fundamental
mode because of the stronger anomalous waveguide disper-
sion of HOMs, which modifies the phase-matching conditions
[higher unm in Eq. (1)].

During RDW emission a significant portion of the pump
pulse energy shifts to longer wavelengths, a well-known pro-
cess described as soliton recoil [1,40]. For example, for the
case of a filling gas pressure of 143-mbar Ar and an input
pulse energy of 150 µJ, spectral filtering of the simulated pulse
in the range 930–1600 nm at the output of the fiber, indicated
as “iii” in Fig. 2, shows that this part of the spectral output cor-
responds to a 13-fs chirped pulse, centered at around 1050 nm,
carrying 31% (18.8 µJ) of the total output energy of 60.5 µJ.

Another interesting observation is that the temporal dy-
namics are mostly preserved for the largest range of input

28 mbar
66 mbar
143 mbar

FIG. 3. The difference in the self-compression for the same
soliton order N = 2.4 at the output of the HCF, but for differ-
ent ZDWs—400 (28-mbar Ar), 500 (66-mbar Ar), and 600 nm
(143-mbar Ar)—as (a) instantaneous power in the time domain and
(b) spectral power density (SPD). The dashed gray line in (b) in-
dicates the short-wavelength edge of the experimental measurement
range.

energies (from approximately 150 to 200 µJ) for the case of
pump pulses propagating in the lower-pressure regime, as seen
by comparing the temporal dynamics in Figs. 2(g)–2(i) for
three gas pressures shown. This is partly due to the fact that
the soliton number in this regime is still low (N < 3) even for
high input energies, because of the reduced nonlinearity and
more strongly anomalous dispersion.

One of the most promising applications of systems oper-
ating in the soliton regime is their use for pulse compression
and the generation of optical transients [7]. Optimization con-
ditions for achieving subcycle optical transients are discussed
in Ref. [41]. To summarize—to achieve the shortest possible
pulse a broad spectral range of anomalous dispersion is re-
quired to support soliton propagation without perturbations
from higher-order dispersion, along with high peak pump
power so that self-steepening and plasma formation enhance
the blue side of the spectral broadening. The peak power is
capped by the need to avoid high ionization losses, pulse
breakup, or modulation instability. Optimization criteria for
the soliton order to achieve best self-compression have also
been discussed in other works [2,42], with a primary con-
clusion being that clean subcycle pulses are achieved when
pumping with precompressed few-cycle pulses and a low soli-
ton order. However, even when keeping the soliton order the
same, different compression and different dynamics can be
achieved based on different dispersion landscapes, as shown
in Fig. 3. Figure 3(a) shows the temporal intensity profile
of the pulse at the output of the HCF for the same soliton
order N = 2.4, albeit different pulse energy, obtained from
simulations [as shown with horizontal lines in Figs. 2(g)–
2(i)]. Figure 3(b) shows the corresponding spectra. In all three
cases the pulse self-compresses to a full width at half max-
imum envelope duration below a single cycle at a carrier of
800 nm: 1.22 fs for 28-mbar, 1.59 fs for 66-mbar, and 2.44 fs
for 143-mbar filling gas pressure. We observe the cleanest
and shortest self-compressed pulse in the case of 28-mbar Ar
filling pressure. This can be associated with the role of the
ionization-induced blueshifting soliton and the fact that the
ZDW is further away from the soliton’s central wavelength,
which creates a wider spectral window where the soliton
can self-compress without the perturbation of phase-matched
resonant dispersive wave emission. The acceleration caused
by the plasma blueshift is also clearly visible in the earlier
arrival time of the pulse in the case of 28-mbar Ar. The low
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359 mbar 467 mbar 598 mbar

359 mbar 467 mbar 598 mbar

FIG. 4. Experimental and simulated energy scans of the pump dynamics close to zero dispersion: (a)–(c) experimental output spectra and
(d)–(f) stimulated multimode output spectra for a range of different Ar filling pressures—(a), (d) 359-mbar, (b), (e) 467-mbar, and (c), (f)
598-mbar—corresponding to ZDWs [indicated by a vertical dashed gray line in (a)–(f)] of 750, 800, and 850 nm, respectively. Radiation in
the HOMs is indicated by “i.”

nonlinearity also helps to keep the soliton order low—
enabling clean self-compression—even at high energies.

B. Pumping near or at the zero-dispersion wavelength

Quite different propagation dynamics occur when the
pump pulse is propagating near or at the ZDW of the gas-
filled HCF. This range is also used for purely SPM spectral
broadening in HCF-based compressors, where it is usually
assumed that the dispersion does not have a major influence on
the dynamics of the propagating pulse. However, when using
shorter pulses, which have a broader bandwidth (e.g., a 10-fs
pulse has a transform-limited bandwidth of approximately
100 nm), the variation of the dispersion around the ZDW does
matter. Some of our experimental results and simulations are
shown in Fig. 4. The filling argon pressure was varied between
359-mbar [Figs. 4(a) and 4(d)] and 598-mbar to tune the
ZDW from 750 nm [Figs. 4(c) and 4(f)] to 850 nm. A ZDW
of 800 nm is obtained for an Ar filling pressure of 467-mbar
[Figs. 4(b) and 4(e)]. It can be seen that the experimentally
measured dynamics as a function of pump energy are very

similar in all three cases. Three-octave spanning supercon-
tinua, from 200 nm to more than 1600 nm, can be achieved in
this regime and the shift of a significant part of the spectrum to
longer wavelengths is notable. The major part of the observed
dynamics is happening in the fundamental mode, even though
in this parameter range a lot of capillary modes are excited and
our numerical simulations show us that the narrowband radia-
tion below 400 nm is emitted in HOMs (marked “i” in Fig. 4).
However, there is an increased discrepancy between the sim-
ulations and the experimental measurements, even though the
overall trends are recovered. Particularly, simulations show an
increased transfer of energy to wavelengths around 400 nm in
Figs. 4(d)–4(f).

Insight into the dynamics of the generation of this spectral
band can be obtained from spectrograms, which show the con-
nection between the temporal and spectral domain [1]. Spec-
trograms at different points during the propagation along the
HCF for 160-µJ pump energy and 467-mbar Ar pressure are
shown in Fig. 5 for three different positions: 0.2 m in Fig. 5(a),
1 m in Fig. 5(b), and 3 m in Fig. 5(c). This representation
allows us to extract the sequence of dynamics that lead to the

FIG. 5. Spectograms of the propagation dynamics of a 160-µJ pulse in 467-mbar Ar filled HCF (ZDW 800 nm) in the fundamental HE11

mode calculated using a 4-fs gate pulse (a) after 0.2 m of propagation along the fiber, (b) after 1 m of propagation, and (c) after 3 m of
propagation at the output of the HCF. The horizontal line indicates the ZDW, which is 800 nm.
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FIG. 6. Comparison of the propagation dynamics with a simpli-
fied model. (a), (b) The simulated spectral and temporal evolution in
the HE11 mode during propagation of a 10-fs, 800-nm, 160-µJ pulse
in a 125-µm core radius HCF and length of 3 m, filled with 467 mbar
Ar (corresponding to the experimental geometry). (c), (d) The simu-
lated spectral and temporal dynamics of two pulse collisions [pulse 1,
“DW” (dispersive wave), 10-fs FWHM duration, central wavelength
600 nm, 5-µJ pulse energy; pulse 2, “soliton,” 10-fs FWHM duration,
central wavelength 1400 nm, 20 µJ; pulse 2 is initially delayed with
respect to pulse 1 by 50 fs in a HCF of the same core radius, and
same filling gas pressure, but a length of 10 m (the loss of the fiber
has been ignored in this case)]. “XPM”: pulse reflected due to XPM.

emission of the high-frequency radiation. It can be seen from
Fig. 5(a) that initially the pulse broadens due to SPM, which
leads to two parts of the pulse propagating in different disper-
sion regimes—normal for wavelengths shorter than the ZDW
at 800 nm and anomalous for longer wavelengths—while their
group velocities remain nearly matched, similarly to previ-
ous studies of pulse propagation near the ZDW of a fiber
[43]. Further along the pulse propagation, after 1 m, shown
in Fig. 5(b), the two parts of the pump pulse, propagating in
opposite dispersion regimes, interact through XPM and the
short-wavelength edge at approximately 400 nm is enhanced.
At the output of the fiber, at 3 m in Fig. 5(c), the band of newly
generated short-wavelength radiation is temporally well sep-
arated from the rest of the pump, since it has lower group
velocity and is delayed with respect to the rest of the pulse.

This sequence of dynamics has been discussed in Ref. [44],
suggesting that the part of the pulse that remains in the anoma-
lous dispersion region forms a soliton (fundamental or higher
order). However, we have not observed that this part of the
pulse exhibits soliton properties, so formation of a soliton
in the anomalous dispersion regime is not necessary for the
second stage of the propagation dynamics, in which the now
separated pulses interact with each other through XPM. In
recent years, XPM has been considered analogously to an
event horizon effect [45], temporal reflection [46], as well as
front-induced transition [47]. Temporal reflection of a probe
pulse off a soliton has previously also been suggested as a
mechanism for the generation of octave-spanning supercon-
tinua [48] and similar propagation dynamics have recently
been observed experimentally in solid-core fibers in the mid-
IR region [49].

To clarify this explanation, in Fig. 6 we compare the
propagation dynamics of the previously discussed case to

a simplified scenario involving the interaction and temporal
collision of two pulses inserted with initial conditions chosen
to highlight the dynamics. Figures 6(a) and 6(b) show the
spectral and temporal dynamics corresponding to our exper-
iment, with a single 10-fs, 160-µJ, pump pulse at a central
wavelength of 800 nm, in an HCF filled with 467 mbar Ar.
Figures 6(c) and 6(d) show the spectral and temporal dynam-
ics of our simplified scenario, consisting of two 10-fs duration
pulses: the probe pulse (also referred to as a “dispersive wave”
in the associated literature [44], but distinct from RDWs) with
central wavelength of 600 nm and 5-µJ pulse energy, and the
pump pulse (also referred to as the “soliton”) with central
wavelength of 1400 nm and 20-µJ pulse energy. The second
pulse is initially delayed with respect to the first by 50 fs
in order to clearly observe the interaction between the two
pulses when they temporally overlap. They are propagated in
an HCF of the same core radius and same filling gas pressure
as Figs. 6(a) and 6(b), but with a much longer length of 10 m
(while neglecting loss) to make the collision dynamics clearly
observable despite the small difference in group velocity be-
tween the two pulses. In the first (experimental) case, the
initial separation between these pulses is much smaller and
hence they collide after a shorter distance.

In this simplified scenario the single original input pulse
has been separated into two pulses which propagate in
two different dispersion regimes—the “soliton” (or pump)
pulse corresponds to the part of the input pulse that is shifted
to the anomalous dispersion regime (longer than the ZDW)
after the initial SPM step, and the “dispersive wave” (or probe)
pulse corresponds to the part of the input pulse that shifts
into the normal dispersion region. The pulse edge on which
the XPM interaction happens is very important (leading or
trailing edge of the pulses), because it determines whether the
XPM pulse will be blueshifted or redshifted. We see that the
blueshifted part of the spectrum of the probe pulse appears af-
ter the two pulses collide in the time domain. This blueshifted
part appears as reflected from the pump pulse in the tempo-
ral domain. Although there are some significant differences
between this simplified scenario and the actual dynamics, the
major qualitative features are captured, and it supports the pro-
posed sequence of evolution of an ultrashort pulse propagation
near the ZDW of an HCF. We have additionally confirmed that
the emission of this blueshifted radiation band does not occur
in simulations in the absence of interaction between these two
pulses, i.e., if any of the two pulses propagate on their own
inside the fiber.

C. Pumping in the normal dispersion region

Lastly, with a further increase of the gas-filling pressure,
the ZDW shifts into the infrared region and the pump pulse
propagates in a normal dispersion regime. Our experimental
results for 934-, 1703-, and 3344-mbar filling Ar pressures
are shown in Fig. 7. They correspond to ZDWs in the range
from 950 to 1300 nm. They show significant spectral broad-
ening, which starts to decrease with increasing gas pressure.
However, in this regime our usual simulations, which use the
pump pulse fully coupled to the fundamental mode of the
HCF, do not qualitatively represent the measurements well,
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934 mbar 1703 mbar 3344 mbar

FIG. 7. Experimental energy scans of the pump dynamics in the normal dispersion regime. Output spectrum as a function of coupled pulse
energy for (a) 934-mbar Ar, ZDW 950 nm; (b) 1703-mbar Ar, ZDW 1100 nm; and (c) 3344-mbar Ar, ZDW 1300 nm. The corresponding
ZDWs are indicated by a vertical dashed gray line in (a)–(c). The left y axis in (a)–(c) is in terms of pump pulse energy and the right y axis is
the corresponding “soliton order” N .

which suggests that some of the assumptions we have used
are no longer justified.

One of our assumptions is that all of the energy that is
initially coupled into the fiber is in the fundamental mode
HE11, despite the fact that hollow capillaries are inherently
multimode. This is justified for low nonlinearity if the correct
focusing geometry is used [50], where over 98% of a Gaussian
pump beam can be coupled to the fundamental mode. Fur-
thermore, the numerical model we use fully accounts for the
nonlinear multimode dynamics during the pulse propagation
through the fiber. However, in the higher-pressure regime it
is possible that the pulse experiences self-focusing even be-
fore it is coupled into the fiber, and we have not accounted
for this up to now. Indeed, we exceed the peak power for
self-focusing [51] for some of the pressures and pump pulse
energies used. In the case of ultrashort pulses propagating in
free space with normal dispersion, the dynamics are compli-
cated further by the addition of temporal effects [52,53].

In order to capture these dynamics, we have additionally
performed full spatial simulations of the pulse propagation
inside the input gas cell over a distance of 20 cm from the fiber
input. Although the distance between the gas-cell window
and the fiber input is 92 cm in our setup, we have found that
significant nonlinear modifications in the spatial and temporal
domains occur only near the fiber input, where the intensity of
the focusing beam is sufficiently high. As input for these sim-
ulations, we have used an aberration-free Gaussian beam with
beam size back-calculated from the linear fiber input beam
radius of 80 µm corresponding to 0.64 times the inner capil-
lary radius. The free-space propagated beam is then projected
onto the modes of the HCF using Eq. (A3), which couples
the spatiotemporal evolution due to the free-space propagation
onto up to 20 azimuthally symmetric HE1m fiber modes.

A comparison of fiber propagation simulations with and
without the free-space propagation for 1703-mbar Ar pres-
sure is shown in Fig. 8. Figure 8(a) shows a simulated
fiber-propagation energy scan for the same parameters as the
experimental energy scan shown in Fig. 7(b). In comparison,
Fig. 8(b) shows the case where the pulse has first been prop-
agated in free space to the fiber input and then a modified
spatiotemporal beam profile has been used to couple to the
fiber modes. Figure 8(c) shows how much energy has been
coupled to each mode and Fig. 8(d) shows the output energy
from both of the simulations and of the experimental energy
scan.

While neither of the simulations agrees very well with
experiment, this is not unexpected in this regime with complex
spatiotemporal coupling. The biggest discrepancy between
the simulations and experimental results is in the infrared
region, where the simulations significantly overestimate the
spectral broadening. Some parameter adjustment might be
needed to get the right correspondence between experiment
and simulation, but in this paper we chose to use our best es-
timates of the experimental parameters: the vacuum measured
coupling and the measured pulse duration. Another possible
reason for the discrepancy is that the laser beam used in

FIG. 8. Simulation with and without free-space propagation
(with ionization included) before the input of the fiber and modal
decomposition for 1703-mbar filling Ar pressure. (a) Without free-
space propagation, all of the input energy coupled in the fundamental
mode. (b) With free-space propagation and overlap of the free-space-
propagated beam with fiber modes. (c) Different input energies used
in the simulations including free-space propagation (output of the
free-space propagation shown with label “free-space output” and the
total energy coupled into the fiber after the free-space propagation
shown as “all modes”) and not including free-space propagation
(shown with “no free space” label) as a function of the initial pulse
energy for the simulation. The energies coupled in the first three most
excited modes—from HE11 to HE13—at the input of the fiber are also
shown. The decrease of the input energy in the case of simulations
including free-space propagation is due to ionization losses. (d) Out-
put energy from both the simulations with and without free-space
propagation and the experimentally measured output energy.
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z

z

FIG. 9. Simulation of the free-space pulse propagation dynamics in 1703-mbar Ar for different input energies: (a), (d) 50 µJ, (b), (e) 100 µJ,
and (c), (f) 200 µJ. The intensity of the pulse is shown as a function of the distance from the HCF input on a linear scale, normalized to the
maximum intensity during the propagation range. The simulations in (a)–(c) include the effect of ionization during the pulse propagation,
while (d)–(f) do not include ionization. The fiber input is at 0 cm.

our experiments is also not a perfect aberration-free Gaussian
beam, which will have an effect on the details of self-focusing
and modal coupling. The simulations are radially symmetric,
whereas any asymmetry in the actual beam profile can be
enhanced by the self-focusing and cause similar asymmetry
in the fiber coupling. A further possibility is the formation of
long-lived gas-density variations due to plasma recombination
and subsequent heating [54,55], a process not included in our
simulations. However, further investigation of the influence
of these effects is outside the scope of this paper. From the
free-space simulations for the pulse propagation in 1703-mbar
Ar we find that there is significant spatial and temporal modi-
fication of the pump pulse even before it reaches the input of
the HCF. This is shown in Fig. 9 which presents a simulation
of the radial beam profile integrated over all frequencies as
the beam focuses towards the HCF input for three pump pulse
energies: 50, 100, and 200 µJ. We consider two cases—with
and without including the effect of ionization in the free-space
propagation—in order to get a better picture of the effects that
play a role in this stage of the dynamics. In both cases, we
observe that increasing the energy of the pump pulse leads to
the beam focus moving before the fiber input, and a divergent
beam at the HCF input. The effect of self-focusing is more dis-
tinctly observed in the case which does not include ionization.
However, ionization acts to arrest the self-focusing and results
in stabilization of the focal spot size. Although ionization has
a distinct qualitative effect on the dynamics, it does not lead to
significant losses for the parameter range used here, as seen in
Fig. 8(c). For the maximum pump pulse energy used, 200 µJ,
the critical power for self-focusing Pcr [51] is exceeded by 2.6
times; the pump pulse peak power is equal to Pcr for an energy
≈77 µJ. This suggests that intensity clamping is not the reason
for the observed throughput saturation in Fig. 8(d). The spatial
modification of the beam due to self-focusing and ionization
causes progressively higher coupling into HOMs as the pump

pulse energy is increased, shown in Fig. 8(c). However, most
of the energy coupled in the fiber is still in the fundamental
and HE12 mode, and coupling to further HOMs never exceeds
5 µJ at the input of the fiber.

A summary of the effect of free-space propagation on
the beam spatial profile and on-axis spectrum is shown in
Fig. 10. In the spatial domain the focused beam size is re-
duced due to self-focusing. This decrease is less significant
in the simulations including ionization effects, which should

z z

FIG. 10. Simulation of the (a), (b) spatial and (c), (d) on-axis
spectral modification of the HCF input beam due to free-space
propagation in 1703-mbar Ar for different input energies: 50, 100,
and 200 µJ; (a) and (c) include the effect of ionization during the
propagation, while (b) and (d) do not include ionization. The linear
beam focusing is shown in gray, calculated similarly to the other
cases but for pulse energy of 1 nJ, well below the onset of nonlinear
effects. The vertical dashed gray line in (a) and (b) marks the core
radius of the HCF used.
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represent the true propagation dynamics more closely. In both
the simulations with and without including the effect of ion-
ization, at the high end of the used pump pulse energy range,
the beam develops a pedestal structure, extending beyond
the boundaries of the HCF core, due to divergence after the
backshifted focus. In addition to ionization losses, the drop
in coupled energy in the simulations including free-space as
well as fiber propagation is due to a combination of spatial and
spectral-temporal dynamics, which are difficult to completely
disentangle. Lastly, Figs. 10(c) and 10(d) show the additional
spectral broadening of the pulse at the input of the HCF, which
results purely from the free-space propagation of the beam.

While the dynamics in certain regimes have complicated
spatiotemporal coupling, they are still of interest for applica-
tions and research. Multimodal propagation has continuously
attracted scientific interest, with studies of multimode soli-
tonic structures in the anomalous dispersion regime [56,57],
multidimensional molecular interactions [58], intermodal
four-wave-mixing [59], self-collapse, and multimode self-
compression [60], among others. We have shown that in
certain situations the free-space propagation of the pump
pulse before the entrance to the fiber also plays a role
in the dynamics that we observe experimentally, and the
fundamental mode coupling assumption generally used is
not applicable. For simulations this necessitates additionally
including free-space propagation calculations and using a
multimodal input for the HCF propagation. Additionally, all
of the presented dynamics are scalable to lower or higher
energies, using the scaling laws derived in Ref. [7].

In this paper we have studied the optical propagation dy-
namics in statically filled HCF, where the gas pressure is
constant along the fiber and in the free-space regions between
the fiber and the gas-cell windows. An increasing gas-pressure
gradient through the HCF can alternatively be used to de-
crease the ionization and self-focusing before the input of the
fiber, as used in many works on pulse compression based on
SPM in HCF [61–65]. Similarly, a decreasing gas-pressure
gradient can be used for delivery of self-compressed pulses
directly to vacuum [24]. In the current paper we concentrated
on a statically filled HCF as it is the simplest system to ex-
plore the dynamics. Furthermore, our numerical simulations
provide some insight into understanding the deterioration in
the coupling due to propagation before the fiber, which has
not previously been studied in detail.

The dynamics we have observed in the normal dispersion
regime were stable in the input pulse energy range considered,
while leading to the generation of a multioctave supercontin-
uum. For long-wavelength ZDW (λZD � 1200 nm) and input
energies higher than the ones shown in Fig. 7(c), we observe
the onset of instabilities in the output spectrum.

IV. CONCLUSION

We have experimentally and numerically studied the dy-
namics of ultrashort pulses propagating in a gas-filled hollow
capillary fiber for a wide range of dispersion landscapes,
characterized by the dispersion experienced by the pump, and
we have explored the continuous transition between different
regimes. The different dispersion at the pump gives rise to
qualitatively different regimes of supercontinuum generation,

143 mbar
467 mbar
1703 mbar

FIG. 11. Experimental spectra recorded for pump pulse prop-
agation in different dispersion regimes: anomalous dispersion for
143-mbar, near-zero dispersion for 467-mbar, and normal disper-
sion for 1703-mbar filling argon pressure, all for input energy
of 50 µJ.

as shown in Fig. 11, which are interesting and useful for
different applications. In summary, when ultrashort pulses are
propagating in the anomalous dispersion regime we observe
a breadth of processes related to the dynamics of perturbed
higher-order soliton propagation, such as self-compression,
ionization-induced blueshift, and resonant dispersive-wave
emission in the fundamental and in higher-order HCF modes.
When propagating near the zero-dispersion point of the gas-
filled HCF, an ultrashort pulse experiences pulse splitting
and consequently cross-phase modulation between the two
pulses, which can lead to the generation of a new band of
radiation. Lastly, when propagating in a normal dispersion
regime, the ultrashort pulse can still lead to the generation of
multioctave supercontinua, however in this case the free-space
propagation of the focusing pulse might additionally have to
be considered, leading to more complicated spatiotemporal
dynamics, both before and during the propagation in the hol-
low capillary fiber.
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APPENDIX: FREE-SPACE PROPAGATION SIMULATIONS

Nonlinear propagation in free space is treated in the same
framework and by the same code as propagation in the HCF.
The model for guided-wave propagation, including the form
of the nonlinear source terms and references for material prop-
erties, is described in detail in Refs. [7,16,17]. For free-space
propagation, projection onto the modes of the waveguide is
replaced with a transverse zeroth-order Hankel transform and
propagation losses are neglected, so that the unidirectional
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pulse propagation equation reads

∂zE (ω, k⊥, z) = i
[
kz(ω, k⊥) − ω

v

]
E (ω, k⊥, z)

+ iμ0ω
2

2kz(ω, k⊥)
PNL(ω, k⊥, z), (A1)

where kz(ω, k⊥) =
√

k2
0 − k2

⊥ =
√

ω2

c2 n2(ω) − k2
x − k2

y with
n(ω) the refractive index of the gas, and

E (ω, k⊥, z) = 2π

∫ +∞

−∞
dt

∫ ∞

0
rdrE (t, r, z)J0(k⊥r)eiωt ,

(A2)

where J0(x) denotes the zeroth-order Bessel function of the
first kind. A similar equation applies to the nonlinear polar-
ization PNL(ω, k⊥, z). The Hankel transform is implemented

using the quasidiscrete Hankel transform [67] with a pupil
radius of 10 mm.

We run this simulation for the final 20 cm of propagation
before the HCF entrance, as the beam size before this point
is too large and the intensity too low to cause significant
nonlinear effects. As the initial condition we back-propagate
an aberration-free Gaussian beam with 1/e2 intensity radius
of 80 µm, which corresponds to 0.64 times the HCF core
radius [50], from the HCF entrance to the beginning of the
propagation window.

After propagating to the plane of the HCF entrance zHCF,
we determine the field coupled into each mode j of the HCF
by calculating the overlap integral with the azimuthally sym-
metric HE1m modes up to m = 20:

Ej (ω, 0) = 2π

∫ ∞

0
E(ω, r, zHCF) · ê∗

j (r) rdr, (A3)

where ê j (r) is the normalized modal field distribution of
mode j.
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