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Recently, it was shown that fractional quantum Hall states can be defined on fractal lattices. Proposed exact
parent Hamiltonians for these states are nonlocal and contain three-site terms. In this work, we look for simpler,
approximate parent Hamiltonians for bosonic Laughlin states at half filling, which contain only onsite potentials
and two-site hopping with the interaction generated implicitly by hardcore constraints (as in the Hofstadter
and Kapit-Mueller models on periodic lattices). We use an “inverse method” to determine such Hamiltonians
on finite-generation Sierpiński carpet and triangle lattices. The ground states of some of the resulting models
display relatively high overlap with the model states if up to third-neighbor hopping terms are considered, and by
increasing the maximum hopping distance one can achieve nearly perfect overlaps. When the number of particles
is reduced and additional potentials are introduced to trap quasiholes, the overlap with a model quasihole wave
function is also high in some cases, especially for the nonlocal Hamiltonians. We also study how the small system
size affects the braiding properties for the model quasihole wave functions and perform analogous computations
for Hamiltonian models.

DOI: 10.1103/PhysRevA.107.063315

I. INTRODUCTION

In a classic work from 1977 [1], Leinaas and Myrheim
showed that the topology of configuration space in one and
two dimensions opens up a possibility for the existence
of particles which are neither bosons nor fermions. Later
such particles became known as “anyons” [2]. Their full
potential is revealed in two dimensions, where they can be
exchanged without passing through each other. In particular,
the non-Abelian anyons in two dimensions were proposed as
a gateway to quantum computing [3,4]. While no fundamental
particle was found to obey anyonic statistics, anyons were
observed experimentally as quasiparticle excitations of topo-
logical orders [5–8].

The integer dimensions do not exhaust all possible options.
If we define the dimension of the system as the Hausdorff
dimension, then noninteger dimensions can be found in fractal
systems [9]. Quantum systems with fractal geometry were
already realized experimentally [10–13] and simulated in
photonic systems [14,15]. Moreover, using optical tweez-
ers, one can create atomic arrays of arbitrary shape [16,17],
and proposals for implementing complex hopping in these
systems are being developed [18,19]. There is an ongoing
effort to create arbitrary patterns of potentials and hoppings in
quantum simulators [20–22], including pairwise-tunable long-
range complex hoppings [23]. The development of this field
suggests that in the near future it may be possible to realize
systems which are not only fractal shaped, but also highly
controllable and at the same time exhibit many-body effects.
Thus, a question arises: can such systems host anyons? Some
authors considered possible statistics on arbitrary graphs
(which includes also graphs based on fractals) [24–26]. An-
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other approach is to construct topologically ordered states on
fractal lattices [27–29]. In particular, it was shown that lattice
equivalents of Laughlin fractional quantum Hall states host
anyonic excitations when defined on fractals [27].

The model Laughlin states investigated in [27] have an
exact parent Hamiltonian that can be obtained from conformal
field theory. While such a Hamiltonian certainly can be useful
(we know its ground state for arbitrarily large systems and
that this ground state is topologically ordered), its form is
quite complicated as it consists of two- and three-site terms
which are nonlocal (i.e., connect sites at arbitrary distance
from each other). In contrast, quantum Hall states in periodic
lattices have a simpler parent Hamiltonian: the Kapit-Mueller
model [30], which contains nonlocal single-particle hoppings
as well as local interaction terms. In the simplest case of
filling 1/2, the latter can be generated implicitly by the hard-
core constraint, so only the nonlocal two-site terms remain
explicitly included in the Hamiltonian. Even simpler is the
Hofstadter model [31,32] with hardcore interactions [33],
where the hoppings are local (i.e., hopping from and to a
given site is possible only in its vicinity). It is not an exact
parent Hamiltonian for any nonzero flux, but at low flux its
ground state has a high overlap with a model Laughlin state
[33]. This raises the question whether ground states of similar
Hamiltonians on fractal lattices can exhibit topological orders
in noninteger dimensions.

One can reformulate and narrow this question by asking:
for a given fractal lattice, is it possible to find a Hamilto-
nian similar to the Hofstadter or Kapit-Mueller model, whose
ground state either is exactly given by the model Laughlin
state [27] or is approximated by it? The problem of system-
atically finding parent Hamiltonians for a given target state
has gained attention in recent years, and several numerical
methods of solving it have been proposed [34–39].
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In this work we use the method proposed in Refs. [34,35]
to numerically find Hofstadter- and Kapit-Mueller-like par-
ent Hamiltonians for the lattice Laughlin states on a
finite-generation Sierpiński triangle and carpet with 27 and 64
sites, respectively. If a restriction to local hoppings is imposed,
these Hamiltonians are approximate, but the ground states
of some of them display significant overlap with a model
Laughlin state. As the range of hoppings is increased, the
Hamiltonians become almost exact. We also look for anyonic
excitations, and in some cases, by lowering the number of par-
ticles and introducing pinning potentials, we obtain states with
high overlaps with model states with quasiholes. Our analysis
of finite-size effects on the model wave function shows that
the considered systems are too small to completely separate
the quasiholes during the braiding, and thus to demonstrate
the fractional statistics. We also perform similar computations
for the Hamiltonian models to investigate to what extent they
reproduce the results obtained for the model wave function.

We start by recalling the expressions for the Laughlin states
on fractals in Sec. II. In Sec. III we explain the method of
finding the parent Hamiltonians proposed in [34,35] and the
details of its implementation. Next, in Sec. IV we present
the obtained local Hamiltonians and analyze the overlaps of
their ground states with model states. Section V is devoted
to the study of the nonlocal Hamiltonians, showing that their
ground states can represent the lattice Laughlin states nearly
perfectly. In Sec. VI we add the pinning potentials in order
to trap anyons and show that the resulting ground states have
high overlaps with model wave functions describing anyons
for some of the local Hamiltonians, and for nonlocal Hamil-
tonians the overlap becomes nearly perfect. In Sec. VII we
analyze the effects of small lattice size on the process of braid-
ing of anyons described by the model wave functions. Then
we check how well these results are reproduced in systems
described by local and nonlocal Hamiltonians. Section VIII
concludes the article. The Supplemental Material [40] con-
tains the numerical values of parameters for Hamiltonians
considered in this work (and a few more), as well as some
other data files and more numerical results.

II. THE LAUGHLIN STATE ON FRACTALS

Lattice Laughlin states on arbitrary lattices embedded in
two dimensions have been constructed [41,42] utilizing a con-
nection to conformal field theory [43], and the models consid-
ered here on fractal lattices are particular instances of that con-
struction. We consider N sites, with positions (x j, y j ) denoted
as the complex numbers z j = x j + iy j . We fill the system with
M particles and impose the hardcore condition; i.e., the occu-
pation n j of the given site is 0 or 1. We write the occupation
number basis as |n〉, where n = [n1, n2, . . . , nN ]. The lattice
analog of a Laughlin state with filling factor 1/q is given by

|�〉 = 1

C

∑
n

�n |n〉 , (1)

where C is the normalization constant, and the coefficients
�n are

�n =δ

⎛
⎝q

∑
j

n j − Nη

⎞
⎠ ∏

j<k

(z j − zk )qn j nk
∏
j �=k

(z j − zk )−n jη,

(2)

where η = qM/N is the flux per site and the Kronecker delta
ensures the charge neutrality, i.e., the fact that we consider
only the configurations n with the total number of particles∑

j n j = M.
One can also construct the wave functions for a lattice

Laughlin state with anyons [44]. In this work we study local-
ized quasiholes, each corresponding to a local particle density
depletion of 1/q (i.e., introducing q such quasiholes corre-
sponds to removing one particle). We denote the position of
the lth quasihole as wl ∈ C. This position can coincide with
a given lattice site, but does not have to. Note that although
we refer to wl as the “anyon position,” the anyon itself is an
extended object that lives on the sites of the fractal lattice as a
local density depletion in the vicinity of wl .

Let us start from a system with M = M0 particles, de-
scribed by (2). After introducing Nqh quasiholes (Nqh/q ∈ N),
the number of particles is M = M0 − Nqh/q. The state |�̃(w)〉
with localized quasiholes is defined analogously to Eq. (1),
with coefficients

�̃n(w) = δ

⎛
⎝q

∑
j

n j + Nqh − Nη

⎞
⎠

×
∏
j,l

(wl − z j )
n j

∏
j<k

(z j − zk )qn j nk

×
∏
j �=k

(z j − zk )−n jη. (3)

The flux per site is still given by η = qM0/N = 1
N (qM + Nqh ).

In the following we limit ourselves to the case of q = 2.
We consider two examples of finite-generation fractal lattices:
the Sierpiński triangle with N = 27 sites and Sierpiński carpet
with N = 64 sites (see Fig. 1). For brevity, in the following we
will refer to these lattices as “triangle” and “carpet”, respec-
tively. Without loss of generality, we set the distance between
nearest-neighboring sites to unity.

III. THE METHOD FOR FINDING APPROXIMATE
PARENT HAMILTONIANS

In this work we look for hardcore boson tight-binding
Hamiltonians whose ground state has a large overlap with (2),
that is, an approximate parent Hamiltonian of this state. We
demand that the Hamiltonian has the following form:

H =
∑
j �=k

t jkeiφ jk a†
j ak +

∑
j

ε jn j, (4)

where a j is an annihilation operator of a hardcore boson at site
j, and n j = a†

j a j . The real parameters t jk , φ jk , and ε j are to be
found. The Hermiticity of the Hamiltonian requires that t jk =
tk j and φ jk = −φk j . To enforce locality, one can consider
t jk �= 0 only for, e.g., nearest neighbors (NN) or nearest and
next-to-nearest neighbors (NNN). To find t jk , φ jk and ε j , we
use an “inverse method” [34,35]. More specifically, we use
one of the variants described in [35]. Below we explain the
method applied to our systems.

The idea is to find a set of (not necessarily Hermitian)
approximate annihilation operators Aαβ with Aαβ |�〉 ≈ 0,
where the target state |�〉 in our case is the model wave
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FIG. 1. Considered lattices: 27-site Sierpiński triangle (left col-
umn) and 64-site Sierpiński carpet (right column). The rows show
different choices for sets Sα: circles of radius r = 1.1 around every
site (top row), NN cliques (middle row), and NNN cliques (bottom
row). The black dots denote the sites belonging to an example set,
while the gray ones are all the other sites. In almost every variant,
different sets of a given type can contain different numbers of sites;
thus several examples of sets are shown in these cases.

function (2). We construct the Hamiltonian as

H =
∑
α,β

A†
αβAαβ. (5)

In our case a given operator Aαβ will be constructed as
linear combinations of the annihilation operators aj on a
given cluster of sites located close to each other. We de-
note the set of site indices corresponding to operator Aαβ

as Sα = {Sα (1), Sα (2), . . . Sα (|Sα|)}, where |Sα| is the size of
the set Sα , i.e., the number of included sites. A given site
can belong to more than one cluster, (i.e., we can have e.g.,
S1 = {2, 4, 7}, S2 = {1, 3, 7}). For each set Sα , we are going
to construct several operators Aαβ , and the second index β

is introduced to differentiate between them. The choice of
the site clusters Sα will determine the form of the resulting
Hamiltonian.

For more concreteness, let us look at the examples of
clusters Sα which we will use in this work. One way to define
the sets is to have one cluster S j assigned to each site j. The
set contains the site j and all the sites lying within the radius
r from it. Examples with r = 1.1 are shown in Fig. 1(a) and
Fig. 1(b) for the triangle and the carpet, respectively. In the
former case, the sets contain three or four sites, and in the
latter, three, four, or five sites.

Another option is to represent the fractal lattice as a graph,
where each pair of nearest-neighboring vertices (sites) are
connected by an edge. The clusters Sα can be defined as
cliques on that graph, i.e., the sets that have the property that
any pair of vertices is connected by an edge. More specifically,
we choose the clusters Sα as maximal cliques, i.e., cliques that
cannot be expanded by adding a further vertex. Examples of
maximal cliques are shown in Figs. 1(c) and 1(d). In the case
of the triangle [Fig. 1(c)], they contain two or three sites, while
for the carpet [Fig. 1(d)] it is always two sites. We will call
the cliques constructed in that way NN cliques. This approach
can be extended by considering maximal cliques on a graph
where all nearest and next-nearest neighbors are connected by
an edge. The example maximal cliques are shown in Figs. 1(e)
and 1(f). We refer to this case as NNN cliques.

As noted above, we look for operators Aαβ being linear
combinations of the annihilation operators aj on the sites
belonging to the cluster Sα ,

Aαβ =
|Sα |∑
γ=1

c(αβ )
γ aSα (γ ), (6)

where c(αβ )
γ are complex coefficients normalized to∑|Sα |

γ=1 |c(αβ )
γ |2 = 1. To obtain the coefficients c(αβ )

γ , we
apply the following procedure. We define the states
|φ(α)

γ 〉 = aSα (γ ) |�〉 and the matrices B(α)
γ δ = 〈φ(α)

γ |φ(α)
δ 〉.

Then we look for the eigenvectors of B(α),∑
δ

B(α)
γ δ c(αβ )

δ = λ(αβ )c(αβ )
γ , (7)

where λ(αβ ) is the βth eigenvalue of B(α), and c(αβ )
δ are

the complex coefficients of the βth eigenvector. To con-
struct the annihilation operators, we choose the eigenvectors
corresponding to nearly zero eigenvalues λ(αβ ). We use the co-
efficients c(αβ )

δ of these selected eigenvector as the expansion
coefficients in (6).

How do we quantify the closeness of λ(αβ ) to zero? That is,
how do we determine how many operators Aαβ to construct
and which eigenvectors of B(α) to use as expansion coeffi-
cients? One option, which we use in most of the cases, is to
set a threshold d , and use only the eigenvectors corresponding
to λ(αβ ) < d . The other option is to set a number m, and use m
eigenvectors corresponding to the lowest λ(αβ ) for each cluster
Sα . In this work we use only m = 1.

The Hamiltonian (5) has the form (4) by construction.
The hardcore constraint is imposed implicitly by using the
subspace of the Hilbert space which fulfills the constraint. The
range of the hoppings in (5) is determined by the chosen sets
Sα: the result of the multiplication of A†

αβ and Aαβ are hopping
terms connecting pairs of sites ( j, k) with j, k ∈ Sα , and the
onsite potentials on sites j ∈ Sα . That is, the r = 1.1, NN-
clique and NNN-clique cases presented in Fig. 1 lead to up to
third-, first-, and second-neighbor hoppings, respectively. We
note that in our calculations, the conversion from Aαβ to t jk ,
φ jk , and ε j is approximate, i.e., contributions smaller than a
certain threshold are discarded.

In addition to the approach outlined above, there are several
alternative variants of the method described in [34,35]. For
example, instead of the terms of the annihilation operator,
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one can look for the terms of the Hamiltonian itself. We
have not used this method here, however, since in our case
it leads to non-Hermitian Hamiltonians because the Laughlin
state is complex. Constructing the Hamiltonian using annihi-
lation operators ensures that it is both Hermitian and positive
semidefinite.

Another option mentioned in [35] is to refine the result by
optimizing, e.g., energy variance or overlap using numerical
methods such as the Newton scheme, although the authors
of [35] find that this is not necessary in most cases, and it
is more demanding numerically. We therefore do not do this
here. We note that there are also other methods, such as the
entanglement-guided approach [37] or direct optimization of
a cost function composed of several observables [38], which
may be useful in the further study of topological orders on
fractals.

IV. RESULTS: LOCAL HAMILTONIANS

In this section we use the method from Sec. III to ob-
tain Hamiltonians with up to third-neighbor hopping, with Sα

chosen either as r = 1.1, NN cliques, or NNN cliques. We
consider the triangle with the number of particles M from
2 to 6, and the carpet for M = 2, 3, 4. After obtaining the
Hamiltonian, its ground state is compared to the target state,
i.e., the model state (2) with M particles and flux per site
η = qM/N . Throughout this work, all the ground states and
low-energy spectra are found by employing the exact diag-
onalization method for sparse matrices, implemented using
the ARPACK library (except from single-particle spectra in
Sec. V, which are obtained by diagonalizing dense matrices
using the LAPACK library).

In Fig. 2 we show the squared overlap | 〈ψ |�〉 |2 between
the ground state |ψ〉 of the Hamiltonian and the model state
|�〉 defined by Eq. (2) for different systems. In most of
the subfigures, squared overlap is plotted as a function of
the threshold d for different systems. The only exception is
Fig. 2(d), which corresponds to the NN-clique case on the
carpet, where the B(α) matrix can have only size 2 × 2, so
instead of applying a threshold d we take only the lowest
eigenvalue. Thus, instead of plotting the squared overlap vs
d , we plot the squared overlap vs M.

The plots of | 〈ψ |�〉 |2 vs d in Fig. 2 exhibit a number
of plateaus. This is because, although d is a continuous pa-
rameter, the eigenvalues of the density matrices are discrete,
and thus any d between two nearest eigenvalues will yield the
same Hamiltonian.

The right choice of d is important to get a good parent
Hamiltonian. Too small d would mean that in some clusters,
no eigenvalue λ(αβ ) would fulfill λ(αβ ) < d . As a conse-
quence, some hoppings will be absent, which will lead to
small squared overlaps | 〈ψ |�〉 |2. In contrast, too large d
means that the included eigenvalue will be far from zero, and
Aαβ would no longer behave as an approximate annihilation
operator, which also leads to small overlaps. Indeed, in the
plots in Fig. 2, the maximum | 〈ψ |�〉 |2 is seen at small, but
not too small, d (the overlap eventually falls to almost zero
for high enough d , which is not seen in most of the plots,
which show only low d). In the following, when mentioning
the Hamiltonian for a given system, we mean the Hamiltonian

FIG. 2. Squared overlaps between the Laughlin state (2) and
ground state of the considered Hamiltonians for the fractal lattices
with up to third-neighbor hoppings. All plots show squared overlap
vs threshold d , except from (d) which displays overlap vs system
size. The subplots correspond to choices of Sα shown in Fig. 1. That
is, the left (right) column corresponds to the triangle (carpet), and the
top, middle, and bottom rows correspond to the choices r = 1.1, NN
cliques, and NNN cliques, respectively. In all panels but (d) colors
correspond to different particle numbers M.

for a d yielding maximum overlap (except the case of NN
cliques on the carpet, where this would mean the Hamiltonian
generated from the lowest eigenvalue λ(αβ ) of each cluster).

From Figs. 2(a) and 2(b) one can see that the r = 1.1 case,
corresponding to the third-neighbor hoppings, yields squared
overlaps above 0.81 for all particle numbers and both lattices,
and above 0.96 for both lattices with M � 4. In the case
of the NNN cliques (i.e. second-neighbor hoppings), seen in
Figs. 2(e) and 2(f), the squared overlaps are smaller, but still
above 0.87 for both lattices and all the considered M values,
except from the triangle with M = 6, for which | 〈ψ |�〉 |2 ≈
0.71. For the NN cliques [Figs. 2(c) and 2(d)], the overlaps
are much worse, exceeding 0.8 only for M = 2 (both lattices),
and reaching as low as | 〈ψ |�〉 |2 ≈ 0.35 for M = 5 on the
triangle.

Examples of the resulting Hamiltonians for the triangle are
shown in Fig. 3. Here the arrows denote the hoppings, with
color denoting either the strength (odd columns) or the phase
(even columns), for the hopping in the arrow direction (in the
opposite direction the coefficient is the complex conjugate).
To obtain clear plots with a common color scale, the plotted
terms of the Hamiltonians are normalized so that the absolute
value of the strongest hoppping in each of them is 1. Other
results for both the triangle and the carpet, as well as the
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FIG. 3. Examples of Hamiltonians for the triangle. Hoppings are denoted by the arrows, with colors representing the modulus (in the odd
columns) or phase (even columns). Dots represent onsite potentials, with size representing the strength [see the legend next to (l)]. Terms are
renormalized so that for each Hamiltonian the strength of the strongest hopping is unity, i.e., we plot t jk/ max{t jk} and ε j/ max{t jk}. Pairs of
columns correspond to the particle number: (a), (b), (e), (f), (i), (j) M = 3; (c), (d), (g), (h), (k), (l) M = 6. The rows correspond to types of
site clusters: (a)–(d) r = 1.1; (e)–(h) NN cliques; (i)–(l) NNN cliques.

numerical values of Hamiltonian parameters, can be found in
the Supplemental Material [40].

In the particular case of NNN cliques with M = 3 on
the triangle, some nearest-neighbor hoppings are absent,
which makes the system equivalent to a fourth-neighbor one-
dimensional model. The resulting Hamiltonian is plotted in
Figs. 3(i) and 3(j). In all the other cases these hoppings are
present.

The spectra of the Hamiltonians are shown in Fig. 4. The
plot contains the 20 lowest energy eigenvalues, with energy
rescaled so that the lowest and highest one have energies 0
and 1, respectively. In some cases, but not all, we observe an
energy gap above the ground state, as seen for lattice quantum
Hall systems with hard-wall boundary conditions [45]. By en-
ergy gap above the ground state, we here mean that the energy
difference between the ground state and the first excited state
is significantly larger than the energy differences among the
lowest excited states.

In summary, we have found local Hamiltonians (i.e., ones
with up to third-neighbor hoppings) whose ground states have
a reasonable overlap with model Laughlin states on the tri-
angle and the carpet. That is, for each studied value of M on
each lattice, we found at least one Hamiltonian with ground
state fulfilling | 〈ψ |�〉 |2 > 0.81.

V. RESULTS: NONLOCAL HAMILTONIANS

The range of the hoppings can be easily increased by in-
creasing the radius r. Figures 5(a) and 5(b) display an r =
4.1 Hamiltonian for the triangle with M = 6 (see also [40]
for the numerical values of the parameters of this and other

Hamiltonians considered in this section). In such a case the
hoppings span almost across the whole lattice. The overlap
of the M = 6 ground state with the model state (2) is almost
perfect, with 1 − | 〈ψ |�〉 |2 < 10−8.

In Fig. 5(c) we plot the “error” 1 − | 〈ψ |�〉 |2 for the M =
6 case on a triangle, with r increasing from r = 1.1 to r = 4.1.
It can be seen that the overlap gradually approaches 1 when r
grows.

It can be instructive to look at single-particle spectra of the
studied Hamiltonians. That is, we construct the Hamiltonians
with the model Laughlin wave function at given M as a target
state, and then, without changing their parameters, we diag-
onalize them at M = 1. The results for Hamiltonians created
for an M = 6 triangle are shown in Fig. 5(d). For the sake of
comparison between different systems, the energy is rescaled
so that the first eigenvalue is zero and the last eigenvalue is
unity. It can be seen that as the maximum hopping distance
increases, a nearly-flat “band” of lowest-energy states forms,
reminiscent of a Landau level in continuum two-dimensional
systems. For r = 4.1, this “band” contains 11 states. This is
similar to the case of a Landau level on a disk or a cylinder. In
such systems, a Laughlin state of M particles without anyons
is composed of q(M − 1) + 1 single-particle orbitals (see,
e.g., [46]). If we take M = 6, q = 2, then q(M − 1) + 1 = 11,
which suggests that we can treat the 11 lowest-energy single-
particle states of the nonlocal Hamiltonians as analogs of the
Landau level orbitals.

Thus, the nonlocal Hamiltonian is similar to the Kapit-
Mueller model, a two-dimensional lattice model which also
has complex hoppings with arbitrary hopping distance. The
Kapit-Mueller model has an exactly flat band, spanned by
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FIG. 4. Low-energy spectra of the Hamiltonians. The panels are
organized in the same way as in Fig. 1. That is, the left (right)
column corresponds to the triangle (carpet), and the top, middle,
and bottom rows correspond to the choices r = 1.1, NN cliques, and
NNN cliques, respectively. The energy is rescaled so that the first
eigenvalue has energy 0 and the 20th eigenvalue has energy 1 [i.e.,
we plot Ẽ j = (Ej − E1)/(E20 − E1), where Ej is the jth eigenvalue
of energy].

lattice analogs of lowest Landau level wave functions, and, in
consequence, the many-body ground state of hardcore bosons
at filling ν = 1/2 is exactly equal to a discretized Laughlin
state [30].

VI. RESULTS: ANYONS

One of the crucial characteristics of topological orders is
the presence of anyonic excitations, which, for the quantum
Hall systems, have the form of quasielectrons and quasiholes.
Here we attempt to create localized quasiholes in the Hamil-
tonian models constructed in Secs. IV and V.

To avoid confusion, we denote the particle number M of
the target model state (2), for which the Hamiltonian was gen-
erated, as M0, while the symbol M throughout this section and
Sec. VII will denote the particle number with which we work
at the moment. In general, we can have M0 �= M. The Hamil-
tonian parameters are set by M0 and do not depend on M.

In an attempt to create two quasiholes in the system de-
scribed by a Hamiltonian H (5), constructed for a target model
state with M0 particles, we remove one particle from the
system, i.e., we set M = M0 − 1. Then, we add two onsite
potentials, which are supposed to trap them (i.e., the total
Hamiltonian is H ′ = H + V na + V nb, where a and b are the
two chosen sites, and we choose V = 1000). If the system
hosts anyons, then the excess particle density of −1/2 should

FIG. 5. Properties of the nonlocal Hamiltonians constructed for
an M = 6 target state. (a), (b) The hoppings and onsite potentials
of the r = 4.1 Hamiltonian. The magnitude and phase of hoppings
are denoted by the color of arrows in (a) and (b), respectively, while
the strengths of onsite potentials are signified by the sizes of the
dots. The terms are renormalized so that the strength of the strongest
hopping is unity, i.e., we plot t jk/ max{t jk} and ε j/ max{t jk}. (c) The
error of the approximation of the model state by the ground state
of the Hamiltonians, as a function of radius r. The error is defined
as one minus the squared overlap. (d) The single-particle energy
spectra of various Hamiltonians, showing the emergence of a flat
“band” for high r. We plot the dimensionless, rescaled energy Ẽ j =
(Ej − E1)/(E27 − E1), where Ej is the jth eigenvalue of energy.

be located in the vicinity of each of the trapping potentials—
although we note that the anyons have a finite extent, and the
system may be too small for them to be well separated.

Figure 6 shows the plots of excess particle density distri-
bution for several example cases. The excess particle density
is defined as

ρ j = 〈n j〉M0−1 − 〈n j〉M0
, (8)

where the 〈n j〉M0
(〈n j〉M0−1) is the expectation value of particle

density at site j in the ground state with M = M0 without ad-
ditional potentials (M = M0 − 1 with additional potentials).
In some of the studied cases, for example, the ones shown
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FIG. 6. Plots of excess particle density (8) for six example
Hamiltonians. Positions of the V = 1000 potentials are denoted by
bright green (bright gray) “×” symbols. The results are shown
for the following cases: (a) triangle M0 = 5, r = 1.1, (b) triangle,
M0 = 6, r = 4.1, (c) carpet, M0 = 4, r = 1.1, (d) triangle, M0 = 5,
NN cliques, (e) triangle, M0 = 6, r = 1.1, (f) carpet, M0 = 4, NN
cliques. Each color bar in the bottom corresponds to both plots in a
given column. To differentiate between the positive and negative ex-
cess density in the grayscale version of the plot, white “+” symbols
are on the sites with positive excess density.

in Figs. 6(a), 6(b), and 6(c), one can see that the strongest
density depletion, marked by dark blue circles (in grayscale:
dark gray circles without a white “+” mark), is located in the
vicinity of the pinning potentials, resembling particles with
well-defined position. However, there are some smaller excess
density variations even far away from the pinning potentials,
suggesting that the anyons (if they are indeed anyons) are too
big to be completely separated within the structure. Also, we
note that in some of the studied cases, such as in Figs. 6(d),
6(e), and 6(f), these variations are stronger, and the plots are
less reminiscent of pinned quasiparticles.

In general, the cases with only nearest-neighbor hop-
ping fail to produce well-localized density depletions [see
Figs. 6(d) and 6(f)]. The localization improves when the range
of the hopping is increased [compare, e.g., Figs. 6(a) and
6(d)]. Also, as r increases, the excess particle density distribu-
tion approaches the distribution obtained for the model wave
functions (2) and (3). At sufficiently high r [e.g., Fig. 6(b)],
these two match almost perfectly.

The results depend also on the particle number, although
the dependence is not straightforward: for the r = 1.1 Hamil-
tonians on the triangle, particularly good results are achieved
for the M0 = 5 case, which is neither the highest nor the low-
est considered M0 [Fig. 6(a)]. We speculate that the influence
of particle number can be twofold. First, based on Fig. 2, we
expect that higher M0 means that the system represents the
Laughlin physics less accurately. But secondly, the size of
the anyons described by (3) decreases when we increase η (at
least at sufficiently small η), which happens when we increase
M0 and keep N constant. Obviously, for sufficiently nonlocal
Hamiltonians whose ground states faithfully represent the ex-
cess particle density distribution of model states, η becomes

FIG. 7. Squared overlaps of the ground states of our models at
M = M0 − 1 with model quasihole states (3). In the exact diago-
nalization we use two potentials located as in Fig. 6 (V = 1000).
The anyon positions in the model wave function are the same as the
positions of the potentials in the Hamiltonian models.

the only factor, and thus we expect that the anyon size will
decrease with M0.

For quantitative assessment of how well our models are
suited to host anyons, we compute the overlaps between the
ground states |ψ〉 with potentials and M = M0 − 1 particles
and the model wave functions with two anyons (3). This
method is not perfect, as excitations can have anyonic statis-
tics even when they are not described by (3). Nevertheless,
because our models are designed to generate a ground state
approximating (2) at M0 particles, (3) is a reasonable guess
for M0 − 1 particles. The resulting squared overlaps | 〈ψ |�̃〉 |2
for local models are shown in Fig. 7. It can be seen that the
overlaps seem to depend on two factors: the number of parti-
cles and the range of the hoppings. Both are understandable.
With a given type of site cluster (e.g., r = 1.1) and lattice, the
overlaps with no anyons (Fig. 2) are highest for small number
of particles, so it is not surprising that these cases also yield
best overlaps for states with quasiholes (also, such systems
have the smallest Hilbert spaces). The overlaps also grow
with increasing hopping range, as in such cases the ground
state at M = M0 particles represents (2) better. In general, for
M0 = 3, 4 and M = M0 − 1 the r = 1.1 models yield squared
overlaps over | 〈ψ |�̃〉 |2 > 0.95 on both lattices.

Even better overlaps can be achieved by increasing the
range r. For large enough r, the overlap can be made almost
equal to 1. For example 1 − | 〈ψ |�̃〉 |2 < 10−8 for the r = 4.1
model on the triangle with M0 = 6. We note that the exact
Hamiltonians for systems with anyons known from conformal
field theory are constructed from the no-anyon Hamiltonians
by modifying the coefficients of terms involving all the sites
[44], while in our case we obtain an almost-exact parent
Hamiltonian by modifying only two onsite potentials.

VII. RESULTS: BRAIDING

In sufficiently big fractal systems, the quasiholes described
by the model wave function (3) obey the same statistics as
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the quasiholes of the Laughlin wave functions [27]. However,
to clearly observe the statistical phase, the anyons need to be
sufficiently separated, which may not be possible on small
lattices. In the following, we will study how the small system
size affects the braiding process for the model wave function
(3). Then we will compare these results to the results for
systems described by Hamiltonians.

We choose to focus on the case of M0 = 6 on a triangle,
where, because of relatively high η, the anyons seem to be
quite small. The anyon positions wk are external parame-
ters of the wave function, which can be varied continuously.
Let us consider a closed path, parametrized as w(t ), where
t ∈ [0, tmax]. We denote the wave function (3) on the path
as |�̃(w(t ))〉. In numerical calculations, we consider a dis-
cretized version of the path at points t1, t2, . . . , tNpath . Then an
approximation to the Berry phase is given by

γ = − Im log

⎡
⎣

⎛
⎝Npath−1∏

j=1

〈�̃(w(t j ))|�̃(w(t j+1))〉
⎞
⎠

× 〈
�̃

(
w

(
tNpath

))∣∣�̃(w(t1))
〉⎤⎦ (9)

[47]. The quality of this approximation increases with in-
creasing number of discretized points. Figure 8(a) shows the
exchange path that we consider. We start by placing the
anyons on two sites, and then move one anyon at a time
between two nearest-neighboring sites. The anyon positions
between the sites are interpolated linearly with ninterp steps.
The anyons are moved in the following way: first, one anyon
moves along the orange (light gray) arrows, then the second
anyon moves along the purple (dark gray) arrows, and finally
the first anyon moves along the black arrows. In this way, w1

gets transformed into w2 and vice versa, i.e., the positions of
the anyons are exchanged.

More formally, we consider t = T + s, where T ∈ N0,
and s ∈ [0, 1) [i.e., T = �t	, and s = (t mod 1)]. To de-
fine the path, we introduce two sequences of site indices:
k(T ) and l (T ). At integer t (i.e., t = T ), the anyons are lo-
cated at sites w1(t ) = zk(T ) and w2(t ) = zl (T ). At noninteger
t , we interpolate between the sites: w1(t ) = (1 − s)zk(T ) +
szk(T +1), and analogously for w2. Because we move only one
anyon at a time, we define the sequences k(T ) and l (T ) in
such a way that at each T we either have k(T ) = k(T + 1)
or l (T ) = l (T + 1). When we discretize the path for nu-
merical calculation, we divide the interpolation into ninterp

equal steps, i.e., t j = Tj + s j , with s j = mj/ninterp, and mj ∈
{0, 1, . . . , ninterp − 1}.

The phase γexc on the path shown in Fig. 8(a) contains both
the statistical phase and the Aharonov-Bohm (AB) phase. To
determine the AB contribution, we consider a situation shown
in Fig. 8(b): one anyon goes around the path denoted by black
arrows, and the other one is located at a constant position
outside of it [i.e., l (T ) = const], in the corner of the triangle.
The resulting phase γAB is then subtracted from γexc to obtain
the braiding phase γbr = γexc − γAB.

During the AB phase calculation, the anyons get particu-
larly close to each other. In Fig. 8(c) one can see an excess

FIG. 8. Braiding in a triangle with M0 = 6 and M = 5. (a)–(d)
Excess particle densities (8) of the model wave function: (a) at the
beginning of the exchange path, (b) at the beginning of the AB path,
(c) at a point of the AB path where the two anyons seem to blend with
each other, and (d) at some point of the AB path where an anyon is
located halfway between two sites. The bright green (bright gray)
“×” symbols in (a)–(d) denote the positions wk of the anyons. The
red dashed shapes enclose sites at a distance at most 1 from wk (if wk

coincides with a site) or from either of the two sites between which it
is interpolated (if it does not). The arrows denote the paths of anyon
motion. To differentiate between the sites with positive and negative
densities in grayscale, we put white “+” symbols on the former.
(e)–(f) The local excess particle density throughout the exchange
and AB paths, respectively. The dotted and solid lines correspond
to ρNN1(t ) and ρNN2(t ), respectively, while different colors denote
different cases (the model wave function, the r = 4.1 Hamiltonian,
and the r = 1.1 Hamiltonian). See the discussion for more details.

density distribution for a particular part in the path, where the
anyons seem to merge with each other.

We note that when anyons are far away from each other and
each one is located at a given site, e.g., like in Fig. 8(b), the
majority of the density depletion is located at that site and its
nearest neighbors. If we approximate the anyons as objects
of radius 1, they can be regarded as separated even in the
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FIG. 9. Braiding phases for the triangle with M0 = 6 and M = 5.
Panels (a) and (b) show the results for the path depicted in Fig. 8,
while (c) refers to the path from Fig. 10. In (a) and (c), the phase
is shown as a function of the number ninterp of interpolating steps
between sites, and in (b) as a function of the potential strength V
[in the same units as the terms of the original Hamiltonian (5), which
themselves are fixed by the normalization of Aαβ ] at constant ninterp =
10. See the discussion for further details.

situation in Fig. 8(c); see the dashed red circles. In the case
of anyon located between two sites [like the case presented in
Fig. 8(d), where s = 0.5] we can approximate the anyon as an
object occupying the two sites and the nearest neighbors of
either of them [see the dashed red circles in Fig. 8(d)].

To check how good this approximation is, we introduce the
local excess particle density

ρNN1(t ) =
∑

j

θ j,1(T )ρ j, (10)

where

θ j,1(T ) =
{

1, if |z j − zk(T )| � 1 or |z j − zk(T +1)| � 1
0, otherwise .

(11)

Analogously, we define ρNN2(t ) and θi,2(T ) by focusing on
the second anyon, i.e., replacing k(T ) by l (T ). In the situation
from Fig. 8(b), the anyons can be separated only when ρNN1(t )
is close to (or ideally, equal to) −0.5. Note that when k(T ) �=
k(T + 1), (10) counts the excess particle density around both
sites k(T ) and k(T + 1), even when s = 0 and the anyon is
centered at site k(T ). But this does not change the argument
that in order to separate the anyons, we should have ρNN1(t ) ≈
−0.5.

The results are shown in Fig. 8(e) (the exchange path) and
Fig. 8(f) (the AB path) with black lines. The dotted (solid)
lines correspond to ρNN1(t ) [ρNN2(t )]. The four sites on which
the anyons are closest to each other in the AB phase calcu-
lation are denoted by gray lines in Fig. 8(f). It can be seen
that ρNN1(t ) and ρNN2(t ) can depart quite far from the perfect
value −0.5. Also, the result seems to depend on the position
of the anyon on the path [although for the static anyon in the
AB phase calculation, ρNN2(t ) seems quite stable]. Therefore,
the assumption that the anyon is an object occupying only
two sites and their nearest neighbors is a relatively rough
approximation. Hence, we should not expect that the braiding
phase would be perfectly equal to π/2.

The phase γbr as a function of the number of interpolation
steps ninterp is shown in Fig. 9(a) using black solid lines and
circles. For ninterp = 100, we obtain a result γbr = 0.537π ,

which is close to π/2 (black dashed line), but still there is
a notable discrepancy. We cannot separate the anyons further
and check whether the discrepancy decreases. Thus, while
the result of the braiding operation in this system can hint
at the presence of anyons, the system is too small to un-
ambiguously demonstrate it, at least as long as the ground
state is described by model wave functions (3). The full ex-
cess particle density distribution at any point of either path
can be seen in the animations provided in the Supplemental
Material [40].

We do not expect that the results in the systems described
by a Hamiltonian will be clearer. Nevertheless, we can ask:
how well do they reproduce the results for a model wave
function? We again use the paths from Figs. 8(a) and 8(b).
For the s = 0 cases, we use two potentials with strength V at
sites k(T ), l (T ). To interpolate between the sites, we use the
following scheme:

H ′(t ) = H + [1 − λ(s)]V nk(T ) + λ(s)V nk(T +1)

+ [1 − λ(s)]V nl (T ) + λ(s)V nl (T +1), (12)

where λ(s) = s − sin(2πs)/(2π ). Note that because either
k(T ) = k(T + 1) or l (T ) = l (T + 1), one of the potentials
remains static at each point of the path.

We first consider the nonlocal case r = 4.1, for which we
set V = 0.1. This potential is much smaller than the V = 1000
used in Sec. VI. While an arbitrarily high potential can be
used to pin the anyons to sites (the higher the better: the
model wave function has 〈nj〉 = 0 if wk = z j), high potentials
raise problems for interpolation. At a sufficiently high V ,
applying (12) to interpolate between sites k(T ) and k(T + 1)
would lead to high potentials on both of these sites for every
s �= 0, enforcing both 〈nk(T )〉 ≈ 0 and 〈nk(T +1)〉 ≈ 0. Then
there would be a significant difference in the wave function at
s = 0 and s = 1 but not much difference between s = 1 and
other s �= 0. Therefore, to make the interpolation smoother,
we choose a much smaller V than in Sec. VI.

In Figs. 8(e) and 8(f), these results are plotted using cyan
(dark gray) lines, and in Figs. 9(a) and 9(b) using cyan (dark
gray) lines and squares. When each anyon is pinned to one site
(i.e. s = 0), the results for the r = 4.1 Hamiltonian and the
model wave function are almost the same [see the black and
cyan (dark gray) curves intersecting at integer t in Figs. 8(e)
and 8(f) as well as the black circle and cyan (dark gray)
square markers coinciding at ninterp = 1 in Figs. 9(a)]. How-
ever, because the methods of interpolation between the sites
are different in the two cases, the curves in Figs. 8(e) and
8(f) depart from each other at noninteger t . The Hamilto-
nian case displays larger excess particle density variations
than the model wave function case. In particular, in the AB
phase calculation, ρNN1(t ) reaches almost −0.7 at some point,
which is far from the ideal −0.5 value (see also the anima-
tions in the Supplemental Material [40]). The braiding phase
shown in Fig. 9(a) also differs between the two cases. We
have γbr = 0.450π at ninterp = 100 for the Hamiltonian case,
which is farther from 0.5π than the result for the model
wave function. Nevertheless, this is still relatively close to
π/2. We also plot γbr for ninterp = 10 and different values of
V ranging from V = 0.001 to V = 1000 in Fig. 9(b), showing
that the deviation from the ideal value increases with the
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strength of the potential, but the phase remains relatively close
to π/2 for a range of V values on the left side of the plot.

For comparison, we also repeat the calculations for the
r = 1.1 Hamiltonian with V = 10. These results are shown
in Figs. 8(e) and 8(f) using lime (light gray) lines, as well
as in Fig. 9(a) using lime (light gray) lines and diamonds. In
Figs. 8(e) and 8(f) we can see that ρNN1(t ) and ρNN2(t ) vary
very strongly. In the animations shown in the Supplemental
Material [40], one can see that the excess particle density pat-
terns change abruptly. The braiding phase plotted in Fig. 9(a)
is close to 0 for high enough ninterp, showing no indication
of fractional statistics. This may be connected to quite small
overlaps with model states (in general smaller than the one in
Fig. 7, e.g., for one of the steps we have | 〈ψ |�̃〉 |2 ≈ 0.492),
but it is also possible that the correct anyonic statistics would
be visible in larger r = 1.1 systems even if the excitations
are not described by (3). We performed the computations also
for various other values of V , keeping ninterp = 10. The result,
shown in Fig. 9(b), depends on V and is not close to π/2 for
any of the considered cases.

In addition, we also study a different path, shown in
Figs. 10(a) and 10(b). For the exchange path, the anyons
are again moved along the arrows in the following order:
orange (light gray), purple (dark gray), and black. The braid-
ing phases are shown in Fig. 9(c). For ninterp = 100, we
obtain γbr = 0.544π for the model wave function and γbr =
−0.489π for an r = 4.1 Hamiltonian. The similarity between
the braiding phases in the two paths suggests the statistical
origin of the phase. However, as seen in Figs. 10(c) and 10(d),
ρNN1(t ) and ρNN2(t ) again vary throughout the path and depart
quite strongly from the ideal value −0.5 (for example, both
exceed −0.65 at some t j values on the exchange path for r =
4.1 Hamiltonian). This again showcases the problems with
separating the anyons and, in consequence, with evaluating
the statistics.

In summary, we have shown that our systems are too small
to convincingly demonstrate fractional statistics of anyons.
Even in the case of the model wave function, the finite-size
effects are notable because the anyons cannot be separated far
enough from each other. For a system described by a nonlocal
Hamiltonian, the local density depletions (which we expect
to be anyons due to the similarity with the model state) are
even harder to separate, although the results display some
similarity to the results from the model wave function. For
a local Hamiltonian, the behavior of the system within the
braiding process bears no resemblance to the behavior of
the model wave function. Nevertheless, the braiding phases
roughly close to π/2 arising on two different paths in the case
of the nonlocal Hamiltonian suggest that their origin might be
statistical.

We note that on the carpet (in the cases we can study
with exact diagonalization) the possibilities of separating
anyons are even worse. Due to smaller η, the quasiholes
are considerably bigger compared to the distance between
nearest-neighboring sites, as one can see in Fig. 6(c) (where
the excess charge density is quite similar to the one for the
model wave function). At the same time, due to the lattice
structure, the distance at which they can be separated in
the most problematic point of the AB path is only slightly
larger.

FIG. 10. Second variant of a braiding path in a triangle with
M0 = 6, M = 5. (a), (b) Excess particle density (8) of the model
wave function at the beginning of the exchange and braiding path,
respectively. The bright green (bright gray) “×” symbols denote the
anyon positions wk . The paths are denoted by arrows. To differentiate
between the sites with positive and negative densities in grayscale,
white “+” symbols are on the former. (c), (d) The local excess
particle density throughout the exchange and AB paths, respectively.
The dotted and solid lines correspond to ρNN1(t ) and ρNN2(t ), respec-
tively, while different colors denote different cases (the model wave
function and the r = 4.1 Hamiltonian). See the discussion for more
details.

VIII. CONCLUSIONS

We have numerically constructed parent Hamiltonians for
Laughlin states in fractal lattices. All the Hamiltonians have
the form of a tight-binding model of hardcore bosons, resem-
bling a Hofstadter or Kapit-Mueller model. It is possible to get
reasonable overlaps (| 〈ψ |�〉 |2 > 0.81) between the ground
state and the model wave function even in local models with
up to third-neighbor hopping (and, for small enough number
of particles, also for models with even smaller maximum
hopping distance). For up to M0 = 4, we also obtain overlaps
| 〈ψ |�̃〉 |2 > 0.9 between the ground state with additional po-
tentials and the model wave function with two quasiholes. In
the case of nonlocal, Kapit-Mueller-like models, the overlap
with a model wave function can be nearly perfect, for both the
case with no anyons and that with quasiholes.
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Moreover, we investigated the braiding process for an
M0 = 6 triangle. We analyzed the finite-size effects in the
model wave function (which displays fractional statistics
clearly in large fractal lattices [27]), showing they distort the
braiding phase in the small system considered in this work
and do not allow one to separate the anyons clearly. Then
we compared the braiding process for a model wave function
and a nonlocal Hamiltonian, showing some similarity between
these cases (including braiding phases relatively close to π/2
on two paths in both cases), providing a reason for hope
that a similar Hamiltonian might allow to observe fractional
statistics unambiguously for a larger structure.

We intend the results obtained in this work to be a bridge
between the model wave functions and tight-binding models.
Our Hamiltonians are considerably simpler than the exact
parent Hamiltonians proposed before (even in the nonlocal
case), while still retaining the connection with model wave
functions.

We note that within the approach used in this work the
Hamiltonians have to be determined separately for each lattice
and system size. Thus, similarly to the exact Hamiltonian
from [27], they depend on the size and shape of the sys-
tem. In this work we concentrated on system sizes available

in exact diagonalization. However, one can use the method
also for bigger systems. The procedure of finding a parent
Hamiltonian requires operating on the full many-body basis
of the system, composed of

(N
M

)
states, but does not require

diagonalizing any matrix of size
(N

M

) × (N
M

)
. Thus, while the

system size is limited, the limitation is less strict than in the
exact diagonalization procedure.

We expect that the method used in our paper can be ap-
plied to the non-Abelian bosonic Moore-Read states as well.
Bosonic lattice Moore-Read states were defined for fractal
lattices with three-particle onsite hardcore interaction (sites
occupied with up to two particles) [48]. Analogy with the
Kapit-Mueller model in two dimensions [49] suggests that
combining such an interaction with single-particle terms may
be enough to construct a parent Hamiltonian for this state.
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surfaces, ChemPhysChem 20, 2262 (2019).

[13] S. N. Kempkes, M. R. Slot, S. E. Freeney, S. J. M. Zevenhuizen,
D. Vanmaekelbergh, I. Swart, and C. M. Smith, Design and
characterization of electrons in a fractal geometry, Nat. Phys.
15, 127 (2019).

[14] X.-Y. Xu, X.-W. Wang, D.-Y. Chen, C. M. Smith, and X.-M.
Jin, Quantum transport in fractal networks, Nat. Photon. 15, 703
(2021).

[15] T. Biesenthal, L. J. Maczewsky, Z. Yang, M. Kremer, M. Segev,
A. Szameit, and M. Heinrich, Fractal photonic topological insu-
lators, Science 376, 1114 (2022).

[16] D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, and
A. Browaeys, An atom-by-atom assembler of defect-free ar-
bitrary two-dimensional atomic arrays, Science 354, 1021
(2016).

[17] D. Barredo, V. Lienhard, S. de Léséleuc, T. Lahaye, and A.
Browaeys, Synthetic three-dimensional atomic structures as-
sembled atom by atom, Nature (London) 561, 79 (2018).

[18] S. Weber, R. Bai, N. Makki, J. Mögerle, T. Lahaye, A.
Browaeys, M. Daghofer, N. Lang, and H. P. Büchler, Experi-
mentally accessible scheme for a fractional Chern insulator in
Rydberg atoms, PRX Quantum 3, 030302 (2022).

[19] X. Wu, F. Yang, S. Yang, K. Mølmer, T. Pohl, M. K. Tey,
and L. You, Manipulating synthetic gauge fluxes via multicolor
dressing of Rydberg-atom arrays, Phys. Rev. Res. 4, L032046
(2022).

[20] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Realization of the Hofstadter Hamiltonian with
Ultracold Atoms in Optical Lattices, Phys. Rev. Lett. 111,
185301 (2013).

[21] F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A.
Vernier, T. Lahaye, and A. Browaeys, Single-Atom Trapping in

063315-11

https://doi.org/10.1007/BF02727953
https://doi.org/10.1103/PhysRevLett.49.957
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1038/s41567-020-1019-1
https://doi.org/10.1126/science.aaz5601
https://doi.org/10.1126/science.abi8794
https://doi.org/10.1126/science.abi8378
https://doi.org/10.1126/science.1125894
https://doi.org/10.1038/nchem.2211
https://doi.org/10.1002/cphc.201900258
https://doi.org/10.1038/s41567-018-0328-0
https://doi.org/10.1038/s41566-021-00845-4
https://doi.org/10.1126/science.abm2842
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1038/s41586-018-0450-2
https://doi.org/10.1103/PRXQuantum.3.030302
https://doi.org/10.1103/PhysRevResearch.4.L032046
https://doi.org/10.1103/PhysRevLett.111.185301


JAWOROWSKI, IVERSEN, AND NIELSEN PHYSICAL REVIEW A 107, 063315 (2023)

Holographic 2D Arrays of Microtraps with Arbitrary Geome-
tries, Phys. Rev. X 4, 021034 (2014).

[22] M. E. Tai, A. Lukin, M. Rispoli, R. Schittko, T. Menke,
D. Borgnia, P. M. Preiss, F. Grusdt, A. M. Kaufman, and
M. Greiner, Microscopy of the interacting Harper-Hofstadter
model in the two-body limit, Nature (London) 546, 519
(2017).

[23] C. L. Hung, A. González-Tudela, J. I. Cirac, and H. J.
Kimble, Quantum spin dynamics with pairwise-tunable, long-
range interactions, Proc. Natl. Acad. Sci. USA 113, E4946
(2016).

[24] J. M. Harrison, J. P. Keating, and J. M. Robbins, Quantum
statistics on graphs, Proc. R. Soc. A 467, 212 (2011).

[25] J. M. Harrison, J. P. Keating, J. M. Robbins, and A. Sawicki,
n-particle quantum statistics on graphs, Commun. Math. Phys.
330, 1293 (2014).
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