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Knots and links of polarization singularity lines of light under tight
focusing with a parabolic mirror
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We study topological variations of polarization singularity lines in the electric field of electromagnetic
radiation reflected from a parabolic mirror irradiated by elliptically polarized Gaussian and Laguerre-Gaussian
beams and two types of Poincaré beams. Torus knots and links of the singular lines of polarization appear as
a result of their tight focusing in the reflected radiation. Variation of the polarization ellipticity degree of the
Gaussian and Laguerre-Gaussian beams and the parameters defining the polarization distribution of the Poincaré
beams causes transformation of the singular lines located near the focal point of the mirror, which is accompanied
by a variety of decouplings and reconnections. The total linking number of the singular lines of different types
predominantly remains constant upon these reconnections.
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I. INTRODUCTION

Modern experimental techniques allow us to obtain laser
beams with a complex spatial structure of the polarization
state. In particular, by virtue of various methods, including
spatial spiral phase plates, conical lenses [1] and mirrors [2],
holographic masks [3,4], and Pancharatnam-Berry phase op-
tical elements [5,6], light beams with a nontrivial topology
of polarization patterns are created. The light field itself is
continuous; however, at some points its polarization state does
not allow the distribution of the vectors, characterizing the
polarization ellipse, to be continuously transformed into a
homogeneous one by some class of continuous mappings [7].
Spatial regions with such properties are known as polarization
singularities and have attracted considerable interest [8–10] in
modern optics. Much attention has been paid to the statistics
of the singularities in random fields [10–13] and intentional
construction [14–16] of the wave field spatial configurations
containing polarization singularities of a given type. However,
the description of the topological features of wave fields in
many classical problems of even linear optics remains largely
understudied.

In recent years three-dimensional distributions of light po-
larization ellipses in the problems of wave optics with no
predominant direction of light propagation have become of
particular interest. In this case a number of features can ap-
pear in the distribution of the polarization characteristics of
the radiation which are fundamentally impossible under the
paraxial approximation. Among these structures, which have
recently attracted special attention, are phase singularity lines,
which form nontrivial knots in space [17–19] and optical
Möbius strips [12,13,16,20,21] swept by the polarization el-
lipse axes as they are traced along a circle.
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In this paper we aim to describe the topology of polar-
ization singularity lines of the electric field of the radiation
reflected from a parabolic mirror irradiated by elliptically
polarized beams with different transverse structure. Particular
attention is paid to the knots and links of polarization singu-
larity lines, as well as to the processes of their decoupling and
reconnection occurring upon the change of state of polariza-
tion of the incident wave.

II. TOPOLOGY OF SINGULAR LINES IN
THE NONPARAXIAL FIELD

The electric-field vector E of an arbitrary monochromatic
electromagnetic wave at frequency ω at any point of space
given by a radius vector r changes with time t according to
the harmonic law

E (r, t ) = Re[E(r) exp(−iωt )], (1)

where E is the complex amplitude vector of the field. The
tip of the vector E traces an ellipse, the shape and spatial
orientation of which can be uniquely specified by four pa-
rameters: the intensity I = |E|2; the degree of ellipticity M =
|E × E∗|/I , which characterizes the proximity of the ellipse
to a circle and takes values from 0 for the case of linear
polarization to 1 for a strictly circular polarization; the unit
vector normal to the ellipse plane n = Im{E∗ × E}/I; and a
bidirectional (defined up to a sign change) vector of its major
axis ←→a = ± Re{E∗√(E · E)/|E · E|}.

In general, in a monochromatic fully polarized electromag-
netic field, there may be points of polarization singularity at
which some of the above characteristics cannot be unambigu-
ously determined. There are two main classes of polarization
singularities: C points, where the radiation is circularly po-
larized (where M = 1 and it is impossible to determine the
direction of the major axis ←→a ), and L points, where the
radiation is linearly polarized (where M = 0 and thus it is
impossible to determine the direction of the vector n normal to
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the plane of the ellipse). Points of both classes have codimen-
sion 2 [22], i.e., their existence is determined by two scalar
real independent equations. Circular polarization singularities
arise where the real and imaginary parts of the complex vector
E are equal in absolute value and orthogonal, and linear polar-
ization singularities arise where Re E and Im E have the same
or opposite orientation, which has two degrees of freedom in
the three-dimensional space. Generically, singularity points
in three-dimensional space form structurally stable, isolated
nonintersecting curves (3 − 2 = 1 dimension), called C lines
and L lines for circular and linear cases, respectively. They
turn out to be either closed or infinite, i.e., continuing to
the boundaries of the investigated area of the electromagnetic
field in practice. Near the C (L) lines, the vector ←→a (n) has
various orientations, forming topologically nontrivial patterns
that can be characterized by the isotropy parameters ϒC and
ϒL, respectively, taking values from −1 to 1. A detailed de-
scription of the relationship between ϒC,L values and pattern
types can be found in [23]. The isotropy parameters coincide
in sign with the topological index at every point of the singular
lines, but they change continuously along the lines while the
topological indices are discrete.

In this paper we describe knots formed by the singularity
lines of linear and circular polarization of the electric field in
three-dimensional space. Below we will refer to as a knot any
simple (having no self-intersections or branches) closed curve
in three-dimensional space. A knot can be thought of as a thin
elastic thread with its ends closed. Two knots are considered
equivalent if one of them can be deformed into the other using
a homotopy, i.e., a continuous deformation of the thread from
one configuration to another with no intermediary intersec-
tions or cuts. A knot is considered trivial if it is equivalent to
a circle [24].

Two or more nonintersecting knots form a link. Two links
are considered equivalent if they can be mapped onto each
other with a homotopy. If a link is equivalent to a countable
set of nonintersecting trivial knots (circles) lying in the same
plane, it is also called trivial. Two knots are called linked if
the link formed by them is nontrivial. Mutual entanglement
of a pair of knots is characterized by their linking num-
ber. For the case of curves in space, one of its equivalent
definitions can be given as follows. First, it is necessary to
assign to each of two knots a bypass direction and project
them onto an arbitrarily chosen plane such that it contains
at most double isolated points of these projections (intersec-
tions and self-intersections). Indices +1 are assigned to a
double point if the contour passing above (in the sense of
the chosen projection) intersects the contour passing below
from left to right and −1 if the upper contour intersects the
lower one from right to left. To the self-intersection points
of the projections indices 0 are assigned. The linking number
of the contours is half the sum of all the above indices and
always takes integer values. It is noteworthy that the value
of the linking number does not depend on the choice of
the plane of the projection under the above conditions, and
the choice of bypass directions affects only the sign of the
linking number.

In the general case it is impossible to choose physically
interconnected bypass directions for various singular lines;
therefore, in this paper we will consider only the absolute

FIG. 1. Examples of the linking number 2 computation of (a) two
trivial knots, (b) a trefoil knot, (c) a Hopf link, and (d) Solomon’s
seal [different realizations in (a) and (d)] and (e) a diagram of the
reconnection process.

values of the linking number of such lines. This will affect
the calculation of the sum of linking numbers of all the
knots in some cases. The linking number is an invariant of
a link, that is, it is always the same for equivalent links,
but links with the same linking number are not necessar-
ily equivalent. In particular, even knots with zero linking
number can be linked. Figure 1(a) shows an example of
the linking number (equal to 2) computation for two trivial
knots.

Below, the complete set of polarization singularity lines
will be referred to as the topological skeleton of the electric
field of an electromagnetic wave. Variations of the parameters
of the incident radiation, i.e., the medium, optical elements,
etc., lead to the movement and deformation of the lines form-
ing it. Possible points of intersection (or self-intersection) of
singular lines of the same class have codimension 4 [11] and
do not arise in the generic case. However, they can occur
in isolation at particular values of a single varied parame-
ter. In this regard, geometric features of the singular lines,
caused by the knotting and linking of lines of the same
class, are fundamentally removable. When a parameter of the
problem varies, the lines can pass through themselves and
reconnect. At the same time, an intersection of a C and an
L line is possible only at the point of zero intensity (I = 0),
since it requires simultaneous collinearity and orthogonality
of the real and imaginary parts of the vector E. Points of
zero-field intensity have codimension 6 and therefore can be
achieved only with simultaneous variation of at least three
independent parameters of the problem. Therefore, in most
problems with one or even two varied parameters, linking of
C lines and L lines with each other remains topologically
stable and constitutes a very robust peculiarity of the field
structure [11].

All knots encountered in this paper belong to the torus class
[25]. In topology an (m; n)-torus knot is a knot that can be
completely drawn on a torus. The first of the two coprime
integers m and n corresponds to the number of revolutions
that the knot makes around the axis of symmetry of the
torus and the second (n) corresponds to the number of revolu-
tions around its circular axis. If m and n are not coprime, then
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instead of a knot an (m; n)-torus link is formed with G(m; n)
components and linking number [26]

l = m

2

(
n − n

G(m; n)

)
(2)

between any two of them. Here G stands for the greatest
common divisor. The most important special cases of torus
knots and links are the trefoil knot, which can be represented
in the forms of (2; 3)- or (3; 2)-torus knots (topologically
equivalent, but with different symmetry) [25] [Fig. 1(b)]; the
Hopf link, which is a (2; 2)-torus link with linking number
1 [Fig. 1(c)]; and the (4; 2)-torus link with linking number
2, known as Solomon’s seal [Fig. 1(d)]. The link shown in
Fig. 1(a) is also equivalent to Solomon’s seal, although it looks
more complicated.

When a control parameter is changed, two electric-field
polarization singularity lines may get closer and then inter-
sect; as a result, their reconnection typically occurs. The latter
means that at the point of intersection, these lines break up
[red and blue lines in Fig. 1(e)] and the broken parts imme-
diately form another combination of connected components
[horizontally oriented two-colored lines in Fig. 1(e)].

It was shown in [23,27] that polarization singularities of
both classes can arise as a result of plane monochromatic wave
scattering on a subwavelength particle. Two C and one or two
L lines linked together with linking number 1 were found in
the electric field of radiation reflected from a metal spheroidal
particle [23]. In full agreement with the theory developed in
[22], such a structure was stable in a wide range of parameters
of the incident radiation. At the same time, the topological
skeleton of the field, devoid of nontrivial links, in a similar
problem of scattering of the same kind of wave by a dielectric
particle [27] did not show this level of robustness: L lines
in that case were observed only when the polarization of the
incident wave was close to linear.

III. PROBLEM STATEMENT

Let an inhomogeneously polarized laser beam propagate
along the z axis of the Cartesian coordinate system xyz from
the region z > 0 and reflect from a concave parabolic mirror
with focal and central points on the z axis at coordinates
z = 0 and z = − f , respectively. The electric-field-strength
vector of the reflected beam in the vicinity of the geomet-
ric focus is calculated using the exact integral solution of
Maxwell’s equations, obtained in a classical paper [28] for the
case of sharp focusing of the incident beam with a parabolic
mirror. We have tested the calculation method of the inte-
grals presented in [29,30] by direct comparison of the results
of the numerical solution of nonparaxial light propagation
equations with exact solutions of Maxwell’s equations in a
number of problems of linear optics. In the present work we
are interested in the electric-field polarization structure in a
small neighborhood of the geometric focus. The use of the
integral solution [28] of the problem of tight axial focusing
of an incident beam by a parabolic mirror in this case leads
to lower computational costs compared to the numerical solu-
tion of the propagation equations. Numerical simulation has
been carried out under conditions reasonably corresponding
to the experiment [20]: The laser beam had radius w = 1 mm,

wavelength λ = 530 nm, and focal length f = 1.128 mm and
the numerical aperture determined from the e−2 intensity level
was NA = 0.9. Integration of [28] was carried out numerically
over the mirror surface from −5 f to 5 f with a resolution
of �x = �y = f /10. The computational domain was a cube
with a side of 4 µm and the center at the focal point. The
resolution along each of the axes of the Cartesian coordinate
system was 10 nm.

In the present paper we analyze the features of an ellipti-
cally polarized Gaussian beam and Laguerre-Gaussian beams,
as well as two varieties of the Poincaré beam, focused by the
parabolic mirror described above. The transverse component
E⊥ of the complex amplitude E = E⊥ + E‖ of the electric
field of the Gaussian beam satisfying the equation divE = 0
in the plane z = − f is given by

E⊥(x, y, z = − f ) = E0e0 exp

(
−x2 + y2

2w2

)
, (3)

where e is a unit complex vector

e0 = (1 − M0)1/2e+ + (1 + M0)1/2e−. (4)

In (3) and (4) e± = (ex ± iey)/
√

2, unit vectors ex,y are di-
rected along the x and y axes, and E0 is a real constant. In
the paraxial approximation (the longitudinal component E‖ ≈
0), the parameter M0 coincides with the degree of ellipticity
M(x, y). The mirror has axial symmetry and without loss of
generality we assume that the x axis is parallel to the major
axis of the incident radiation polarization ellipse. When the
beam is tightly focused, the longitudinal component E‖ of
the complex amplitude E is no longer small and makes a
significant contribution to the distribution of the electric-field
strength in space [31–33].

The transverse component of the complex amplitude of the
Laguerre-Gaussian beam, the intensity of which at the origin
is zero and the phase in the immediate vicinity of this point
takes all possible values, is given by

E⊥(x, y, z = − f ) = E0e0
x ± iy

w
exp

(
−x2 + y2

2w2

)
. (5)

The beams defined by the opposite signs here are mirror
reflections of each other with respect to the 0xz plane.

In the waist plane, the transverse component of the com-
plex amplitude of the full Poincaré beam [34] has a more
complex form

E⊥(x, y,− f ) = E0 exp

(
−x2 + y2

2w2

)

×
[
μe+ +

(
p(x + iy) + q(x − iy)

w

)
e−

]
.

(6)

Here E0 is a real constant and μ is a positive parameter that
determines the relative contribution of the circularly polar-
ized Gaussian component to the total electric field equal to
cot2 �/2, using the terminology in [20]. The component of the
electric field with opposite circular polarization [the second
term in square brackets in (6)] has a phase dislocation [8]. Its
type depends on the complex numbers p and q, which can
be chosen arbitrarily up to a confinement |p|2 + |q|2 = 1 and
define relative contributions of the Laguerre-Gaussian modes
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FIG. 2. Distributions of the intensities of the total electric field
and its three Cartesian components, obtained in the model of a
Poincaré beam with μ = 7, p = 0, and q = 1.

with opposite helicities of the wavefront. In particular, for
the cases of |p| = 1 or |q| = 1, which are discussed further,
the phase dislocation is purely helical; the p = 1 and q = 0
case here corresponds to l2 = 1 and the p = 0 and q = 1
case to l2 = −1 in [20]. In the paraxial approximation in the
z = − f plane, polarization ellipses of the electric field have
all possible aspect ratios and orientations relative to the x axis.
At the point (0, 0,− f ) the Poincaré beam has purely circular
polarization. The isotropy parameter of this singular point is
uniquely determined by the values of p and q.

Tight focusing of the star-type Poincaré beam [p = 0 and
q = 1 in Eq. (6)] was studied in [20]. In Fig. 2 the results of
our simulation for the total and componentwise field inten-
sities are shown and can be seen to be in good agreement
with the results obtained in that paper. In that case the z
axis is not only the electric-field polarization singularity line,
points of which have the topological index −1/2, but also a
third-order symmetry axis of the distribution of polarization
ellipses under the paraxial approximation. It was shown that
around that axis a nontrivial Möbius strip with three half twists
is swept out by the ←→a vector as its origin moves along a circle
of small radius. Generally, such ribbons are unstable [35] and
break up into three fundamental strips with twist coefficients
1/2. However, a deep analysis of the topological skeleton of
the field was not performed in [20] even though it is closely
related to the properties of optical Möbius strips.

IV. DISCUSSION OF THE RESULTS

A. Gaussian beam

During the sharp focusing of a Gaussian beam with uni-
form elliptical polarization (3), only the variation of its initial
degree of ellipticity M0 qualitatively changes the spatial pat-
tern of polarization singularity lines near the focal point of the
mirror. When the beam polarization is close to linear, most

FIG. 3. Topological skeleton of the Gaussian beam tightly fo-
cused by a parabolic mirror for (a) M0 = 0.05 and (b) M0 = 0.9. The
colors of the lines correspond to the values of the isotropy parameters
ϒC and ϒL. The round insets depict principal link diagrams with each
line in its unique color.

of these lines are located near the z = 0 plane. The charac-
teristic topological skeleton of the electric field in this case
(M0 = 0.05) is shown in Fig. 3(a). The C and L lines depicted
in the figure can be considered as circles slightly deformed
in various directions, the centers of which lie close enough to
each other near the z axis. The color of the lines corresponds
to the value of the isotropy parameters ϒC and ϒL of the
singular points and small thickenings show the points in space
at which the sign of ϒC and ϒL (and thus the topological type)
changes. Near the color legend, the qualitative distribution of
polarization ellipses (for ϒC) and their normal vectors (for
ϒL) of the light field near the singularity point is shown for
the marginal values of the isotropy parameters.
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The round inset at the top of Fig. 3(a) shows the funda-
mental geometry of links of polarization singularity lines in
three-dimensional space using a link diagram, i.e., a graphic
representation of knots and links in projection onto a plane
convenient for their representation, which completely pre-
serves the topology of C and L lines with slight simplifications
in their geometry, allowing us to present it most clearly. In or-
der to increase legibility, each of the lines on the link diagram
is shown in a characteristic color (except for L3–L6, shown
in the same color due to their instability and similarity), and
the C lines are thicker than the L lines. It can be seen that the
linking number of lines C1 and C2 equals 2 while their shape
reflects that of a canonical (2; 2)-torus link. Each of these is
also linked with the number 1 to the L1 line.

Numerical analysis of the change in the spatial pattern
of the electric-field polarization singularity lines with the in-
crease of M0 allows us to assert that the points of the lines
of the same class in the region of their reconnection have
opposite signs of the isotropy parameter for all events of this
type observed in the present paper. On the contrary, for almost
linear polarization of the incident radiation, the values of ϒC

of the points of the C1 and C2 lines in the immediate vicinity
of each other are both positive and nearly equal. Therefore, the
linking of the polarization singularity lines C1 and C2 is likely
to be stable. The line L1 passing between them in a significant
part of the link area prevents the reconnections of the above
lines with even greater robustness; thus these two lines do not
intersect for any value of M0.

Lines C3 and L2 in Fig. 3(a) form a Hopf link (linking
number 1). It is stable, since it is formed by the two polar-
ization singularity lines of different classes. In this case, the
C3 line is divided into four fragments with alternating signs
of the isotropy parameter ϒC. Near the focal plane there are
closed curves L3, L4, L5, and L6, not linked to each other or
any other lines. As M0 increases, they shrink and completely
disappear at M0 = 0.07, which can be attributed to the trivi-
ality of their links since a similar behavior of nonengaged L
lines was described in [36] for a scattering problem.

The increase in M0 also leads to smooth stretching of the
circular polarization singularity lines of the reflected radiation
along the z axis. Sharp flexures on the L lines characteristic
for Fig. 3(a) are smoothed out, and the parameters ϒC at
the points of the C lines become positive everywhere. At
M0 = 0.87 the lines C1, C2, and C3 intersect and reconnect.
As a result, the outer and inner links combine into a single
configuration with the geometry of a (6; 2)-torus link. This
is clearly seen in Fig. 3(b), constructed for M0 = 0.9. The
linking number of the lines C1 and C2 in this case equals
3. Each of them is also separately linked to the lines L1
and L2. In this case, the linking number of each of the four
possible combinations of these lines equals 1. The diagram
of the described link of the polarization singularity lines is
shown in the round inset in Fig. 3(b). Numerical studies allow
us to conclude that as M0 increases, the linking numbers of
polarization singularity lines of one class (C lines in the case
of M0 = 0.9) change, while the total linking number of C lines
with L lines remains constant.

With a further increase in M0, the described configuration
is destroyed by a cascade of reconnections of C lines with
polarization singularity lines lying respectively far from the

mirror focus. As a result, two twisted C line spirals elongated
along the z axis are formed, which go beyond the computa-
tional domain and apparently stretch to infinity. In this case,
the main L lines, the topology of which remains practically
the same for any possible M0, turn out to be beaded on these
spirals. The linking number may not be strictly calculated for
the infinite lines, but if naturally reinterpreted as the winding
number of the closed line around the elongated one for that
case, it still remains constant between the lines of the opposite
class.

B. Laguerre-Gaussian beam

As in the preceding section, for an incident Laguerre-
Gaussian beam (5), the only parameter qualitatively changing
the spatial distribution of the polarization singularity lines of
the reflected radiation near the focus of the parabolic mirror is
the initial degree of ellipticity M0. For M0 � 0.3 the structure
of C and L lines in the central region of the Laguerre-Gaussian
beam is visually very complex: L1 [Fig. 4(a)] and other L
lines farther from the z axis not depicted in the figure meander
and protrude far beyond the focal region. As M0 increases, the
topological pattern of polarization singularity lines remains
unchanged [Figs. 4(b)–4(d)], but the sizes and curvatures of
their individual parts change. Closed singular lines (C1, C4,
C5, and also L1 when M0 is larger than approximately 0.5) are
located inside the toric region around the z axis. They form
a part of the topological skeleton of the electric field of the
reflected wave, visually similar to the structure of C and L
lines in the case of the incident Gaussian beam (Fig. 3). As
before, in these figures the color of the lines corresponds to
the values of the isotropy parameters ϒC and ϒL, while the L
lines are thinner than the C lines.

An important feature of the topological skeleton of the
electric field of the reflected wave with the (5) incident beam
structure is the presence of polarization singularity lines L2,
C2, and C3 extended along the z axis within the focal region
[Figs. 4(a)–4(d)], which are depicted as dots on the link dia-
grams in Figs. 4(e)–4(g). These lines are products of decay
of the unstable line of zero intensity of the light field of
the incident beam due to the symmetry breaking when the
paraxial approximation is no longer valid. The number of
these lines is restricted by the requirement of preservation
of the total topological index of the incident beam vortex.
The isotropy parameter at the points of the C2 and C3 lines
is predominantly positive for M0 > 0.3 and predominantly
negative for M0 < 0.3. As before, the color of the singular
lines in the full images depicts the isotropy parameters and in
the link diagrams is unique for each line.

The polarization singularity lines form links that include
three closed C lines, C1, C4, and C5, the points of which have
predominantly positive isotropy parameter, and one L1 line
with predominantly negative values of the isotropy parameter
at its points. For all values of M0, the total linking number of
all closed C lines with the L1 line equals 2. For M0 < 0.3,
this is realized due to the linking of C1 and L1 with linking
number 2 and the absence of linking between other closed
polarization singularity lines. With ellipticity within the range
0.3 < M0 < 0.8, this value is achieved by two links with
linking numbers 1 between both C lines and the L1 line in
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FIG. 4. (a)–(d) Polarization singularity line structures of the reflected radiation and (e)–(g) their link diagrams in the tightly focused
Laguerre-Gaussian beam for (a) and (e) M0 = 0.25, (b) and (f) M0 = 0.82, (c) and (f) M0 = 0.83, and (d) and (g) M0 = 0.9.

the absence of a link between lines L1 and C4. Lines C1 and
C5 are also linked to each other and each of the infinite lines
L2, C2, and C3 is linked to each of the remaining lines in the
generalized sense mentioned above. The linking number of all
these pairs is 1.

The most noticeable change in the topological skeleton
of the electric field of the reflected wave occurs when the
polarization of the incident radiation is close to circular. At
M0 = 0.82 [Fig. 4(f)] it still resembles the electric-field skele-
ton typical for M ≈ 0.5, but there are sharply bent regions
on the C1 and C5 lines, the points of which have a negative
isotropy parameter. These areas are located close to the C4
line [Fig. 4(b)]. A slight increase in M0 leads to reconnection
of the curves in this region [Fig. 4(c)], which results in the
three above-mentioned closed C lines being combined into
one, denoted by C1. The latter has the topology of a trefoil
knot [Fig. 4(g)] and its geometry is a (3; 2)-torus knot repre-
sentation. Regarding this, the linking number of the knot with
the lines C2, C3, and L2 turns out to be equal to 3, i.e., the
total linking number of polarization singularity lines stretched
along the z axis in the focal region with a set of closed lines
that form a knot C1 as a result of reconnection is preserved.

Its linking number with the line L1 is equal to 2 and thus is
also preserved. The only linking number undergoing change
in some sense is the one between different closed C lines. It
equals 0 for small values of M0 and 1 for the intermediate
ones and is undefined for the large ones as there exists only
one such line. A further increase of M0 leads to smoothing of
this knot [Fig. 4(d)] and growth of its size. In this case, the
line L1 turns into a slightly deformed circle and the lines C2,
C3, and L2 practically coincide [Figs. 4(d) and 4(g)].

C. Poincaré beam of the star topological type

Proceeding to the description of the electric-field topolog-
ical skeleton of the reflected wave of an incident Poincaré
beam of the star topological type [p = 0 and q = 1 in Eq. (6)],
we will limit ourselves to the focal point vicinity. In this
case we will use the arbitrary amplitude μ of the Gaussian
component as a variable parameter. A polarization singularity
line C2 exists exactly on its axis for any value of μ and three
L lines L2, L3, and L4 can be found close to it for μ < 3.
On the link diagrams in Figs. 5 and 6 they are depicted as
dots. At the points of all four lines the isotropy parameter is
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FIG. 5. Central region of the topological skeleton of the light
field of a star-type Poincaré beam tightly focused by a parabolic
mirror with (a) μ = 1, (b) μ = 1.3, and (c) μ = 1.8. Link diagrams
are shown in the round insets with each line depicted in a unique
color and L lines thinner than the C lines.

predominantly negative. At about 1 µm from the focal plane,
the polarization singularity lines twist and acquire a positive
isotropy parameter; the larger μ is, the farther they slant from
the z axis and the more they deform.

For μ 	 1, there are also three C lines elongated along
the z axis near the lines L2, L3, and L4. As μ increases, they
meander, forming pairs of coils oriented towards each other
and having opposite signs of the isotropy parameter at their
points. As a result, with μ ≈ 0.87, the coils separated by the
focal plane reconnect and form a polarization singularity line
C1, shown in Fig. 5(a) for μ = 1. This line has the topology
of a (4; 3)-torus knot, which is additionally linked with linking
number 3 to the closed line L1 and with linking number 4 to
each of the polarization singularity lines located along the z
axis. The latter are also linked to the line L1 (with linking
number 1) shaped as a slightly deformed circle.

A further increase of μ is accompanied by a significant
complication of the structure of the topological skeleton of
the electric field of the reflected wave. At μ ≈ 1.2, one more
reconnection of the polarization singularity lines occurs; as a
result, the C1 line splits into three C lines pairwise linked with
linking number 1 [in Fig. 5(b) constructed for μ = 1.3, they
are denoted by C1, C3, and C4] and the line C5, which is not
linked to any closed line shown in Fig. 5(b). Each of the C1,
C3, C4, and C5 lines is also linked to each of the polarization
singularity lines C2, L2, L3, and L4 extended along the z axis
in the focal region with linking number 1.

With μ ≈ 1.4, a new reconnection of the lines shown in
Fig. 5(b) takes place. A trefoil knot [in its most famous imple-
mentation of the (2; 3)-torus knot] is formed, supplemented
by two trivial C lines (C3 and C5). In Fig. 5(c), plotted with
μ = 1.8, it is denoted by C1. The knot is linked to the L1
line with linking number 3 and to the infinite lines L2, L3,
L4, and C2 with linking number 2. The trivial closed lines L1,
C3, and C5 are linked to each of the infinite lines with linking
number 1.

We emphasize that in the course of all the reconnections
described above, the total linking number between polar-
ization singularity lines of different classes is preserved. In
addition, fundamental changes in the topology of polarization
singularity lines occur with a minimal change in their geom-
etry because after passing the intersection point, caused by
the increase of μ, the C lines move apart by a very small
distance compared to the total line length. Before the polariza-
tion singularity lines are reconnected, the sign of the isotropy
parameter of one of the lines participating in it changes (from
positive to negative) near the region of space where the recon-
nection will occur.

As μ is increased even further (Fig. 6), all C lines, except
for C2, without changing their topology, contract towards
the focal plane, and disjoint L lines become more elongated
along the z axis in the focal region and remote from it in the
vicinity of the mirror focus. Farther from the focus, sections of
these L lines bend towards the focal plane, and their isotropy
parameter changes from negative to positive in these sections,
which are shown in purple in Fig. 6(a) (μ = 3). At the same
time, ridges almost symmetrical with respect to the focal plane
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FIG. 6. Central region of the topological skeleton of the light field of a star-type Poincaré beam tightly focused by a parabolic mirror for
(a) μ = 3, (b) μ = 3.6, and (c) μ = 5 and principal geometry of the optical strips build along the contours with (d) odd or (e) even linking
number with the C-line system. Disjoint L lines are thinner for the sake of legibility. Link diagrams are shown in the round insets.

appear on the closed line L1. As a result, as μ increases, the
L lines change in a manner similar to that seen in the C lines
dynamics in Fig. 5, and with μ ≈ 3.3 they reconnect, forming
the L1 trefoil knot shown in Fig. 6(b) plotted with μ = 3.6. It
turns out to be linked separately with linking number 3 to the
lines C3 and C5, but does not form a link with the knot C1
[see the inset to Fig. 6(b)].

The reconnection at μ ≈ 3.3 is the only reconnection we
have found that changes the total linking number between
lines of different classes. The knot C1, which exists for μ <

3.3, is linked to each of the lines L2, L3, and L4 stretched

along the z axis in the focal region with linking number 2 and
to the closed line L1 with linking number 3 [Fig. 5(a)]. In this
case, the total linking number is S1 = 3 × 2 + 1 × 3 = 9. For
μ > 3.3, the knot C1 is linked with linking number 1 to each
of the lines L2, L3, and L4 passing through the lugs formed
by it (and not its central region) and is not linked to the line
L1 [Fig. 5(b)]. As a result, the total linking number becomes
lower: S2 = 3 × 1 + 1 × 0 = 3.

Such a change must be attributed to the ambiguity in the
determination of the bypass directions of the polarization sin-
gularity lines and hence the signs of their linking numbers.
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Therefore, during the reconnection of two lines of the same
class, the linking number can change by a multiple of 2 if
the lines participating in it behave as they are oriented oppo-
sitely. A star-type Poincaré beam incident on a mirror has a
third-order symmetry axis in the distribution of its polariza-
tion ellipses. This symmetry requires three lines to simultane-
ously take part in the reconnection, which leads to a change in
the linking number between C1 and L lines under such condi-
tions by the minimum value of 6 admissible both by symmetry
and parity. However, the linking number of L lines with the
lines C3 and C5 having the trivial topology is equal to 3 and
does not change in this case. If, as a result of the reconnection,
the linking number of these lines also decreases by 6, it would
become equal to −3. In this case, the new link would turn out
to be indistinguishable from the link with number 3 due to the
sign indefiniteness mentioned above. The latter can serve as
an explanation of the change in the total linking number for
one set of lines and its preservation for another one, despite
the fact that both of these processes are caused by a change in
the geometry of the same polarization singularity lines.

With a relatively large contribution of the Gaussian com-
ponent to the total strength of the electric field of the beam
incident on the mirror (μ ≈ 3.7), a new reconnection occurs,
resulting in the L knot, shown in Fig. 6(b) splitting into two
closed trivial lines L1 and L3 [Fig. 6(c)]. The first of them is
individually linked to the lines C3 and C4 with linking number
3 and to the line C2 with linking number 1. The second one
(L3) is linked with linking number 3 to the line C1 and a larger
trivially closed C line C5, which was not previously part of
the same link. The described link, like most of the ones we
encountered in this paper, occurs with the conservation of the
total linking number of C and L lines, despite the change in
their number.

Topologically and symmetrically, the above-described tre-
foil knots of the electric-field polarization singularity lines
completely mirror the edge of an unstable optical Möbius
strip with three half twists, swept by a bidirectional vector←→a of the major axis of the light polarization ellipse, while
it is traced along a circle around the focus in the focal plane.
For this vector to sweep the Möbius strip, the tracing contour
has to be linked with the C line subsystem of the electric-
field topological skeleton with an odd linking number. This
condition is satisfied not only for a star-type Poincaré beam
in a wide range of μ values, but also for a Laguerre-Gaussian
beam and a lemon-type Poincaré beam considered below, but
only for a star-type Poincaré beam does such a strip have a
knotted edge.

In the focal region of a parabolic mirror, many different
twisted and nontwisted strips (ribbons) can be built. The
ribbons built near its focus and enclosing only the line C2
coinciding with the z axis have three half twists. Two strips
satisfying this condition are shown as an example in Fig. 6(d),
also showing the C and L lines lying around them. The color
of the latter, as in the previous figures, corresponds to the
value of the isotropy parameter at the points of these lines.
The ribbons constructed along the contour passing through
the knot and having an even linking number l with the polar-
ization singularity lines turn out not to be twisted. One such
regular ribbon for l = 4 is shown in Fig. 6(e).

D. Poincaré beam of the lemon topological type

In the waist plane, the polarization ellipses distribution of
the electric field of a lemon-type Poincaré beam incident on a
parabolic mirror [p = 1 and q = 0 in the expression (6)] does
not have axial symmetry. A polarization singularity with the
index +1/2 exists at the point (0, 0,− f ) of that field. These
factors combined lead to a very complex singular structure of
the field in the nonparaxial case.

For μ 	 1 in Eq. (6), the topological skeleton of the elec-
tric field of the reflected radiation contains a C line extended
along the z axis near the focus, next to which there is also an
L line folded three times and oriented along the z axis. At a
distance from the latter there are also three helical C lines.
Finally, for such values of μ, two closed L lines surround
the z axis, forming slightly deformed circles. Due to the lack
of symmetry in the distribution of polarization ellipses in the
incident beam, the isotropy parameters of the C and L lines
vary over a wide range while they are traced along the lines.

Starting from μ ≈ 0.1, as this parameter grows, the
electric-field skeleton described above becomes significantly
more complicated, accompanied by a sequence of numer-
ous reconnections and decouplings of polarization singularity
lines. Through these, for μ = 1.5, links with linking number
1 are formed between two closed lines of different classes (C
and L lines) from a previously existing link between a closed
line and an infinite one. Further, the C line of the previously
formed link is additionally linked to one more closed C line.
This happens for μ = 2, and for μ = 3 these two C lines
decouple, but one of them remains linked to the circular L
line, confirming the greater topological stability of the links
of the different class lines. Another closed C line becomes
linked to all the other closed singular lines of the topological
skeleton with linking number 1.

A detailed description of all the changes in the pattern of
numerous intertwining lines of the electric-field polarization
singularity that occur with the increase of μ is hardly possible.
Therefore, we confine ourselves to the formulation of the main
regularities of the transformation of the topological skeleton
of the electric field of the reflected radiation that occurs in this
case. First, in those ranges of μ values in which the number of
closed polarization singularity lines remains constant, values
of the linking coefficients between any two lines of different
classes (C and L lines) do not change. Second, if in the
course of the reconnections the polarization singularity lines
break, then the total linking number of each of the C(L) lines
that remained closed with the entire system of L(C) lines is
preserved. Disjoint lines must be taken into account during the
linking number calculation if they pierce a surface, bounded
with a closed one.

This rule is illustrated in Figs. 7(a) and 7(b) plotted, respec-
tively, before (μ = 3.5) and after (μ = 4) the reconnection of
the electric-field polarization singularity lines, which occurs
at μ ≈ 3.7. During the latter, the ring line L1 in Fig. 7(a)
opens, connecting with axial lines L2, L3, and L4. The linking
numbers of pairs of different class polarization singularity
lines of the electric field before and after this reconnection are
given in Table I. These numbers are written at the intersections
of the rows denoted according to the corresponding C line
and the columns denoted according to the corresponding L

063506-9



N. YU. KUZNETSOV et al. PHYSICAL REVIEW A 107, 063506 (2023)

FIG. 7. Central region of the topological skeleton of the light
field of a lemon-type Poincaré beam tightly focused by a parabolic
mirror with (a) μ = 3.5 and (b) μ = 4. Link diagrams are shown in
the round insets with each line depicted in a unique color and L lines
thinner than the C lines.

line (L1, L2, L3, and L4 for μ = 3.5) and L5, L6, and L7
for μ = 4. The “sum” columns list the total linking numbers
of a specific C line to the whole set of L lines before and

TABLE I. Linking numbers between different classes of singular
lines of the electric field of the reflected radiation of a lemon-type
Poincaré beam for μ = 3.5 and 4.

μ = 3.5 μ = 4

Lines L1 L2 L3 L4 Sum Lines L5 L6 L7 Sum

C1 1 1 1 1 4 C1 2 1 1 4
C2 1 1 1 1 4 C2 2 0 2 4
C3 0 1 1 1 3 C3 2 0 1 3

after the reconnection. It can be seen that not only is the total
linking number of all C lines with all L lines preserved (equal
to 11 in this case), but also the total linking number of each
of the C lines with the whole L line system is preserved since,
while the L lines reconnect in this process, the C lines remain
topologically intact, though the specific set of the summands
in each row changes.

As in the case of a star Poincaré beam, when a Poincaré
beam of the lemon type is reflected from the parabolic mirror,
one can trace Möbius strips swept by the bidirectional vec-
tor ←→a near the polarization singularity line while its origin
moves along circles of small radius. In this case, they have a
single half twist and hence an unknotted edge.

V. CONCLUSION

We have described the topology of polarization singularity
lines of the electric field of electromagnetic radiation arising
during reflection from a parabolic mirror of elliptically polar-
ized Gaussian and Laguerre-Gaussian beams, as well as two
varieties of the Poincaré beam. As a result of their tight fo-
cusing (NA = 0.9), three-dimensional topologically nontrivial
structures appear in the reflected radiation: knots and links of
polarization singularity lines.

If in the waist plane the distribution of polarization ellipses
of the transverse component of the electric field of the beam
incident on the mirror has an axis of symmetry, then for a
wide range of parameters characterizing its polarization, in the
reflected radiation near the focus of the mirror there always
exists at least one closed L line with the topology of a simple
ring, near which the C lines form an (m; n)-torus knot or link,
where the numbers m and n are determined by the parameters
of the incident beam. This knot (link) is always m-fold linked
to the propagation axis of the beams and n-fold linked to
the above L line, at which points the electric-field isotropy
parameter is always negative.

When the ellipticity degree of the Gaussian and Laguerre-
Gaussian beams and the relative amplitudes of circularly
polarized components of the Poincaré beam are varied, the
topological skeleton of the electric field near the focus is
transformed and undergoes a number of decouplings and re-
connections of numerous C and L lines. As a rule, near the
point in space where a reconnection of polarization singular-
ity lines is expected, they are warped significantly and the
isotropy parameter of the singular points, located near the
region of further reconnection, takes opposite signs for the
two lines (line segments) participating in it. This may limit
the possible reconnections of polarization singularity lines in
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fields of high symmetry. For almost all polarization states
of the beam incident on the mirror, torus knots are formed
only by the C lines, the points of which have a predominantly
positive isotropy parameter. Also, the numbers m and n char-
acterizing the knot rarely exceed 3. However, for special states
of polarization of the Poincaré beam incident on the mirror
there exist both more complex knots of the C lines and the
knotted L lines (but not simultaneously).

In those ranges of values of the degree of ellipticity of the
Gaussian and Laguerre-Gaussian beams and parameters that
determine the polarization of the Poincaré beam, in which the
number of closed C and L lines in the radiation reflected by
the mirror does not change, the values of the linking numbers
between any polarization singularity lines of different class re-
main permanent. The reconnections between different classes
of electric-field polarization singularity lines occurring as a
result of changes in the distributions of polarization ellipses
in the waist plane of the beams incident on the mirror gener-
ally demonstrate the conservation of the total linking number
between the C and L lines in this process. Rare exceptions to
this rule, in which the total linking number changes by an even
number as a result of reconnection, is explained by the fact
that the linking number for nonoriented curves is determined
up to a sign. Also open lines must be taken into account when
the linking number is calculated as they were closed at the
infinity.

Near the singularity lines of the polarization of the reflected
radiation, a large number of optical ribbons may be traced as a

result of movement along closed curves of a vector specifying
the direction of the major axis of the electric-field polarization
ellipse. Among them, there are ribbons with noninteger values
of twists, including Möbius strips, and for the Poincaré beams
the topology and symmetry of the edge of these ribbons co-
incide with the topology and symmetry of the most extended
closed C line of the topological skeleton.

A remarkable property of the singular points of the electric-
field polarization constituting the topological skeleton is their
stability to perturbations. Being predicted on paper, they are
very likely to be observed in an experiment as their existence
is not subjected to the influence of electromagnetic noises,
small inaccuracies of measurement, and so forth. In Ref. [20]
optical Möbius strips were successfully observed on the same
scale as the key geometric features of the polarization knots
and links described in our study have to exist. Therefore, we
expect the same experimental techniques to be sufficiently
precise to verify the existence of the structures being de-
scribed in the volume of tightly focused radiation of a light
beam with specially designed polarization profile.
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