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Replica symmetry breaking in random lasers: A Monte Carlo study
with mean-field interacting photonic random walkers
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We investigate the replica symmetry breaking (RSB) phenomenon in random lasers (RLs) through Monte
Carlo simulations employing photonic random walkers that diffuse and get randomly scattered in the active
medium. The walkers interact not only with the population of excited atoms, but also among themselves, in a
mean-field-type approach based on the Langevin equation for the stochastic dynamics of RL modes. We obtain
the proper profile of the distribution P(q) of the Parisi overlap parameter in the RSB glassy phase, with two
pronounced side maxima at q = ±1 above the RL threshold, in contrast with some recent numerical studies.
Remarkably, when the interactions among photonic walkers are not included, a replica-symmetric profile with a
single maximum of P(q) at q = 0 is found for any excitation energy. We further study the Gaussian and Lévy
emission regimes and statistical correlations of intensity fluctuations in distinct modes of the same spectrum,
using a Pearson correlation coefficient recently applied to RLs. Our findings are consistent with experimental
results for the intensity statistics and P(q) distributions in RL materials.
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I. INTRODUCTION

Random lasers (RLs) [1–11] are nonlinear multimode pho-
tonic systems with low-coherence light emission and spectral
properties characterized by the presence of fluctuating spikes
at the lasing frequencies. The optical feedback responsible for
the RL action typically arises from randomly distributed scat-
tering particles or random variations of the refractive index of
the active medium with some sort of spatial inhomogeneity.
In this sense, the mechanisms underlying the RL behavior
notably contrast with those related to the role of the mirrors
and gain medium in a usual Fabry-Pérot cavity in conventional
lasers.

Since the first unambiguous demonstration of effective RL
emission using a colloidal dye plus TiO2 nanoscatterers [12],
a wide diversity of materials have been reported to display RL
features, including dyes dissolved in transparent liquids, gels,
or liquid crystals with suspended micro- or nanoparticles as
light scatterers [13–18], random fiber lasers with rutile [19] or
rare-earth [20] particles, powders of semiconductor quantum
dots [21,22], and even atomic vapors that present interest-
ing analogies with astrophysical lasers [23]. The increasing
interest in RLs comes from both the ongoing perspective
of practical applications and the significant theoretical chal-
lenges to explain their unique properties. Indeed, on the one
hand, applications of RLs are already a reality in diverse areas,
e.g., sensing [24], optofluidics [25,26], and imaging [27], and
they continue as well to inspire new exciting ideas [28–33].
On the other hand, RLs have been employed as photonic
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platforms to advance the understanding of a number of com-
plex systems behaviors, including Lévy statistics and extreme
value events [34–52], turbulence [53–55], and the replica sym-
metry breaking (RSB) phenomenon [56–73]. In particular, the
use of RLs as actual systems to probe theoretical predictions
from Parisi’s RSB analysis [74–77] of disordered complex
systems (such as magnetic spin glasses) can be regarded as
an outstanding scientific achievement [78,79].

The concept of RSB was introduced in Parisi’s approach to
spin-glass systems in the late 1970s [74–77]. Spin glasses are
magnetic systems with some type of intrinsic disorder, e.g.,
random distribution of spin interactions. Below some critical
temperature, spin-glass systems undergo a phase transition
to states in which spins “freeze” along random directions,
with nontrivial correlations and rather slow dynamics. The
system’s free-energy landscape breaks into a large number of
local minima that can trap a spin configuration for sufficiently
long times to hamper ergodicity and yield metastability and
irreversibility effects. Thus, identical systems, with the same
distribution of spin interactions and initially prepared under
the same conditions (so-called replicas of the spin system),
can eventually reach quite distinct states after some thermody-
namic evolution, leading to different measures of observables
and spin correlation patterns very distinct from those associ-
ated with magnetic phases exhibiting conventional long-range
orderings [74–77]. In this regime, the system replicas can no
longer be considered as physically equivalent (or symmetric)
and an RSB scenario emerges in the spin-glass phase.

In the past two decades, the photonics research group
of Università di Roma “Sapienza” has remarkably extended
[56–65] the concept of RSB to nonlinear multimode optical
systems with some sort of inherent disorder. A rich phase

2469-9926/2023/107(6)/063510(11) 063510-1 ©2023 American Physical Society

https://orcid.org/0000-0003-2609-9400
https://orcid.org/0000-0002-6688-8861
https://orcid.org/0000-0003-1205-9467
https://orcid.org/0000-0001-6536-6570
https://orcid.org/0000-0002-4178-8266
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.063510&domain=pdf&date_stamp=2023-06-16
https://doi.org/10.1103/PhysRevA.107.063510


GUILLERMO PALACIOS et al. PHYSICAL REVIEW A 107, 063510 (2023)

diagram has been theoretically proposed [56–63] as a function
of the input excitation energy and disorder strength, with
the photonic counterpart of the magnetic spin-glass phase
corresponding to the RSB glassy behavior in RL systems.
On the experimental side, the RSB phenomenon had its
first demonstration in the glassy phase of a two-dimensional
amorphous solid-state RL material [64]. Subsequently, the
RSB behavior was reported as well in diverse photonic
systems [65–73].

Random laser systems have been investigated also through
numerical methods [35–40,43–46,80–91], some of them
generically termed Monte Carlo (MC) simulations, albeit
with different implementations of stochastic processes. For
instance, in a pioneering MC study of the emission properties
of RLs [80], performed about one decade before the theoreti-
cal proposal [58] of the photonic RSB phase, photons in an ac-
tive random medium are treated as diffusing random walkers,
with probabilities of stimulating emission or being absorbed
set from the rate equations for the levels occupation. Rate
equations have been approached also using finite-difference
time-domain and transfer-matrix techniques in numerical
studies of the interplay of localization and amplification in
RLs [81,82]. Transfer-matrix [40,83] and MC [84] methods
have been applied as well in the weakly scattering regime of
RLs, addressing the effect of local pumping and statistics of
RL modes and amplified spontaneous-emission spikes.

In [85–87] MC simulations were performed with the
photon paths as random walks in a disordered amplifying
medium including stimulated-emission and -absorption pro-
cesses, with cross-section dependence on the wavelength
based on Mie theory. By continuously updating the local oc-
cupancy of the ground and excited states of the active atoms,
investigations were carried out [85–87] on the chaotic behav-
ior, amplified extended modes, and further spectral features
of RLs, such as intensity enhancement and bichromaticity. As
the excitation energy increases, the Gaussian-to-Lévy statisti-
cal crossovers of the probability distribution of emitted inten-
sities also have been studied [43–46] in this approach, as well
as the first-passage length of photons as a function of the dis-
order strength and extreme value events in the RL spectrum.
A variant of this method, but with photons of fixed wave-
length, considered specific distributions of turning angles and
traversed distances between consecutive random scatterings
[35]. A similar statistical analysis of emitted intensities, along
with the study of correlations of intensity fluctuations, has
been performed in a numerical mean-field approach [88].

The different statistical emission regimes of RL systems
have been investigated [36–39] also through MC simulations
of multiply scattered random walkers displaying a distribution
of wavelengths centered at the transition resonance (see also
[89]). In this case, each random walker is assigned a given
wavelength and carries a certain amount of energy (photons),
which can vary due to spontaneous- and stimulated-emission
events along the random scattering path. It is assumed that
the walkers interact only with the excited atoms of the gain
medium. Thus, the effects of gain saturation and spatiotempo-
ral couplings among different random walkers are included in
a self-consistent way, since all walkers are driven by the same
population distribution of atoms in the excited state [36–39].
We note in passing that the study of the RSB phenomenon in

RLs could not be performed in this approach since, in addition
to the coupling with the gain medium, the presence of nonlin-
ear random interactions between modes is actually essential
to yield the RSB glassy phase in RL systems [56–65].

On the other hand, the RSB glassy behavior of RLs has
been numerically addressed through a parallel tempering
(exchange) MC algorithm [90,91]. The approach is based
on the photonic Hamiltonian formulation of RL systems,
with randomness and nonlinearity ingredients in the mode
interactions [56–65]. A finite-size scaling theory has been
developed as well to characterize the behavior of the RL close
to the glassy phase transition. The order parameter of this
transition is Parisi’s replica overlap parameter q (discussed
below) [56–65,74–77]. In the prelasing regime, with excita-
tion energy below the RL threshold value, P(q) has a single
maximum at q = 0, indicating that replicas are essentially
uncorrelated in a replica-symmetric scenario. In contrast, in
the photonic glassy phase above threshold, P(q) displays two
side maxima around the correlated and anticorrelated values
q = +1 and −1, respectively. In this case, replicas are no
longer symmetric and the RSB regime sets in.

The exchange MC study confirms [90,91] the predictions
of the finite-size scaling theory and identifies the universality
class of the RL glassy phase transition as being of mean-field
type. Interestingly, however, although the side maxima at q ≈
±1 in fact have the onset at the RL threshold, the numerical
results for P(q) show that they are not fully developed in the
RSB glassy phase above threshold. Instead, the maximum at
q = 0 still prevails even in the RSB regime, where in principle
it should be lower than the side maxima.

In this work we investigate numerically properties of mul-
timode RL systems, such as the RSB regime, statistics of
emitted intensities, and correlation degree between pairs of
modes, through a MC approach based on [36–39]. We find that
the proper profile of P(q) in the RSB glassy phase, with two
pronounced side maxima at q = ±1, can actually be obtained
by introducing mean-field-type interactions between diffusing
random walkers, based on the Langevin equation that drives
the stochastic dynamics of the optical modes. We also study
the Gaussian and Lévy emission regimes as a function of the
excitation energy and the statistical correlations of intensity
fluctuations in distinct modes of the same spectrum, through
the measure of a proper Pearson correlation coefficient applied
to RLs [92–98]. Our findings are consistent with experimental
results for the intensity statistics and P(q) distributions in RL
materials.

The article is organized as follows. In Sec. II we review the
theoretical background for the Hamiltonian formulation and
Langevin dynamics of RL systems and describe the details
of the MC simulation. Results are presented and discussed in
Sec. III. A summary is given in Sec. IV.

II. THEORETICAL BACKGROUND
AND NUMERICAL SIMULATION

A. Photonic Hamiltonian formulation and Langevin dynamics

The Hamiltonian formulation of nonlinear multimode
photonic systems with a random amplifying medium
(including RLs) was developed in a series of seminal works
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[56–65], which took as the starting point the system-and-bath
Hamiltonian model of quantum nonlinear photonic systems
with overlapping modes [99,100]. In the semiclassical con-
text, the creation and annihilation quantum operators of the
electromagnetic field are replaced by their complex expected
values to yield the effective Hamiltonian function

H =
∑

{k1,k2}′
g(2)

k1,k2
ak1 a∗

k2
+

∑
{k1,k2,k3,k4}′

g(4)
k1,k2,k3,k4

ak1 a∗
k2

ak3 a∗
k4
,

(1)

where g(2)
k1,k2

and g(4)
k1,k2,k3,k4

denote complex quadratic and
quartic couplings, respectively, among overlapping slow-
amplitude modes {ak}, with the latter related to the nonlinear
optical χ (3) susceptibility (see, e.g., [56,91]). The semiclas-
sical approximation is related to the regime with a high
density of photons, which represents the case of interest in
the present work and also corresponds to the experimental
situation considered, e.g., in [64–73]. We also comment that
the interactions between modes in a nonlinear optical sys-
tem can generally give rise to phenomena such as energy
transfer between modes and excitation of new modes due to
nonlinear interactions. These interactions can be subtle and
possibly lead to complex behaviors in radiation dynamics. The
information about how modes are nonlinearly coupled in a
material is contained in the high-order susceptibilities (third
order in our case). In the strong-cavity limit with small losses
[61,101], the diagonal elements of g(2)

k1,k2
dominate over the

off-diagonal ones. Moreover, g(4)
k1,k2,k3,k4

carries the signature
of the structural randomness of the active medium in RL
systems.

In a nonlinear medium, the electric field can be expanded
in leading-order perturbation theory [102] on the basis of
complex slow-amplitude modes as

E(r, t ) = Re

(∑
k

Ek (r)ak (t )eiωkt

)
, (2)

in which ωk is the frequency of mode k, with an analogous
expression for the magnetic field. The slow-amplitude modes
ak (t ) = Ak (t )eiφk (t ) present the dynamics of the real ampli-
tudes Ak evolving much slower than that of the phases φk .
Thus, in the so-called slow-amplitude approximation [56,91]
the phases can be averaged out, with āk (ω) ≈ δ(ω − ωk ) upon
Fourier transformation and δ as the Dirac delta function. This
implies that only mode combinations with |ωk1 − ωk2 | � γ

and |ωk1 − ωk2 + ωk3 − ωk4 | � γ are accounted for in the first
and second terms of Eq. (1), respectively, where γ is the
typical linewidth of modes. These constraints correspond to
the frequency matching conditions [56,91] indicated by the
terms {k1, k2}′ and {k1, k2, k3, k4}′ in the sums of Hamiltonian
(1). The slow-amplitude modes thus form a suitable basis
to describe lasing modes with narrow linewidth around the
lasing frequencies. We also comment that the slow-amplitude
approximation results from the temporal dynamics of the
emitted signal in a random laser, in which the mode ampli-
tudes vary on a much longer timescale when compared to
the phases, a circumstance that favors the consideration of
the mode amplitudes as quenched (i.e., random but slowly
varying) variables.

The explicit calculation from first principles of the second
and quartic couplings in Eq. (1) is virtually unfeasible. Thus,
for practical purposes one possibility is to assume that their
values are taken from some probability density function. For
instance, in the statistical physics analysis of multimode pho-
tonic systems with a random amplifying medium (e.g., RLs)
[56–65], a mean-field-type approach considered the couplings
in Eq. (1) as being statistically independent and quenched
(i.e., static), with all g’s of a given (second or fourth) order
drawn from the same Gaussian distribution, along with the
relaxation of the frequency matching constraints, so that any
given combination of modes is allowed. In the slow-amplitude
approximation, the energy associated with mode k in the RL
is Ek = |ak|2 = A2

k (apart from an unimportant proportional-
ity constant). In this sense, the mean-field statistical physics
approach to the Hamiltonian (1) also assumed the system in
equilibrium with the energy pumping source, leading to the
spherical constraint of constant total energy E = ∑

k Ek in the
RL medium.

The stochastic dynamics of the modes is described by the
Langevin equation [56,57]

dak

dt
= − ∂H

∂a∗
k

+ ξk (t ), (3)

where ξk (t ) is an uncorrelated complex white noise in a
suitable choice of basis of slow-amplitude modes, which
is remnant of the correlated complex quantum noise
in [99,100]. The Langevin dynamics of the energies Ek

can be determined also in the strong-cavity limit with
frequency matching conditions comprising the modes com-
binations [59,103] ωk1 = ωk2 and ωk3 = ωk4 , ωk1 = ωk4 and
ωk2 = ωk3 , and ωk1 − ωk2 = ωk4 − ωk3 . By usually disregard-
ing the latter and considering Re(g(2)

kk ) = αk − γk , with γk and
αk as the amplification (gain) and radiation loss coefficient
rates [47,59,101,103], respectively, we find

dEk1

dt
= Ek1

⎛
⎝2

(
γk1 − αk1

) − 4μE − 4σ
∑

k3

Gk1,k3 Ek3

⎞
⎠. (4)

Above, the quartic couplings are assumed to be Gaussian
distributed with mean μ and variance σ 2, so they can be gen-
erally expressed in the form Re(g(4)

k1,k1,k3,k3
) = Re(g(4)

k1,k3,k3,k1
) =

μ + σGk1,k3 , with the values of the quenched random vari-
ables Gk1,k3 taken from a Gaussian with null mean and unit
variance. The G terms with k1 = k3 and k1 �= k3 account for
the random self- and cross-saturation effects, respectively. We
also consider, as in [56–65], that the mean value of the mode
couplings is proportional to the square of the excitation energy
Et , i.e., μ = μ0E2

t , while the degree of disorder of the RL
medium increases with σ . We further notice in the case of
additive noise that the noise term is averaged out to zero in
the slow-amplitude approximation. The mean-field-type ap-
proximation of the coupling between modes in Eq. (4) can be
justified from the fact that, differently from spin Hamiltonian
models in magnetic systems, each mode in a random laser
system is essentially coupled with every other mode due to
the spatial overlap.
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B. Monte Carlo simulation

The theoretical formulation above helps shed light on MC
algorithms aiming to describe the photonic processes un-
derlying the multiply scattered diffusion of photons in the
random amplifying medium of multimode RLs. Concisely
(see below for details), we take as the starting point the MC
study [36–39] in which photons of a given wavelength are
carried by a random walker propagating in a two-dimensional
lattice. As many walkers diffuse and eventually get randomly
scattered, their number of photons can increase or decrease
at each discrete time step, due to either spontaneous emission
or stimulated emission (through the interaction with the local
population of excited atoms) or upon leaving the lattice. Here,
in order to investigate the RSB glassy phase above the RL
threshold, we further introduce interactions among the pho-
tonic random walkers in a way similar to Eq. (4), discussed
below.

The MC simulation was implemented on a square lattice
of L × L sites at positions (x, y), where x = 1, 2, . . . , L and
y = 1, 2, . . . , L (in lattice spacing units). Initially, the popula-
tion distribution of excited atoms at time t = 0 is assumed to
have a Gaussian spatial shape

N (x, y, t = 0) = N0 exp

(
− (x − L/2)2 + (y − L/2)2

2�2

)
. (5)

Without loss of generality, N can be considered a continu-
ous variable, with N0 a constant. Indeed, since random laser
systems generally present a large number of elements (e.g.,
rare-earth ions) responsible for the electronic transitions giv-
ing rise to stimulated emissions, a Gaussian distribution of
discrete N values with �N/N � 1 approaches a Gaussian
distribution of continuous N values in Eq. (5). As active atoms
are excited by an external pumping source, the initial sum
of N over the whole lattice (i.e., the total number of excited
atoms at t = 0) is proportional to the excitation energy Et . In
fact, in the numerical procedure we actually set Et (in energy
units) so that N0 = Et/

∑
x,y N (x, y, t = 0). From Eq. (5) we

also note that the input energy is concentrated around the
center of the lattice, with dispersion � (here we use � = 40
and L = 150, yielding �/L ≈ 1/4). As described below, the
number N (x, y, t ) of excited atoms at position (x, y) at time
t is a dynamical quantity, which is progressively updated at
each time step.

No photonic random walkers exist at t = 0. In fact, as the
time progresses in discrete �t = 1 steps (i.e., t = 1, 2, . . . in
time units), walkers are continuously created, initially with
a single photon due to spontaneous emission taking place at
an excited atom. In addition, the random walkers eventually
increase their number of carried photons by stimulated
emission.

The processes associated with spontaneous and stimulated
emissions of photons and random scattering and diffusion
of photonic random walkers are considered in our MC sim-
ulation in a dynamical recursive way as described in the
following.

First, regarding the spontaneous emission, at each time
step t we consider that excited atoms at sites (x, y) have a
probability (per unit time) of emitting a photon due to sponta-
neous emission given by the product of their local population

N (x, y, t ) at the current time and the spontaneous-emission
rate γ0 (we set γ0 = 10−4 in inverse time units). If a photon is
spontaneously emitted from an excited atom at position (x, y)
at time t , then we update N (x, y, t + �t ) = N (x, y, t ) − 1,
with �t = 1. Moreover, the frequency of this photon is drawn
from a Cauchy-Lorentz probability density P(ω) with average
absolute deviation (width) ω̄ and centered at the transition
resonance frequency ω0 [104],

P(ω) = ω̄

π [ω̄2 + (ω − ω0)2]
. (6)

In fact, here we consider Nω = 1001 discrete frequencies ωk

(channels of frequency) around ω0, i.e., ωk = ω0 + k�ω (in
frequency units), with k = −(Nω − 1)/2, . . . , 0, . . . , (Nω −
1)/2, �ω = 1, and ω0 = 0, without loss of generality, whose
relative probabilities are given by Eq. (6) with ω̄ = 50. The
denotation ni,ki (t ) indicates that the walker i at position (xi, yi )
in time t carries ni,ki photons of frequency ωki . So the corre-
sponding update of the walker i that gets one more photon due
to spontaneous emission reads ni,ki (t + �t ) = ni,ki (t ) + 1.

Concerning the diffusion of the photonic random walkers,
at each time step every walker moves one lattice spacing to
one of the four neighboring sites in the square lattice. Each
walker has probability ps of changing direction (i.e., getting
randomly scattered) to one of the three neighbors that are
not ahead (we choose below ps = 0.1). Otherwise, it moves
forward to the next site without changing direction, with
probability 1 − ps. We also note that ps is inversely related
to the mean free path of photons between consecutive random
scattering events in the RL medium.

As the random walkers diffuse, at each time step their
number of photons (or carried energy) can also vary due
to stimulated emission. The energy Ek (t ) associated with
mode k in time t is given by the sum of the num-
bers of photons of frequency ωk carried by the walkers,
Ek (t ) = ∑

i δωk ,ωki
ni,ki (t ), up to a proportionality constant,

with δ the Kronecker delta. Likewise, the total energy in the
RL is E (t ) = ∑

k Ek (t ) = ∑
i ni,ki (t ). So, by considering that

the walkers interact in a way similar to Eq. (4), we write in the
discrete time step procedure

1

�t

[
ni,ki (t + �t ) − ni,ki (t )

]

= ni,ki (t )

⎛
⎝γ

(
ωki

)
N (xi, yi, t ) − 4μE − 4σ

∑
k j

Gki,k j Ekj

⎞
⎠.

(7)

As for N , above we treat ni,ki as continuous variables. The
first term on the right-hand side of Eq. (7) accounts for
the contribution to ni,ki (t + �t ) from the stimulated-emission
process occurring when the walker i at position (xi, yi ) at
time t interacts with the population distribution N (xi, yi, t ) of
excited atoms in the RL medium. The frequency-dependent
stimulated-emission rate is given by [104]

γ (ωk ) = γ0

1 + (ωk/ω̄)2
. (8)

Further, the G terms in Eq. (7) represent mean-field-type
quenched random couplings between walkers, favoring either

063510-4



REPLICA SYMMETRY BREAKING IN RANDOM LASERS: A … PHYSICAL REVIEW A 107, 063510 (2023)

the increase or decrease of ni,ki (t + �t ), with the values of all
Gki,k j ’s drawn from the same Gaussian distribution. We note
that when the walkers interact only with the excited atoms in
the RL medium, i.e., for μ = σ = 0 in Eq. (7), we recover
the results of [36–39] (discussed in the next section). Here we
focus on the investigation of the system of interacting random
walkers for values of E2

t = μ/μ0 below, near, and above the
RL threshold, with fixed σ = 1.5 × 10−6. The stimulated-
emission process also affects the local population of atoms
in the excited state, which is accordingly updated by

1

�t
[N (xi, yi, t + �t ) − N (xi, yi, t )]

= −ni,ki (t )γ
(
ωki

)
N (xi, yi, t ). (9)

Eventually, a diffusing walker reaches one of the system
boundaries (x = 1, x = L, y = 1, or y = L) and leaves the
lattice. In this case, the walker is removed from the simulation
and its energy is added to the spectrum of emitted intensities
at the corresponding frequency.

One typical simulation run starts at t = 0 and ends at the
final time t = t f , when the intensity spectrum is recorded.
Next we run all over again from t = 0 to t = t f , with the
same parameters and initial conditions as before and indepen-
dently drawing the random numbers Gki,k j associated with the
nonlinear couplings between modes from the same Gaussian
distribution. This procedure defines a replica of the system,
with the intensity spectrum denoted by Iγ (ωk ), where γ

(=1, 2, . . . , Nr) is the replica label and Nr is the number of
replicas. Here we use t f = 3000 and Nr = 4800.

In order to investigate the RSB regime in the photonic
glassy phase of a RL system, we calculate Parisi’s correlation
parameter of intensity fluctuation overlaps between distinct
replicas γ and β [56,57],

qγ β =
∑

k �Iγ (ωk )�Iβ (ωk )√∑
k[�Iγ (ωk )]2

√∑
k[�Iβ (ωk )]2

, (10)

where �Iγ (ωk ) = Iγ (ωk ) − 〈Iγ (ωk )〉 represents the intensity
fluctuation of replica γ at frequency ωk with respect to the
replica average intensity 〈Iγ (ωk )〉 = ∑

γ Iγ (ωk )/Nr . By con-
sidering all pairs of distinct replicas γ and β, we build the dis-
tribution P(q) of qγ β values. As mentioned, a single maximum
of P(q) at q = 0 or two side maxima near q = ±1 are indica-
tive of the replica-symmetric or RSB regimes, respectively.

We can also measure the correlation between intensity
fluctuations at distinct frequencies in the same spectrum, by
calculating the Pearson correlation coefficient

Ckik j =
∑

γ �Iγ
(
ωki

)
�Iγ

(
ωk j

)
√∑

γ

[
�Iγ (ωki )

]2
√∑

γ

[
�Iγ (ωk j )

]2
. (11)

We notice above that, differently from Parisi’s overlap param-
eter (10), in which the sums in k consider the same frequency
ωk in different replica spectra γ and β, in the coefficient Ckik j

summations in γ relate distinct frequencies ωki and ωk j in
a given replica γ . This Pearson coefficient has been applied
[92–98] to study modes correlations in a number of RL sys-
tems. A negligible value of Ckik j implies that fluctuations at
distinct frequencies behave nearly uncorrelated, in an average
over spectra. On the other hand, a positive (negative) Ckik j

indicates that fluctuations at a given frequency are related
to fluctuations with the same (different) sign at a distinct
frequency.

Finally, to characterize the statistical emission regimes of
the RL, we analyze the distribution P(I ) of emitted intensities
for excitation energies Et below, near, and above the RL
threshold. First, we notice from the output spectra that the
largest emitted intensities usually correspond to frequencies
within a small interval of width δω around the transition reso-
nance ω0, and so we choose δω/Nω = 20/1001 ≈ 0.02 in our
analysis. For a given Et , we fix a frequency ωk in this interval
and build the distribution P(I ) from the series {Iγ (ωk )} of
intensity values of the various (Nr = 4800) replicas γ at this
frequency. We then compare P(I ) with the family of Lévy
α-stable distributions [105], characterized by a stability pa-
rameter α ∈ (0, 2] (discussed below). A best-fitting procedure
yields the value of α for this frequency. Next the same is
performed for the other frequencies in the interval. At the
end, an average α over these frequencies is obtained for the
excitation energy Et .

III. RESULTS AND DISCUSSION

We now present the MC numerical results obtained by fol-
lowing the procedures detailed above. We start by considering
the system without interactions between the photonic random
walkers. In particular, no RSB glassy phase is found in this
case, with a replica-symmetric phase emerging for all exci-
tation energies. Noticeably, however, when the walkers are
allowed to interact in the mean-field-type approach described
in the preceding section, an RSB scenario clearly stands out
above the RL threshold.

A. Case without interactions between walkers

By making μ = σ = 0 in Eq. (7), the photonic random
walkers interact only with the local population distribution
N (x, y, t ) of excited atoms in the active medium. This cou-
pling leads to stimulated-emission events with probability
proportional to γ (ωk )N (x, y, t ), which increase the number of
photons of frequency ωk carried by the diffusing walkers.

Figures 1(a)–1(f) show profiles of the intensity spectra and
corresponding distribution P(q) of Parisi overlap parameter
(10) for three values of the excitation energy Et . The intensity
emitted at frequency ωk is proportional to the number of pho-
tons of this frequency that leave the lattice in a simulation run.
In Figs. 1(a), 1(c), and 1(e), typical spectra of three replicas
are shown in different colors (blue, red, and black).

A significant change of behavior can be noticed in these
spectra as the excitation energy increases. For the lowest value
Et = 105, Fig. 1(a) presents weak intensity fluctuations for all
replicas. On the other hand, Fig. 1(c) displays for Et = 106

strongly fluctuating spikes at frequencies around the transition
resonance ω0 that vary from replica to replica. As the excita-
tion energy is enhanced further, the magnitude of fluctuations
decreases to an intermediate behavior between the previous
ones [see Fig. 1(e) for Et = 7.0×106].

The picture depicted in Figs. 1(a), 1(c), and 1(e) corre-
sponds to the Gaussian-to-Lévy crossovers found experimen-
tally and numerically in the statistical emission regimes of
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FIG. 1. Case without interactions between photonic random
walkers. The intensity spectra and corresponding distribution P(q)
of Parisi overlap parameter values [Eq. (10)] are shown for excitation
energies (a) and (b) Et = 105, (c) and (d) Et = 106, and (e) and (f)
Et = 7.0×106. The intensity at frequency ωk around the transition
resonance set as ω0 = 0 is obtained from the number of photons of
frequency ωk that leave the lattice in a simulation run. Three typical
replica spectra are shown in different colors (blue, red, and black)
for each Et . The maximum P(q) at q = 0 signals a replica-symmetric
phase, with no RSB for all Et . (g) Lévy stability index α as a function
of Et . While weak fluctuations are typical of Gaussian behavior [see
(a) and (e) with α ≈ 2], strongly fluctuating intensity spikes emerge
in the Lévy regime (0 < α < 2), as shown in (c). The solid line in
(g) depicts the mean α over frequencies in a small range of width
δω = 20 centered at ω0, while dash-dotted and dashed lines indicate
the minimum and maximum limits of α from the standard deviation
around the average, respectively.

RL systems [34–52]. From a statistical viewpoint, a random
variable u ∈ (−∞,∞) is described by the family of Lévy
α-stable distributions if its probability density function is
given by [105]

p(u) = 1

2π

∫ ∞

−∞
dk e−|ck|α [1−βsgn(k)�(k)]−ik(u−ν). (12)

The Lévy stability index α ∈ (0, 2] is the most important
parameter since it sets the main statistical properties of u.
Indeed, whereas the borderline value α = 2 leads to the Gaus-
sian distribution, with weak fluctuations in u governed by
the central-limit theorem (CLT), the generalized CLT drives
the strong-fluctuation regime for 0 < α < 2 [105]. In ad-
dition, β ∈ [−1, 1] is the asymmetry (skewness) parameter,
c > 0 is a scale factor, ν is a shift (location) parameter, sgn
is the sign function, � = tan(πα/2) if α �= 1, and �(k) =
(−2/π ) log |k| if α = 1. Here, with positively defined inten-
sities I , in practice we consider Lévy distributions p(I ) =
p(|u|) + p(−|u|) = 2p(|u|) in the I � 0 domain.

Following the procedure described in the preceding sec-
tion, we obtain intensity distributions P(I ) and fit to Lévy
distributions using the quantile-based McCulloch method
[106]. In Fig. 1(g) the solid line shows the best-fit value of
the Lévy parameter α averaged over the frequencies in the
range of width δω = 20 centered at the transition resonance
ω0. In addition, the dash-dotted and dashed lines depict the
minimum and maximum limits of α, respectively, from the
standard deviation around the mean for each Et . Consistent
with Fig. 1(a), an essentially Gaussian statistical behavior
with α ≈ 2 is observed in the low-Et regime. As Et is in-
creased, a crossover takes places to a Lévy behavior with 0 <

α < 2, which is followed by a trend to return to the Gaussian
regime for high Et , in agreement with Figs. 1(c) and 1(e).

Despite the presence of intensity spikes typical of the RL
regime, the Parisi overlap distribution P(q) displays a single
maximum at q = 0 and the absence of side peaks at q = ±1
for all values of Et , signaling a replica-symmetric scenario
[see Figs. 1(b), 1(d), and 1(f)]. This finding indicates that
no RSB glassy regime emerges in the case of noninteracting
photonic random walkers, i.e., in the absence of nonlinear
random couplings between lasing modes, as expected.

B. Case with interacting photonic walkers

We next consider photonic walkers with mean-field inter-
actions modulated by the Gaussian random couplings Gki,k j

and parameters μ and σ in Eq. (7).
Figures 2(a)–2(d) present the distribution P(q) for a num-

ber of excitation energies Et = 106, 5.0×106, 5.5×106, and
8.0×106, respectively. We notice that when the interactions
between walkers are turned on, an RSB scenario is clearly
evidenced in the RL regime above Et ≈ 5.0×106. In par-
ticular, in contrast to Fig. 1, P(q) displays pronounced side
maxima at q = ±1 for Et = 8.0×106, as seen in Fig. 2(d).
These results are corroborated by Fig. 2(e), which shows
the absolute value |qmax| at which P(q) is maximum. A
transition from the replica symmetric to the RSB phase is
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FIG. 2. Case with interactions between photonic random walk-
ers. The distribution P(q) of Parisi overlap parameter val-
ues [Eq. (10)] is shown for excitation energies (a) Et = 106,
(b) Et = 5.0×106, (c) Et = 5.5×106, and (d) Et = 8.0×106. (a) A
pronounced maximum in P(q) at q = 0 signals a prelasing replica-
symmetric phase. (b) and (c) As Et increases, a slightly bimodal
P(q) with maxima at |q| � 0 indicates the onset of an RSB glassy
phase at the RL threshold (compare with the replica-symmetric
phase for all Et in Fig. 1, in the absence of interactions between
walkers). (d) For higher Et above threshold, the RSB side max-
ima occur at q = ±1. (e) Absolute value |qmax| at which P(q)
is maximum as a function of Et , showing that the transition
from the replica symmetric to the RSB phase takes place around
Et ≈ 5.0×106.

observed around Et ≈ 5.0×106. We mention that profiles of
the distribution P(q) similar to those shown in Fig. 2 have
been experimentally found in RL materials with a transition
from prelasing replica-symmetric to RSB glassy phases above
threshold [64–73,96,97] (see, for example, Fig. 2 in [66],
Figs. 2 and 3 in [96], and Fig. 2 in [97]).

Figure 3 depicts the Lévy parameter α for two repre-
sentative frequencies ωk in the small interval of width δω

around ω0, as a function of Et . Both curves display the same
qualitative evolution, starting from the Gaussian regime with
α ≈ 2 for low Et , shifting to a Lévy statistical regime with
0 < α < 2, and subsequently tending to return to Gaussian
statistics for high Et . The quantitative differences in the plots
arise from the distinct sets of nonlinear couplings {Gki,k j }
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FIG. 3. Lévy parameter α for two frequencies in the small inter-
val of width δω around the transition resonance ω0, as a function of
the excitation energy Et . As Et increases, a regime with Gaussian
intensity fluctuations (α ≈ 2) for low Et is followed by a Lévy
statistical behavior (0 < α < 2) and by a subsequent trend to return
to the Gaussian statistics for higher Et .

which are stochastically assigned in Eq. (7) to each random
walker of frequency ωki that interacts with all other walkers of
frequencies ωk j .

By comparing Figs. 2(e) and 3, we notice that the tran-
sition to the RSB phase at Et ≈ 5.0×106 does not coincide
with the onset of the Lévy statistical regime. In fact, though
some of the first reports [49,66] of the RSB phase and Lévy
intensity statistics in the same RL suggested a simultaneous
emergence of both phenomena, other accounts have noted
[65] that their onsets may not match, with the hint that the
RL threshold should concur with the transition to the RSB
regime.

Finally, we analyze the statistical correlations between in-
tensity fluctuations of pairs of frequencies ωki and ωk j in
the same spectrum, through the Pearson coefficient Cki,k j

[Eq. (11)]. It has been experimentally shown [88,95,107] that,
by tuning the excitation energy near the RL threshold, it
is possible to control the intensity correlations between RL
modes from the characterization of the Lévy-like power-law
statistics of the emission spectrum survival function. Never-
theless, it is also important to note that in many cases, due
to the low resolution of the spectral measurement, this kind
of analysis may be difficult and imprecise. In spite of this,
interesting applications can arise from the control of the cor-
relations between specific RL modes, such as in biomedical
settings and network communications [107].

In the present context, correlations Cki,k j in the intensity
fluctuations are shown in Fig. 4(a) for nine chosen pairs of
frequencies as a function of Et . We first observe, for low Et ,
that all pairs in the same spectrum are essentially uncorrelated,
with Cki,k j ≈ 0. As Et is increased, three distinct behaviors
arise: The pairs of modes remain nearly uncorrelated even
for high Et (black lines) or shift behavior to a correlated
(red, Cki,k j > 0) or anticorrelated (blue, Cki,k j < 0) regime. A
further increase in Et tends to saturation of the correlated
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FIG. 4. Pearson correlation coefficient Cki,k j [Eq. (11)] for in-
tensity fluctuations of (a) nine chosen pairs of frequencies ωki and
ωk j in the same spectrum, as a function of the excitation energy
Et , and (b) frequency separation �ω = |ωki − ωk j |. (a) The uncor-
related behavior Cki,k j ≈ 0 observed for all pairs and low Et shifts,
as Et increases, to either correlated (Cki,k j > 0, red) or anticorrelated
(Cki,k j < 0, blue) regimes or, in a smaller number of cases, remains
with Cki,k j ≈ 0 (black). (b) More separated frequencies in the same
spectrum generally give rise to weaker correlations.

and anticorrelated modes while still keeping unchanged the
uncorrelated modes behavior of some pairs.

The results of Fig. 4(a) are complemented by the analysis
shown in Fig. 4(b) of the behavior of Cki,k j as a function of
the frequency separation �ω = |ki − k j |. In the low-Et regime
frequencies are uncorrelated no matter how separated they
are in the intensity spectrum (black line, Et = 5.0×105), as
expected. In contrast, we notice a nearly monotonic decrease
of Cki,k j with �ω for higher Et , indicating that modes that

are closer in the same spectrum generally display stronger
correlations (see the blue and red lines for Et = 6.5×106 and
8.5×106, respectively).

IV. CONCLUSION

The importance of advancing the understanding of random
laser systems can hardly be overstated. Random lasers have
already provided various practical applications [1,2,24–27]
and continue as well to inspire new exciting ideas [28–33].
Moreover, in parallel to the theoretical challenges posed to
explain their features, RLs also have been employed [1,2] as
photonic platforms to study complex systems behaviors, such
as unconventional Lévy statistics, turbulence, and the replica
symmetry breaking phenomenon.

In this work we have investigated RL systems through
Monte Carlo simulations employing photonic random walkers
that diffuse and get randomly scattered in the active medium.
The walkers interact not only with the population of atoms in
the excited state, yielding spontaneous-emission events, but
also among themselves, in a mean-field-type approach based
on the Langevin equation that drives the stochastic dynamics
of RL modes.

In particular, we have obtained the proper profile of the
distribution P(q) of the Parisi overlap parameter in the RSB
glassy phase, with two pronounced side maxima at q = ±1
above the RL threshold. Noticeably, when the interactions
between photonic walkers are not taken into account, a
replica-symmetric profile with a single maximum of P(q) at
q = 0 is found for any excitation energy.

We have also concomitantly studied the Gaussian and Lévy
statistical emission regimes of the RL system. Our findings
are consistent as well with the analysis of the statistical cor-
relations of intensity fluctuations in distinct modes of the
same spectrum, through the measure of a suitable Pearson
correlation coefficient.

We hope our work can stimulate further experimental,
theoretical, and numerical investigations of RLs and, more
generally, of photonic systems with some type of inherent
randomness.
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