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Noncontact frictional force between surfaces by peristaltic permittivity modulation
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In this study, we reveal noncontact frictional forces between surfaces in the presence of peristaltic permittivity
modulation. Our setup comprises a conducting medium, an air gap, and a dielectric substrate on which we
have a space-time-modulated grating that emits electromagnetic radiation. The radiation receives energy and
momentum from the grating, which is eventually absorbed by the conducting medium or propagates away from
the grating on the dielectric side, resulting in electromagnetic power loss and lateral forces at the surfaces.
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I. INTRODUCTION

Periodic structures have been widely used to confine
electromagnetic fields [1–4]. The structure modulates the
electromagnetic density of states, as the crystal structure in
solid-state materials does the electron density of states and
the field can be spatially confined; thereby, strong field-matter
interaction is induced [5–8]. That is why such a system has
been applied to biological sensors [9,10] and optical devices
such as lasers [11–13] and detectors [14–16].

Due to the advances in finer-structure fabrication, it has
been more popular to design structures rather than chem-
ical compositions to control electromagnetic waves, where
the structured system can be treated as an effective medium
[17–20] and is called metamaterials. Appropriately designing
the structure enables negative refraction [21–25], perfect lens
[25–29], and wave cloaking [30–34].

Although the scalable fabrication of three-dimensional
fine structure is still under the development and a hard
task, particularly in the optical frequency range [35,36], the
two-dimensional version of metamaterials, also known as
metasurfaces, has been within the reach of experiments even
at the optical frequencies. The metasurfaces have been ap-
plied, e.g., to harnessing optical angular momenta [37–42]
and to realizing an ultrathin lens, which can focus light waves
without suffering from various types of abberations [43–45].

Recently, investigating time-varying media in addition to
the structured media, which involves earlier studies [46–51],
has drawn more and more interest. This is partly because of
their nontrivial topology [52–56], application to nonreciprocal
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light propagation [56–58], light compression and amplifi-
cation [59–62], the emission of radiation [63–66], and the
enhancements of free-electron and dipole radiations [67–69].

Most of these papers focused on the propagation and con-
finement of electromagnetic fields in time-varying, structures
media. In this work, we address the energy consumption and
electromagnetic forces associated with the radiation emission
in such a medium.

conducting

dielectric

vacuum

FIG. 1. Schematic image of the setup analyzed in this study. We
will consider electromagnetic forces F exerted between two surfaces
separated by a vacuum gap (ε3 = 1) with width d . On the lower
surface, we have a space-time modulated grating εsf performing
peristaltic motion with a peristaltic speed vph := �/g. The upper
medium is lossy, characterized by the permittivity of conducting ma-
terial (2). We assume that the lower medium is dielectric, ε2 = const,
and μ = 1 everywhere for simplicity. A dc voltage Ein is applied to
the lower medium. The temporal modulation operates in the GHz
frequency range.
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Our setup is composed of a lossy medium, a vacuum gap,
and a dielectric substrate on which a space-time modulated
grating is placed (see Fig. 1). The grating is modeled by the
effective surface permittivity,

εsf = ε1(1 + 2α cos q · x) = ε1[1 + 2α cos(gx − �t )], (1)

where ε1 is the effective surface permittivity in the absence
of modulation, α is the strength of the modulation, and the
spatial and temporal modulation frequencies are denoted by g
and �. In particular, we consider temporal modulation oper-
ating in the GHz frequency range below. Note that we have
introduced three-component quantities q := (g, 0, i�/c) and
x := (x, y, ict ), and c ≡ 1/

√
μ0ε0 is the speed of light. The

grating performs peristaltic motion with a peristaltic veloc-
ity vph := �/g. The lossy medium filling the upper region,
o4 = {z| d < z}, is modeled by the permittivity of conducting
material,

ε4 = 1 + i
κ/ε0

ω
, (2)

where κ is the conductivity. Note that, more generally, con-
ducting materials can be modeled by the Drude permittivity,
1 − ω2

p/(ω2 + iω�), where ωp and � are the plasma frequency
and the damping constant; however, we focus on the damp-
ing being significant ω � �, where the Drude permittivity is
reduced to Eq. (2), to efficiently capture the radiation emit-
ted from the grating and the associated forces as we will
see below. We have constant permittivities ε3 in the gap re-
gion, o3 = {z| 0 < z < d}, and ε2 in the lower region, o2 =
{z| z < 0}.

Our input electrostatic field is uniformly applied to the
lower dielectric medium. The space-time grating provides
not only momentum g but also energy � to the electro-
magnetic system. While conventional gratings, which supply
momentum, only redistribute electrostatic fields over space,
the space-time grating emits electromagnetic radiation in its
lower and upper sides if the field receives sufficient energy. If
the radiation emitted by the grating is absorbed by the con-
ducting medium or propagates away from the grating, there
will be power loss and associated forces at the surfaces, which
we are going to calculate in this work.

Our consideration is closely related to the noncontact fric-
tion problem. In general, noncontact friction can be viewed
as an interaction force due to their correlation mediated by a
field between two relatively moving bodies. There are various
examples: frictional forces mediated by (i) static electromag-
netic fields [70–78] and (ii) dynamical electromagnetic fields
[79–88]. In the second example, the mediator field could be
thermal or quantum ones; thereby, the frictional force stems
from the quantum uncertainty and remains even at the zero
temperature and is also called quantum friction. Our setup is
similar to the first example owing to the fact that our grating is
electrically polarized, assisted by the dc voltage, and an elec-
trostatic field clings to it. On the other hand, they are different
in that our electric polarization is conveyed by the peristaltic
modulation instead of physically moving the medium. As this
motion is nonphysical, the resultant velocity can surpass that
of light and the mediator field surrounding the grating can be
of the Čerenkov variety, which is dynamical rather than static.
This makes our setup similar to the second one.

This paper is organized as follows. In Sec. II, we summa-
rize how to calculate the scattering of an electromagnetic field
at the space-time modulated grating and multiple reflections
between the grating and the second surface. In Sec. III, we
numerically evaluate the power of emission from the grating.
The electromagnetic force associated with the radiation emis-
sion from the grating is analyzed in Sec. IV. The discussion
and the conclusion are drawn in Sec. V.

II. MULTIPLE REFLECTIONS BETWEEN THE SURFACES

To calculate the power loss and frictional forces, we
first compute the field amplitude with the multiple reflection
formalism, where we need the reflection and transmission
matrices of each surface. We can safely use the conventional
Fresnel coefficients for the upper flat surface. The reflection
and transmission coefficients of the lower surface can be
obtained from the boundary conditions in the presence of a
grating-induced source [66,89] as we will summarize below.

The electric and magnetic fields evaluated at a position
(x, z) can be expanded in plane waves,

�E (x, z) =
∑
σ,τ,m

E (τ )σ
km

�ε(τ )σ
km

(z)eikm·x, (3)

�H(x, z) =
∑
σ,τ,m

H (τ )σ
km

�h(τ )σ
km

(z)eikm·x, (4)

where we substitute km = mq, one of the superscripts, σ ∈
{+,−}, characterizes the propagation direction, and the
other, τ ∈ {2, 3, 4}, specifies the medium. The electric- and
magnetic-field amplitudes are associated with each other via
the impedance,

E (τ )σ
k

H (τ )σ
k

= Z0√
ετ

|ω/c|√∣∣K (τ )
k

∣∣2 + k2
‖

=: Z (τ )
k , (5)

where we have introduced the free space impedance, Z0 ≡√
μ0/ε0, the wave number parallel to the surfaces, and the one

in the z direction,

k‖ :=
√

k2
x + k2

y , K (τ )
k :=

√
ω2ετ /c2 − k2

‖ . (6)

The corresponding wave vector is �k = sgn(ω)(kx �ux + ky�uy +
σK (τ )

k �uz ). The polarization vectors are defined by

�ε(τ )σ
k (z) := 1√

V

�k × �uz

|�k × �uz|
χτ (z)eiσK (τ )

k z, (7)

�h(τ )σ
k (z) := 1√

V

�k × �k × �uz

|�k × �k × �uz|
χτ (z)eiσK (τ )

k z, (8)

where �u j is the unit vector in the j direction ( j = x, y, z)
and 1/

√
V is the normalization factor. We have introduced a

characteristic function χτ (z) returning 1 if z ∈ oτ and 0 other-
wise; hence χτχτ ′ ∝ δττ ′ . Note that we shall omit indices and
arguments as we may without any possibility of confusion.

The transverse component of the electric field is continuous
at the grating plane (z = 0),

lim
δh↓0

�uy · [ �E (x,+δh) − �E (x,−δh)] = 0, (9)
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while the magnetic field is discontinuous because of the con-
tribution of the grating,

lim
δh↓0

�ux · [ �H(x,+δh) − �H(x,−δh)] = �uy · ε̇sf �E (x, 0)

cZ0
. (10)

Applying the Fourier transformation, these equations (9) and
(10) yield simultaneous equations, which are inverted to give
the reflection and transmission matrices (see the Appendixes
for the details),(

E(3)+
k

E(2)−
k

)
=

(
Rk Tk

T′
k R′

k

)(
E(3)−

k

E(2)+
k

)
, (11)

where E(3)−
k (E(2)+

k ) is the incoming field in the upper (lower)
side of the grating, while E(3)+

k (E(2)−
k ) is the outgoing one in

each side. Note that we have collected the field amplitudes in a
single column, E(τ )σ

k := (· · · E (τ )σ
k−1

E (τ )σ
k0

E (τ )σ
k+1

· · · )ᵀ.

For our consideration, E(2)+
k corresponds to the input electro-

static field.
In the absence of the upper surface, the upward (down-

ward) emission from the grating is given by the product of
the transmission (reflection) matrix and the input field,

E(3)+
k = TkE

(2)+
k , E(2)−

k = RkE
(2)+
k . (12)

Inserting the upper surface gets the upward emission back
to the grating that reflects the emission again and we have
countably many reflections between the upper surface and the
grating plane.

Making use of the multiple reflection arguments (see the
Appendixes for the details), we can expand the field amplitude
in powers of the reflection matrices. We can write the resultant
modal amplitudes between the surfaces,

E(3)+
k = SkTkE

(2)+
k , E(3)−

k = rkSkTkE
(2)+
k , (13)

and the amplitudes in the upper and lower semi-infinite
regions,

E(4)+
k = tkSkTkE

(2)+
k , (14)

E(2)−
k = (R′

k + T′
krkSkTk )E(2)+

k , (15)

where we have introduced the multiple reflection factor Sk :=
(1 − Rkrk )−1 with the reflection rk and transmission matrices
tk of the upper flat surface.

Once the modal amplitudes have been evaluated according
to Eqs. (13)–(15), we can reconstruct the field distribution
in the real space using the expression (3). The field patterns
generated by various modulations are shown in Fig. 2. If the
field receives enough energy (� > gc/

√
ε3), it can escape

the grating [66]. Since the conducting medium screens the
electromagnetic fields, the upward emission from the grating
is reflected back from the upper surface and there are standing
waves as confirmed in Fig. 2(a). As the temporal modulation
frequency decreases, the field can no longer acquire suffi-
cient energy to leave the grating. In the intermediate regime
(gc/

√
ε3 < � < gc/

√
ε2), the field is confined in the upper

side of the grating while it propagates away in the lower side
[Fig. 2(b)]. At far lower frequencies (� < gc/

√
ε3), there is

confinement on both sides [Fig. 2(c)].

FIG. 2. Snapshots of the electric-field amplitude emitted by the
grating at t = 0. The field pattern shifts to the right at the peristaltic
velocity vph along with the grating as time passes. The horizontal
dashed lines in the figures correspond to the grating plane (z = 0) and
the second surface (z = d). (a) Superluminal regime in both vacuum
and dielectric regions (gc/

√
ε2 < �); (b) superluminal–superluminal

in the vacuum–dielectric region (gc/
√

ε3 < � < gc/
√

ε2); (c) sublu-
minal in both regions (� < gc/

√
ε3). We have used the following

parameters to generate those figures: d = 2.0 mm; ε2 = 1.00; ε3 =
2.25; κ = 2.0 × 103 S/m; g = 0.5 mm−1; α = −0.19; ε1 = 3.3 ×
10−6.

III. POWER LOSS AT THE MODULATED SURFACE

In the preceding section, we have found the field emission
around the grating for various grating parameters. In this
section, we are going to evaluate the field emission power
from the grating. Our starting point is the energy-conservation
equation. Taking the time derivative of the electromagnetic
energy density, U := ( �E · ε0ε �E + �H · μ0 �H)/2, we can obtain
the energy-conservation equation,

∂U

∂t
+ P = �Q, (16)

where we have defined the power loss, P := �E · ε0ε̇ �E/2, and
the incoming flux density, �Q := −∇ · �E × �H. After cycle
averaging, 〈. . .〉 := ∫ 2π

0 . . . d (�t ), we obtain 〈P〉 = 〈�Q〉. In-
tegrating over an infinitesimally thin volume containing the
grating (i.e., |x| < ∞, |y| < ∞, and |z| < δh), where the per-
mittivity varies in space and time, we can write

〈P〉 = − lim
δh↓0

[∫∫ +∞

−∞
〈 �E × �H〉 · �uzdx dy

]z=+δh

z=−δh

. (17)
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FIG. 3. Electromagnetic power loss per unit area at the grat-
ing. The contributions from evanescent (top left), the ones from
propagating waves (top right), and the total contribution (bottom
left) are shown. The bottom right figure is a cross section corre-
sponding to the gray dashed line (� = 30 GHz) in the bottom left
color map. We have used the following parameters to produce these
figures: d = 1.0 nm; κ = 11 S/m; α = −0.19; ε1 = 3.3 × 10−6;
Ein = 0.03 V/mm.

Hence the average incoming flux is equal to the average power
loss. Substituting Eqs. (3) and (4),

〈P〉 =
∑
τ=2,3

(
E(τ )+

k

E(τ )−
k

)†(
P++

kτ
P+−

kτ

P−+
kτ P−−

kτ

)(
E(τ )+

k

E(τ )−
k

)
, (18)

where τ = 2 (3) corresponds to the incoming flux from the
upper (lower) side, and we have defined

[
Pσσ ′

kτ

]
nn′ = 1

Z (τ )
kn

(
σK (τ )

kn
+ σ ′K (τ )

kn

)/
2

n�/c
δnn′ . (19)

We can recognize the numerator of the second fraction in
Eq. (19) returns the real (imaginary) part of the wave number
in the z direction if σ = σ ′ (σ �= σ ′). The second fraction
overall represents the propagation angle (or the field confine-
ment). Thus the diagonal (off-diagonal) part in the quadratic
form (18) is proportional to the real (imaginary) part of the
wave number in the z direction and hence corresponds to
the contributions from propagating (evanescent) waves. The
inverse of the impedance multiplied by the field amplitude
squared, |E (τ )σ

kn
|2/Z (τ )

kn
, gives the radiation intensity of the nth

mode. From these observations, the quadratic form (18) is a
decomposition of the emission power into the modal intensi-
ties with the correction due to the finite propagation angle (or
the field confinement).

As we have already evaluated the field amplitudes E(τ )σ
k

in the previous section (13)–(15), we can compute the power
loss with the quadratic form (18). In Fig. 3, the power loss
is plotted as a function of the grating parameters, g and �.
The contributions from evanescent and propagating channels
and the total contribution are shown. It is clear that the power

loss goes off far from the light cone (|g| > �
√

ε2/c), where
the field acquires much momentum and cannot escape from
the grating in either upper and lower media. We can also
recognize sharp changes at the luminal condition (e.g., vertical
dashed lines in the cross-section plot in Fig. 3) because of the
following reasons: first, the propagating channel opens and
the emitted energy will be taken away in the lower medium;
second, the emitted radiation propagating along the grating
strongly interacts with it and receives considerable energy.
The second reason is closely related to the light amplification
in the luminal metamaterials [59,60,90,91].

IV. FRICTIONAL FORCE ON THE SECOND SURFACE

In the previous sections, we have confirmed that the grating
emits electromagnetic radiation, which is reflected back and
forth between the grating and the upper surface. Since the
radiation has momentum parallel to the surfaces, it can exert
radiation forces which are parallel to the surfaces. In this
section, we are going to evaluate the lateral radiation force
on the upper surface.

We integrate the Maxwell stress tensor at the upper surface
to calculate the cycle-averaged lateral force,

〈F 〉 = lim
z′↑d

∫∫ +∞

−∞
〈Oxz(z′)〉dx dy, (20)

where the stress tensor is Oj j′ = ε0[E jE j′ − ( �E · �E )δ j j′/2] +
μ0[H jH j′ − ( �H · �H)δ j j′/2]. Substituting the expansions of
electric and magnetic fields (3) and (4), we can write

〈F 〉 =
(
E(3)+

k

E(3)−
k

)†(
F++

k F+−
k

F−+
k F−−

k

)(
E(3)+

k

E(3)−
k

)
, (21)

where the matrix element reads

[
Fσσ ′

k

]
nn′ = 1

�/g

1

Z0

(
σK (3)

kn
+ σ ′K (3)

kn

)/
2

n�/c
δnn′ . (22)

From the expression (22), it is clear that there is no lateral
force (F = 0) if there is no spatial modulation (g = 0). In
other words, the radiation emitted by the modulated surface
does not possess any lateral momentum and cannot drag the
second surface. It is also evident from Eq. (22) that the off-
diagonal contributions (σ �= σ ′) stem from evanescent waves,
while the diagonal ones (σ = σ ′) stem from propagating
waves as in the power loss. We can associate the lateral force
with the power loss as we can write[

Pσσ ′
k(3)

]
nn′ = vph

Z0/Z (3)
kn

[
Fσσ ′

k

]
nn′ . (23)

We recall that vph = �/g is the peristaltic velocity. This
relation is reminiscent of the power loss as a product of ve-
locity and a frictional force. In particular, for the propagating
waves (Im K (3)

k = 0), the wave impedance recovers the one in
free space, Z0/Z (3)

k = 1, and Pσσ ′
k(3) = vphFσσ ′

k . As the grating
dressed by the electromagnetic radiation requires the power
given by Pσσ ′

k(τ ) to travel at the peristaltic velocity vph, the
relation can indeed be viewed as the power loss as the product
of the peristaltic velocity and noncontact friction between the
grating and the second surface.
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FIG. 4. Frictional force F per unit area on the second surface.
The contributions from evanescent waves (top left), the ones from
propagating waves (top right), and the total contribution (bottom
left) are shown. The bottom right figure is a cross section at the
gray dashed line in the bottom left plot. The directions of the forces
coincide with the signature of the modulation wave number g. The
total force is peaked at the luminal condition in the dielectric side
(|�/g| = c/

√
ε3), where Čerenkov radiation emerges in the vacuum

region as in the case of corrugated surfaces [66]. We have used
the same parameters as in the previous figures to produce these
figures (Fig. 3).

As we did in the power loss calculation, we can substitute
the field amplitudes evaluated in the previous steps (13)–(15)
into the quadratic expression (21) to compute the force of
interest. In Fig. 4, we show the lateral force as a function of the
grating parameters, g and �. First, we can confirm the force
vanishes at g = 0, where the grating provides no momentum.
Second, the direction of the force corresponds to the signature
of g and it seems that the second surface feels and is dragged
by the radiation emitted from the grating. In other words, the
modulation induces an electromagnetic force in the direction
of the modulation velocity vph. Third, the force is peaked at
the luminal condition vph = c/

√
ε3 in the dielectric substrate

(star symbols in the cross-section plot). One reason is that the
radiation strongly interacts with the grating and is amplified
at the condition, as we have also discussed in the power loss.
Another reason is that the emission is in the horizontal direc-
tion at the luminal condition; thus the radiation has a large
momentum parallel to the surfaces.

V. CONCLUSIONS AND DISCUSSION

To sum up, in this work, we have analyzed the electromag-
netic properties of the space-time-modulated grating, which
performs peristaltic motion. Under a dc voltage, the grating
emits electromagnetic radiation as it provides not only mo-
mentum g but also energy � to the electromagnetic field and
the dc input voltage is converted to ac fields. The field emis-
sion from the grating induces noncontact frictional forces. The
noncontact friction can be viewed as a consequence of the

FIG. 5. Power loss as a function of the conductivity of the upper
medium. The loss goes small if the conductivity is small or very
large. This is because nothing is absorbed if the medium is far less
conducting or perfectly conducting. If the medium is much less
conducting (perfectly conducting), every radiation can be transmitted
through (reflected by) the medium. We used the following parameters
to generate this plot: g = 2.0 mm−1; α = −0.19; ε1 = 3.3 × 10−6;
Ein = 0.03 V/mm; � = 0.8gc/

√
ε3.

energy loss as in the conventional friction. In our case, this
can be seen in the force-loss relation (23), where the product
of the friction and the peristaltic speed gives the energy loss.

In the present setup, we can tune the effective surface
permittivity ε1, the modulation parameters (strength α and fre-
quencies q), and the gap width between the two surfaces. As
described around Fig. 4, the force is efficiently exerted at the
luminal condition (|g| = �/c) because the emitted radiation
travels parallel to the grating so that it can strongly interact
with the grating to gain much lateral momentum, which is
delivered to the top layer. This is one of the crucial conditions
to maximize the force. With that condition satisfied, we can in-
crease the emitted radiation intensity to enlarge the force. The
emitted radiation intensity increases as the time variation of
the surface permittivity becomes significant. We recall that the
radiation flux is equivalent to the power loss, P = �E · ε0ε̇ �E ∝
ε1α�. Thus the force can be enlarged by adopting materials
with large permittivity ε1 and making the modulation ampli-
tude α and temporal frequency � as large as possible.

Another parameter that we can adjust is the conductivity
κ of the top material. If the medium is much less conduc-
tive, little radiation is absorbed there; hence the amount of
momentum transfer (i.e., the frictional force) will be much
weaker. At the perfectly resistive limit (κ → 0), no radiation
will be absorbed and there will be no force. In the opposite
limit, where the medium is perfectly conducting (κ → ∞),
any radiation cannot enter the medium and is reflected so that
there will be no force. From these discussions, we can expect
that there is an optimal conductivity where the dissipation
is not overkill and the force is maximized. In order to find
such an optimal condition to dissipate the emitted radiation,
we have calculated the power loss 〈P〉 as a function of the
conductivity κ (see Fig. 5). The power loss goes small as the
conductivity becomes very small or very large as expected.
The optimal conductivity in the present case is κ ≈ 11 (S/m),
which is the number we have employed in Figs. 3 and 4.
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FIG. 6. Frictional force as a function of the spatial modulation
frequency g and the gap width d for a given modulation frequency
� = 30 GHz. The other parameters are the same as the ones used
in the main text: κ = 11 S/m; α = −0.19; ε1 = 3.3 × 10−6; Ein =
0.03 V/mm. The vertical dashed lines represent the luminal condi-
tion |g| = �/c for the gap region.

Additionally, in Fig. 6, we show the frictional force as a
function of the spatial modulation frequency g and the gap
width d between the two surfaces for a given temporal modu-
lation frequency. We can recognize the force in the subluminal
regime (|g| > �/c) decays as the gap width increases. This is
because the electromagnetic radiation is an evanescent one in
this region as shown in Fig. 3 in the main text. On the other
hand, in the superluminal regime (|g| < �/c), the emitted
radiation is propagating and the force does not decay unlike
in the subluminal case. This is why we can recognize that
fringe appears as the gap width becomes large. The fringe
can be attributed to radiation confined between the surfaces
(Fabry-Pérot-type modes).

Our system is similar to the electrostatic friction
[70–73,76–78] in the ensuing aspect. The electrostatic friction
is mediated by a static field arising from electric charges or
polarizations. Similarly, in our scenario, the static electric
polarization induced by the dc voltage brings about a elec-
trostatic field, resulting in friction. On the other hand, our
configuration is different from the electrostatic case in that our
system engages in peristaltic, rather than physical, motion. As
this motion is nonphysical, the resultant velocity can surpass
that of light and the mediator field can be of the Čerenkov
variety, which is no longer static but dynamical. Consequently,
altering the distance between the two objects produces an
oscillatory effect.

As we studied previously [66,89], the scattering from an
infinitesimally thin grating is much the same as that from a
shallow groove. In this sense, the noncontact frictional force
due to the peristaltic motion, which is investigated in the
present work, can be experimentally tested by acoustically
deforming a dielectric surface [92–95] as well as utilizing
a field-programmable gate array [96–98]. Modulating the
conductivity of graphene on a substrate [99–103] is another
possible route for the experimental implementation as it can
be effectively regarded as an infinitesimally thin sheet [104].
The force detection can be done by putting a metallic probe

in close proximity of the surface as in the case of electrostatic
friction [71,73,76].
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APPENDIX A: REFLECTION AND TRANSMISSION
MATRICES

Here, we describe how to obtain the reflection and trans-
mission matrices of the space-time-modulated grating. First,
as mentioned in the main text, we need to match the bound-
ary condition at z = 0 in the presence of the grating-induced
source.

The tangential component of the electric field is continuous
at the grating plane as usual [see Eq. (9) of the main text],

lim
δh↓0

�uy · [ �E (x,+δh) − �E (x,−δh)] = 0. (A1)

On the other hand, the magnetic field is discontinuous because
the infinitesimally thin grating provides a surface permittivity
[see Eq. (10) of the main text],

lim
δh↓0

�ux · [ �H(x,+δh) − �H(x,−δh)] = �uy · ε̇sf �E (x, 0)

cZ0
. (A2)

Applying the Fourier transform to these continuity equa-
tions (A1) and (A2) [Eqs. (9) and (10) of the main text] in the

emission

FIG. 7. Multiple reflections between two surfaces. The dc elec-
trostatic input (normal to the plane of the figure) is multiplied by the
transmission matrix of the grating, Esou

k = TkE
(2)+
k , which is fed into

the gap region as a source of multiple reflections between the upper
flat surface and the grating. The resultant field in the gap region is
the product of the source field Esou

k and the multiple reflection factor,
Sk = (1 − Rkrk )−1, where Rk and rk are the reflection matrices of
the lower and upper surfaces.
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real space and the time domain, we have corresponding simultaneous equations in the reciprocal space and the frequency domain,(
E(3)+

k + E(3)−
k

) − (
E(2)+

k + E(2)−
k

) = 0, (A3)(
N(3)+

k E(3)+
k + N(3)−

k E(3)−
k

) − (
N(2)+

k E(2)+
k + N(2)−

k E(2)−
k

) = Lk
(
E(2)+

k + E(2)−
k

)
, (A4)

where the N matrices are diagonal, while the L matrix is responsible for the grating contribution and possesses off-diagonal
elements that trigger the frequency shifts,

[
N(τ )σ

k

]
nn′ =

σK (τ )
kn′

n′�/c
δnn′ , [Lk]nn′ = �

c
ε1{α(n′ − 1)δn,n′−1 + α(n′ + 1)δn,n′+1 + n′δnn′ }. (A5)

Rearranging Eqs. (A3) and (A4) into a matrix form, we can obtain(
+1 −1

+N(3)+
k −(

N(2)−
k + Lk

)
)(

E(3)+
k

E(2)−
k

)
=

(
−1 +1

−N(3)−
k +(

N(2)+
k + Lk

)
)(

E(3)−
k

E(2)+
k

)
. (A6)

Inverting the matrix on the left-hand side in Eq. (A6), we can write [see Eq. (11) of the main text](
E(3)+

k

E(2)−
k

)
=

(
+1 −1

+N(3)+
k −(

N(2)−
k + Lk

)
)−1( −1 +1

−N(3)−
k +(

N(2)+
k + Lk

)
)(

E(3)−
k

E(2)+
k

)
(A7)

:=
(

Rk Tk

T′
k R′

k

)(
E(3)−

k

E(2)+
k

)
. (A8)

APPENDIX B: MULTIPLE REFLECTION

Making use of the multiple reflection arguments depicted
in Fig. 7, we can expand the field amplitude in powers of the
reflection matrices. The upgoing field between the surfaces is
composed of fields reflected even times,

E(3)+
k = (1 + Rkrk + RkrkRkrk + · · · )TkE

(2)+
k , (B1)

while the downgoing field is reflected odd times,

E(3)−
k = (rk + rkRkrk + rkRkrkRkrk + · · · )TkE

(2)+
k , (B2)

where rk is the reflection matrix of the upper flat surface
whose elements are nothing but the Fresnel coefficients,

[rk]nn′ = K (3)
kn

− K (4)
kn

K (3)
kn

+ K (4)
kn

e2iK (3)
kn

dδnn′ . (B3)

Note that we should set the exponential factor e2iK (3)
kn

d to incor-
porate the field propagation and the decay in the gap region.
Defining the multiple reflection factor, Sk := (1 − Rkrk )−1,
we can write compactly as [see Eq. (13) of the main text]

E(3)+
k = SkTkE

(2)+
k , E(3)−

k = rkSkTkE
(2)+
k . (B4)

The corresponding fields in the upper and lower semi-infinite
regions are [see Eqs. (14) and (15) of the main text]

E(4)+
k = tkSkTkE

(2)+
k , (B5)

E(2)−
k = (R′

k + T′
krkSkTk )E(2)+

k , (B6)

where the transmission matrix tk of the upper flat surface is
composed of the Fresnel coefficients,

[tk]nn′ = 2K (3)
kn

K (3)
kn

+ K (4)
kn

ei(K (3)
kn

−K (4)
kn

)dδnn′ . (B7)
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