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Proximity effect and spatial Kibble-Zurek mechanism in atomic Fermi gases
with inhomogeneous pairing interactions

Bishal Parajuli and Chih-Chun Chien *

Department of Physics, University of California Merced, Merced, California 95343, USA

(Received 20 March 2023; accepted 8 June 2023; published 27 June 2023)

Introducing spatially tunable interactions to atomic Fermi gases makes it feasible to study two phenomena, the
proximity effect and spatial Kibble-Zurek mechanism (KZM), in a unified platform. While the proximity effect
of a superconductor adjacent to a normal metal corresponds to a step-function quench of the pairing interaction
in real space, the spatial KZM is based on a linear drop of the interaction that can be modeled as a spatial
quench. After formulating the Fermi gases with spatially varying pairing interactions by the Bogoliubov–de
Gennes equation, we obtain the profiles of the pair wave function and its correlation function to study their
penetration into the noninteracting region. For the step-function quench, both correlation lengths from the
pair wave function and its correlation function follow the BCS coherence length and exhibit the same scaling
behavior. In contrast, the scaling behavior of the two correlation lengths are different in the spatial quench,
which then allows more refined analyses of the correlation lengths from different physical quantities. Moreover,
adding a weakly interacting bosonic background does not change the scaling behavior. We also discuss relevant
experimental techniques that may realize and verify the inhomogeneous phenomena.
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I. INTRODUCTION

Cold atoms have been a versatile platform for studying fun-
damental physics and simulating complex many-body physics
[1–3]. Developments of spatially resolved manipulations of
the interactions between atoms beyond conventional means
[4–11] allow cold atoms to exhibit interesting inhomoge-
neous phenomena. Here we study atomic Fermi superfluid
with controllable inhomogeneous interactions to revisit two
seemingly different phenomena, the proximity effect of su-
perconductors [12] and spatial Kibble-Zurek mechanism [13],
in an integrated framework. The origin of both phenomena
comes from the concept of quantum phase transition, where
driving the parameters of the Hamiltonian across a critical
point causes a fundamental change of the ground state [14].
The pairing interaction will be the parameter separating the
broken-symmetry Fermi superfluid and the symmetric normal
gas in this study.

When a superconductor (SC) is in contact with a nor-
mal metal (NM), the Cooper pairs from the SC penetrate
into the NM with a characteristic length determined by the
BCS coherence length [12,15], a phenomenon known as
the proximity effect. The NM acquires some properties of
the SC, such as a reduction in the resistance and the ability
to carry a supercurrent [16]. The proximity effect results from
a sudden change of the pairing interaction across the SC-NM
interface, so it may be thought of as a phase transition in
space. The proximity effect in other heterostructures has been
extensively studied, including a superconductor-quasicrystal
hybrid ring [17], disordered and quasiperiodic systems [18],
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superconducting thin films [19], and a normal-metal super-
conducting slab [20]. Experimental [21,22] and theoretical
[20,23–25] studies of niobium-gold layers suggest that the
proximity effect may create topological superconductivity. In
addition, experimental data of granular SC-NM structures are
shown to agree with the theory [12] in the weak-coupling
limit. Furthermore, there has been extensive research on the
proximity effect of ferromagnet-superconductor heterostruc-
tures [26], which may give rise to the Majorana bound
state [27].

In contrast, the Kibble-Zurek mechanism (KZM) [28–31]
studies the reaction of a system crossing a continuous phase
transition. The systems can be driven by a time-dependent
or time-independent ramp. The KZM has inspired a plethora
of theoretical [13,32–51,53] and experimental [52,54–64]
studies to verify or compare the Kibble-Zurek scaling. The
majority of the investigations have focused on time-dependent
quenches of the parameters, where the excitations follow
a power-law dependence of the quench rate [37,40,41,45],
including the Bose-Hubbard model [47–51] and spinor
Bose-Einstein condensates (BECs) [52,53,65]. As a system
approaches a critical point within ε, the reaction time τ di-
verges as τ ∼ |ε|−νz, which determines how fast the system
can react. After the system is driven into the broken-symmetry
phase, the density of topological excitations reflects the frozen
correlation length ξ ∼ τ

ν/(1+νz)
Q , where τQ is the characteristic

quench time and ν and z are the critical exponents from the
corresponding phase transition. The dynamics of the ground
state of Fermi superfluid following a time quench has also
been studied [66]. Additionally, there have been studies be-
yond the mean-number analysis of the KZM [67–70].

Meanwhile, the time-independent KZM, also known as the
spatial KZM, considers a linear ramp of the interaction and
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analyzes the scaling in the vicinity of a critical point in real
space separating a broken-symmetry phase and a symmetric
phase. The spatial KZM has been formulated and summa-
rized in Refs. [36,46,53] with applications to the quantum
transverse-field Ising model [36,46] and spin-1 BEC [53].
In the spatial KZM, the order parameter or its correlation
function penetrates into the symmetric phase. Different from
the abrupt drop of the interaction in the proximity effect, the
linear ramp of the interaction introduces an additional length
scale. For a typical continuous phase transition in a uniform
system, the correlation length ξ diverges near the critical point
as ξ ∼ |ε|−ν [71]. In the spatial KZM, the correlation length
freezes out within the transition region where the interaction is
linearly ramped to zero, which in turn determines the charac-
teristic length of the penetration into the symmetric phase. The
correlation length on the symmetric phase side follows the
scaling behavior ξ ∼ α−ν/(1+ν). Here α measures the slope of
the ramp in real space, which is the counterpart of the quench
rate in a time-dependent quench. Importantly, the spatial KZM
keeps the whole system in equilibrium, which is very different
from the nonequilibrium nature of the time-dependent KZM.
The trade-off is that the spatial KZM determines only one
exponent ν instead of two as in the time-dependent KZM.
Previous theoretical studies analyzed possible structures of
atomic Fermi gases with inhomogeneous pairing interactions
[72,73] but did not explore the spatial KZM.

By formulating the Bogoliubov–de Gennes equa-
tion [74,75] for two-component atomic Fermi gases with
inhomogeneous pairing interactions dropping from a
constant value to zero, we extract the BCS coherence
length, pair-wave-function correlation length, and pair-pair
correlation length and compare their scaling behavior. If
the pairing interaction drops to zero abruptly, we call it a
step-function quench and the system simulates the proximity
effect in SC-NM heterostructures. If the interaction drops
according to a linear ramp, we call it a spatial quench and
show that the system exhibits the spatial KZM. While the
BCS coherence length dominates in the step-function results,
the correlation lengths from the pair wave function and its
correlation function lead to different scaling behavior in the
spatial quench. The scaling of the correlation length from
the pair wave function follows the spatial KZM based on
the BCS theory at T = 0, but that of the pair correlation
function exhibits observable deviation. Therefore, the spatial
KZM of Fermi superfluid is able to differentiate different
correlation lengths. By adding a bosonic background in the
miscible phase, we confirm the scaling of the coherence and
correlation lengths of the fermions stay intact. Importantly,
we show the scaling behavior can be established in the
ground states of finite systems in equilibrium, which extends
available probes of quantum phase transitions.

The rest of the paper is organized as follows. Section II
briefly reviews the mean-field theory of two-component
Fermi gases with attractive interactions and its applications
to ultracold fermionic atoms. Section III describes the two
quench protocols and their relevance to previous studies.
Section IV presents the correlation lengths and their scaling
behavior in the two quench protocols and explains the mech-
anism behind the observations. Section V contrasts the subtle
differences between the spatial KZM in Fermi gases and

magnetic systems and discusses possible experimental tech-
niques for realizing and measuring the inhomogeneous
phenomena studied here. Section VI summarizes our work.

II. THEORETICAL BACKGROUND

A. Two-component fermions with attractive interaction

The second-quantization Hamiltonian for two-component
fermions labeled by σ =↑,↓ with an effective attractive in-
teraction Veff is given by

H =
∑

σ

∫
dr ψ†

σ (r)hσ (r)ψσ (r)

− 1

2

∑
σ,σ ′

∫∫
dr dr′Veff(r, r′)ψ†

σ (r)ψ†
σ ′ (r′)ψσ ′ (r′)ψσ (r).

(1)

Here ψ†
σ (r) [ψσ (r)] is the fermion creation (annihilation)

operator with spin σ at location r and hσ (r) = − h̄2

2m ∇2 +
Vext(r) − μσ . The BCS mean-field approximation then leads
to [76]

HBCS =
∑

σ

∫
dr ψ†

σ (r)hσ (r)ψσ (r)

+
∫∫

dr dr′[	(r, r′)ψ†
↑(r)ψ†

↓(r′) + H.c.]

+
∫∫

dr dr′|	(r, r′)|2/Veff(r, r′). (2)

The gap function 	(r, r′) is defined as

	(r, r′) = −Veff(r − r′)〈ψ↓(r′)ψ↑(r)〉. (3)

Here 〈O〉 is the ensemble average of operator O. We will focus
on the case where the two components have equal population
with the same chemical potential μ.

B. Bogoliubov–de Gennes equation

The Bogoliubov–de Gennes transformation is given by
[74,75]

ψ↑(r) =
∑

ñ

[uñ1
↑ (r)γñ1 − vñ2∗

↑ (r)γ †
ñ2],

ψ↓(r) =
∑

ñ

[uñ2
↓ (r)γñ2 + vñ1∗

↓ (r)γ †
ñ1], (4)

which diagonalizes the BCS Hamiltonian (2) into the form

HBCS =
∑
ñw

Eñwγ
†
ñwγñw + Eg, (5)

where w = 1, 2 represents the two components of the quasi-
particle operators and Eg is the ground-state energy given by

Eg = |	|2
Veff

+ ∑
ñ,w(εñw − Eñw ). Here εñw is the noninteracting

(Veff = 0) counterpart of the excitation energy Eñw. The coef-
ficients of γñw and γ

†
ñw in the canonical transformation can

be determined by the Bogoliubov–de Gennes (BdG) equa-
tion [77]. In the absence of spin-orbit coupling, the BdG
equation is block diagonalized into two sets of equations.
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Explicitly,

∑
r′

(
h↑(r, r′) 	(r, r′)

	∗(r′, r) −h∗
↓(r, r′)

)(
uñ1

↑ (r′)

vñ1
↓ (r′)

)
= Eñ1

(
uñ1

↑ (r)

vñ1
↓ (r)

)
,

(6)

with a similar matrix equation for ñ2. Here hσ (r, r′) =
hσ (r)δ(r − r′).

The wave function u↑ is coupled only to the wave func-
tion v↓ and similarly for u↓ and v↑. A symmetry of the
two sets of the BdG equations in the absence of spin-orbit

coupling leads to (
uñ2

↓ (r)

vñ2
↑ (r)

) = (
vñ1∗

↓ (r)

−uñ1
↑ (r)

) and Eñ2 = −Eñ1. The

symmetry implies that we can solve one of the two sets
of equations and focus on the positive-energy states. The
quasiparticle operators obey 〈γ †

ñwγm̃v〉 = δñm̃δwv f (Eñw ) and

〈γñwγm̃v〉 = 〈γ †
ñwγ

†
m̃v〉 = 0. Here f (Eñw ) = (eEñw/KBT + 1)−1

is the Fermi distribution function. From now on, we drop
the indices 1,2 and ↑,↓ from the quasiparticle wave func-
tions. The gap function (3) then becomes 	(r, r′) = Veff(r −
r′)

∑′
ñuñ

↑(r)vñ∗
↓ (r′) tanh(Eñ/kBT ). Here

∑′
ñ means the sum-

mation is over the positive-energy states.

C. Atomic Fermi gases

When applying the BCS theory to two-component
fermionic atoms, the two-body scattering length a3D serves
as an indicator of the interaction between atoms [2,3], which
can be tuned by a magnetic field. For many-body sys-
tems, the effective interaction may be approximated by a
contact interaction with coupling constant g3D. Away from
resonance, g3D = 4π h̄2a3D

m . However, Feshbach resonance has
been used for studying BCS superfluids of cold atoms and
the BCS–Bose-Einstein-condensation crossover [2,3]. Near
a resonance, the renormalized interaction is 1

g3D
= m

4π h̄2a3D
−

1
V

∑
k

1
2εk

. Here εk is the dispersion of noninteracting fermions
and V is the system volume. For fermionic superfluids of cold
atoms, a3D < 0 indicates the conventional BCS superfluid
while a3D > 0 indicates a condensate of tightly bound pairs.

While the physics of the proximity effect and spatial
KZM is essentially one dimensional, we consider quasi-one-
dimensional (quasi-1D) systems here for two reasons. First,
the Mermin-Wagner theorem [71] rules out long-range order
in one dimension breaking a continuous symmetry, so Fermi
superfluid in a quasi-1D setup is more appropriate. Second,
the discussion here will be relevant to the elongated cigar-
shape atomic clouds in experiments. In quasi-1D Fermi gases,
the 1D effective coupling constant maybe expressed as [78]
g1D = 2h̄2a3D

ma2
⊥

1
1−Aa3D/a⊥

, where A is a constant associated with
the confinement-induced resonance and a⊥ is the characteris-
tic length in the transverse direction. The effective interactions
switch from attractive to repulsive at the confinement-induced
resonance A = a⊥/a3D. Therefore, g1D may be expressed as

g1D = − 2h̄2

ma1D
, (7)

with the 1D scattering length given by a1D = − a2
⊥

a3D
(1 −

Aa3D/a⊥). We remark that a quasi-1D BCS–Bose-Einstein-
condensation crossover occurs when the chemical potential

changes sign because a1D is always positive. Hereafter we will
drop the subscript 1D and implicitly assume strong confine-
ments in the transverse directions.

The effective interaction in atomic Fermi gases is dom-
inated by the contact interaction valid at low temperatures,
so Veff(r − r′) = −g(r)δ(r − r′). Thus, 	(r, r′) = 	(r′, r) =
	(r)δ(r − r′). We consider equal population of the two com-
ponents N↑ = N/2 = N↓, so μσ = μ. For a two-component
Fermi gas in a 1D box of length L in the x direction, we
discretize the space as x/L = [0, 1] using nx grid points. Here
x j = jδx, with δx = L/nx and j = 0, 1, 2, . . . , nx. The Lapla-
cian operator is represented by using the finite-difference
method. In the discretized form with the subscripts i, j de-
noting the locations on the grid, the BdG equation becomes

∑
j

(
hi j 	i j

	∗
i j −hi j

)(
uñ

j

vñ
j

)
= Eñ

(
uñ

i

vñ
i

)
. (8)

Note that for s-wave pairing, 	i j = 0 if i �= j. The BdG
Hamiltonian has the size of 2nx × 2nx and we take only the
positive-energy eigenstates for the calculations of the gap
function and density.

The fermion density of each component is ρσ (x) =
〈ψ†

σ (x)ψσ (x)〉 and the total density ρ(x) = ∑
σ ρσ (x) be-

comes

ρ(x) = 2
∑

ñ

′|vñ(x)|2. (9)

The total fermion number is N = N↑ + N↓ = ∫ L
0 ρ(x)dx. The

gap function is given by

	(x) = −g(x)
∑

ñ

′
uñ(x)vñ(x). (10)

However, we distinguish the pairing correlations from the gap
function, which is necessary in studying Fermi gases with
inhomogeneous interactions. The pair wave function is [79]

F (x) = 〈ψ↑(x)ψ↓(x)〉 =
∑

ñ

′
uñ(x)vñ(x). (11)

We also consider the pair-pair correlation function given by

C(r) = F (x)F (x + r). (12)

Here the overline denotes an average over x. The correlation
function is important in defining the critical exponent in ho-
mogeneous systems [71] and extracting the scaling behavior
in systems with inhomogeneous interactions.

III. INTERACTION QUENCH IN REAL SPACE

To study the analogs of the proximity effect and spatial
KZM using atomic Fermi gases in a quasi-1D box potential
of length L, we consider a spatially dependent attractive in-
teraction g(x) between the two components. We use the Fermi
energy E0

f and Fermi wave vector k0
f of a noninteracting Fermi

gas with the same particle number to rewrite physical quanti-
ties in dimensionless forms. For example, the dimensionless
interaction strength g′(x) is defined by g(x) = −g′(x)E0

f /k0
f .
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FIG. 1. Plot of the spatial quench (solid line) and step-function
quench (dashed line) of the pairing interaction.

A. Step-function quench and proximity effect

To simulate the sudden drop in the interaction, we consider
the step-function quench of the pairing interaction that van-
ishes suddenly at x = xc. For the step-function quench,

g′(x) =
{

c, 0 � x/L < xc/L

0, 1 > x/L � xc/L.
(13)

We typically set xc = L/2, where the order parameter van-
ishes. The interaction profile is illustrated in Fig. 1.

In the study of the proximity effect in a SC-NM junction,
the pairing interaction is assumed to vanish across the in-
terface. Previous studies [12,15,16] modeled the leakage of
Cooper pairs from the superconductor into the normal metal
with a characteristic length associated with the BCS coher-
ence length. The decay of F (x) in the normal region at finite
temperatures has the exponential form [12,15]

F (x) ∼ F0e−(x−xc )/ξF , T > 0. (14)

Here ξF is the correlation length associated with F . However,
at zero temperature, F (x) is no longer decaying exponentially
with the distance y = x − xc from the interface. Instead, it
follows a power law 1/y, as shown in Refs. [12,15,80]. Thus,
the scaling behavior is

F (x)

	̃

1

k f
∼ ξF

x − xc
, T = 0. (15)

Here 	̃ = 	/E0
f is the dimensionless bulk gap in the super-

fluid region. The scaling behavior was obtained by solving the
Gor’kov equation in Refs. [12,15] and verified in SC-NM hy-
brid rings [18], superconducting thin films [19], niobium-gold
layers [25], and normal metal on top of a superconducting
slab [20]. The reason for the slower power-law decay of F (x)
into the normal metal at zero temperature is because thermal
excitations are absent in restricting the penetration of Cooper
pairs. We mention that Ref. [73] studied the proximity effect
in atomic Fermi superfluids with different finite pairing in-
teractions on both sides to extract the penetration depth, so
there was no quantum critical point in real space like our
setup. Moreover, having multiple superfluid phases in one
setup may need one of them to be beyond the BCS regime and
cause complications before the BCS behavior is thoroughly
investigated.

B. Spatial quench and spatial KZM

On the other hand, to investigate the spatial KZM, we con-
sider a more general type of quench of the pairing interaction.
For a spatial quench,

g′(x) =

⎧⎪⎨
⎪⎩

c, 0 � x/L < xc/L − d

− c
d

x−xc
L , xc/L − d � x/L � xc/L

0, 1 > x/L > xc/L.

(16)

Again, we typically set xc = L/2, where the order parameter
vanishes. Here c and d are dimensionless parameters and
−c/d is the slope of the linear ramp shown in Fig. 1.

In the spatial KZM, the freezing out of the correlation
length within the linear-ramp regime is the key to extract
the scaling behavior of the correlation length. Explicitly, we
consider a dimensionless parameter ε to identify the distance
to the critical point, which occurs at xc separating the two
phases, with the relation

ε(x) = α(x − xc). (17)

We choose x < xc to represent the broken-symmetry (su-
perfluid) phase and x > xc to represent the symmetric
(normal-gas) phase. For a typical second-order phase tran-
sition in a uniform system, the correlation length diverges
according to ξ ∼ ε−ν near the critical point. For the spatial
quench, the critical point is at xc in real space, so the local
correlation length diverges as ξ ≈ (α|xc − x|)−ν [46]. Within
a distance |xh − xc| from xc, the correlation length reaches
the same order as the distance |xh − xc| ≈ (α|xc − xh|)−ν .
This sets a frozen correlation length of ξ ∼ α−ν/(1+ν). Thus,
the spatial KZM predicts that the penetration into the symmet-
ric phase decays with a characteristic length ξ .

However, the zero-temperature BCS theory near g = 0
does not feature a power-law divergence of ξ . The BCS co-
herence length is [76,79]

ξ	 = h̄2k f

m	
. (18)

The Fermi momentum is related to the local density via k f =
πρ/2 in one dimension. In the weakly interacting limit, the
gap function at zero temperature is given by [2,76]

	 = 8

e2
E f e−1/N g, (19)

where N = m
π h̄2k f

is the density of states at the Fermi energy

in one dimension. Therefore, the BCS coherence length in the
weakly interacting limit (g → 0) becomes

ξ	 = e2

4k f
e1/N g. (20)

We caution that the expression is nonanalytic in g. To study the
spatial quench, we identify α = c

dL , so g′(x) = −α(x − xc) in
the ramp-down region and remark that the sign convention
does not affect the scaling analysis. The frozen-out correla-
tion ξfr occurs when Eq. (20) is met by g′ = αξfr, so ξfr ∼
ek f /NαξfrE f . After simplifying the expression with dimension-
less quantities, such as ξ̃fr = ξfr/L, we obtain

f (ξ̃fr ) ≡ ξ̃fr

2π
ln

(
4k f L

e2
ξ̃fr

)
∼ 1

αL
. (21)
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TABLE I. Comparison of continuous phase transition in a homo-
geneous system, step-function quench, and spatial quench described
by the spatial KZM. Here xc is the location where the parameter drops
to zero, separating the symmetric and symmetry-broken phases in
real space; ξ is the correlation length; ε is the distance to the critical
point; α is the slope of the parameter ramp; N is the density of state
at the Fermi energy; and vF0 and 	0 are the bulk Fermi velocity and
gap on the superfluid side, respectively. We emphasize that all three
cases are in equilibrium.

Continuous Step-function Spatial quench
Feature phase transition quench (spatial KZM)

Parameter uniform sudden drop linear ramp
Structure uniform coexistence coexistence
Transition whole system x = xc x = xc

Penetration yes yes
Power law ξ ∼ ε−ν ξ ∼ α−ν/(1+ν )

BCS (T = 0) ξ ∼ e1/N g ξ ∼ h̄vF0/	0 ξ ln(ξ ) ∼ 1/α

Thus, the spatial KZM for Fermi superfluid at zero temper-
ature has the above form due to the nonanalytic behavior of
the T = 0 BCS theory. To better contrast the mechanisms and
features of the step-function and spatial quenches, we com-
pare them with the corresponding continuous phase transition
of a uniform system in Table I.

IV. RESULTS AND DISCUSSION

A. Numerical calculations

To solve the BdG equation, we begin with chemical po-
tential μ and an initial trial for 	(x) and find the eigenvalues
and eigenfunctions from the BdG equation. We then assemble
	(x) from the eigenfunctions using Eq. (10). The new gap
function is used in the BdG equation to find the new eigen-
values and eigenfunctions. We continue the iteration until
the consistency condition

∫ |	old − 	new|dx < 10−5 is met.
We then adjust μ and repeat the above steps until we meet the
condition N = ∫

ρ(x)dx using Eq. (9). The number of grid
points nx to discretize the real space imposes a momentum
cutoff kmax = πnx

2L . We choose nx large enough that the results
are insensitive to further changes of nx. Most of our calcu-
lations are for half filling with nx = N . The results not far
away from half filling are qualitatively the same. However,
physical quantities may have relatively large fluctuations far
way from half filling due to the small ratio of 	(x)/E0

f . We
have verified that for uniform BCS superfluid, the BdG re-
sults from our calculations reproduce the known results in the
literature [2,76].

In both step-function and spatial quenches, 	(x) drops to
zero when g(x) = 0 according to Eq. (10). However, the pair
wave function F (x) can penetrate into the normal region with
g(x) = 0. We will analyze the penetration in different set-
tings and characterize the correlation length ξ . The correlation
function on the noninteracting side according to Eq. (12) can
be evaluated by

C(r) = 1

nx − r′
∑

n+r′�nx

F (xn)F (xn+r′ ), (22)

FIG. 2. Profiles of (a) density, (b) gap function, and (c) pair wave
function in a step-function quench. The vertical dashed lines indicate
where the pairing interaction drops to zero. Here nx = 2000, N =
2000, and c = 1.

where r = r′dx, n = 1, . . . , nx, and r′ = 1, . . . , nx/2 are
integers.

To extract the scaling behavior from the quench protocols,
we fit F (x) in the noninteracting region by the exponential
form (14) and the power-law form (15). As expected, the
power law fits F (x) better in both step-function and spa-
tial quenches. However, the exponential form may produce
similar exponents even though the fitting does not faithfully
go through the data. On the other hand, fitting the pair-pair
correlation function C(r) with a power-law similar to Eq. (15)
results in significant deviations in both step-function and spa-
tial quenches, but C(r) can be fitted reasonably well with the
exponential function C0 exp(−r/ξC ). We extract the correla-
tion lengths from F (x) and C(r) and denote them by ξF and
ξC , respectively, and introduce the dimensionless quantities
ξ̃C,F = ξC,F /L.

We also evaluated the BCS coherence length defined in
Eq. (18) by using the bulk values on the superfluid side. In
general, the evaluation of ξ	 becomes less reliable when the
bulk 	 suffers strong fluctuations in the weakly interacting
regime with c < 1. On the other hand, there are also restric-
tions on the fitting of F (x) and C(r), as will be explained
below. In our analysis, we stay within the reliable regimes for
extracting the scaling behavior.

B. Step-function quench

As shown in Fig. 2, though the density profile is basically
uniform inside the box in the presence of a step-function
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FIG. 3. Correlation lengths in the step-function quench. (a) Pair
correlation function C(r) (solid line) and its exponential fit (dashed
line). (b) Pair wave function F (x) (solid line) and its power-law fit
(dashed line). (c) Scaling behavior with respect to 1/c of ξ̃F = ξF /L
from the power-law fit (squares), ξ̃C = ξC/L from the exponential
fit (triangles), and the BCS coherence length ξ	 = ξ̃	L (circles).
The dashed line represents the BCS approximation of the coherence
length at zero temperature given by Eq. (20). Here nx = 2000 and
N = 2000. In (a) and (b), c = 1.

quench, the order parameter vanishes at the critical point
in real space. For the step-function quench, the correlation
lengths ξF and ξC along with their fitting curves and the BCS
coherence length ξ	 are shown in Fig. 3. The scaling behavior
allows us to extract their exponents. However, the range of
c is limited for ξF and ξC because if c < 1, the gap function
	(x) is small and suffers strong fluctuations in the superfluid
region. If c > 3, the correlation lengths ξF and ξC may go
below the numerical resolution and the fitting also shows
observable deviations.

As suggested in the studies of proximity effects in SC-
NM junctions [12,15,80], the dominant length scale in the
penetration of Cooper pairs is the BCS coherence length ξ	.
Increasing the pairing interaction leads to stronger binding be-
tween the fermions, which results in a smaller BCS coherence
length as the pairs are more tightly bound in real space. One
can also see that increasing the pairing interaction increases
the bulk 	 and decreases the BCS coherence length according
to Eq. (18).

Figure 3(c) shows that the correlation lengths ξF and ξC and
the BCS coherence length ξ	 from the step-function quench
all exhibit the same scaling behavior as in Eq. (20). Hence,
our results support the proposition that the correlation lengths
ξF and ξC follow ξ	, so the correlation lengths decrease with
the BCS coherence length as the pairing interaction increases.
Our results also confirm that ξ	 from the superfluid region
may be considered as the only relevant length scale besides the
box size L in a step-function quench. The chemical potential
in the study of the step-function quench is about μ ∼ 0.9E0

f ,
indicating the system is still in the BCS regime. Moreover,
the correlation lengths follow the BCS coherence length in
the weakly interacting limit, as shown in Fig. 3. Hence, we
have presented a fair comparison of the different coherence
and correlation lengths in the step-function quench.

C. Spatial quench

For the spatial quench, the pairing interaction ramps down
linearly from the superfluid region to zero in the normal-gas
region within a distance d . Figure 4 shows the profiles of
density, order parameter 	, and pair wave function F for a
selective case of spatial quench. The linear-ramp region of
the interaction leads to more complicated behavior between
the bulks of the superfluid and normal gas. For F (x), the
power-law form (15) again fits the penetration better, but
the exponential form (14) gives close answers despite more
significant deviations. In contrast, the power-law form cannot
reasonably fit to C(r) in the normal-gas regime, while the ex-
ponential form C0 exp(−r/ξC ) fits reasonably well, as shown
in Figs. 5(a) and 5(b).

After extracting the correlation lengths ξF and ξC from
the fitting, their scaling behaviors according to Eq. (21) are
analyzed in Fig. 5(c). Despite the nonanalytic behavior of
f (ξ ), the correlation length ξF from the pair wave function
follows the relation (21), as the linear fit on the plot suggests.
In contrast, the correlation length ξC from the correlation func-
tion exhibits observable deviations from the scaling behavior
of Eq. (21), possibly due to higher-order correlations. There-
fore, the spatial quench of Fermi superfluid differentiates the
correlation lengths ξF and ξC from the BdG equation and the
correlation length ξF follows the scaling behavior predicted
by the spatial KZM according to the mean-field BCS theory.

Different from the step-function quench, here we have a
larger window to check scaling of the correlation lengths with
respect to the slope α for the spatial quench. Moreover, we
have checked the scaling behavior of the correlation lengths
independently for the parameters c and d and confirmed the
consistency of the scaling with respect to α. For the range of
α tested in our study, the chemical potential is around μ ∼
0.9E0

f , again indicating the system is in the BCS regime with
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FIG. 4. Profiles of (a) density, (b) gap function, and (c) pair wave
function in a spatial quench. The vertical dashed lines indicate where
the interaction drops to zero. Here nx = 2000, N = 2000, c = 1, and
d = 0.1.

half filling. However, the chemical potential can change for
lower filling as α changes. The density change that affects k f

is virtually nonobservable as d changes in our study.
We mention that for the range of α that we tested in the

spatial quench, the correlation lengths may mimic the power-
law scaling with respect to α. As shown in Fig. 6, both ξF

and ξC can be locally fitted by a power law and extract the
corresponding exponent. We found the exponent from ξC is
close to −1/3, but that from ξF is more than twice larger.
While this local analysis of power-law behavior again shows
that the spatial KZM of Fermi superfluid in the BCS frame-
work indeed differentiates the correlation lengths from the
pair wave function and its correlation function, the nonana-
lytic behavior of the BCS theory at T = 0 leading to Eq. (21)
shows that Fig. 5(c) captures the full scaling of the correlation
lengths, while Fig. 6 shows only how the nonanalytic behavior
may disguise itself as power-law behavior in a local analysis.
We also remark that the Ginzburg-Landau theory of Fermi
superfluid [76] only works near the transition temperature,
which may not apply to our analysis of the T = 0 results.

D. Bosonic background

After discussing the step-function and spatial quenches
of Fermi gases, we consider the quenches in the presence
of a uniform bosonic background, which may come from
sympathetic cooling [81] or boson-fermion superfluid mix-
tures [82]. In a simple setting, we consider fermions with
two components and bosons in the same quasi-1D box of

FIG. 5. Correlation lengths in the spatial quench. (a) C(r) (solid
line) and its exponential fit (dashed line). (b) F (x) (solid line) and its
power-law fit (dashed line). Here nx = 2000, N = 2000, c = 5, and
d = 0.1. (c) Scaling behavior according to Eq. (21) with respect to
1/αL for ξ̃F = ξF /L (starts) and ξ̃C = ξC/L (circles). The dashed line
is a linear fit to f (ξ̃F ). Here α = c/dL, nx = 2000, and N = 2000.

FIG. 6. Local power-law scaling behavior with respect to αL for
ξ̃F = ξF /L (squares) and ξ̃C = ξC/L (triangles). Here nx = 2000 and
N = 2000. The lines are power-law fits with the exponents labeled
next to the data.
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length L. There is attraction between fermions with opposite
spins but repulsion between bosons and between fermions and
bosons. As a first attempt to address the mixture, we consider
only the inhomogeneous pairing interaction g(x) between
the fermions while keeping the other parameters uniform.
By using the fermionic parameters as units, the boson-
boson and boson-fermion coupling constants can be written
in terms of dimensionless quantities as gbb = g′

bbE0
f /k0

f and
gb f = g′

b f E0
f /k0

f , respectively.
Previous studies [83,84] have shown that bosons and

fermions in a binary mixture can form miscible mixtures when
the interspecies interaction is relatively weak or the densities
are low. However, phase-separation structures with inhomoge-
neous densities start to emerge as the interspecies interaction
and densities increase. Moreover, the pressure of bosons is
mainly from the boson-boson interactions, which competes
with the Fermi pressure of the fermions. Since we focus on
the impact of the bosonic background on the quenches of
fermions, we concentrate on the regime when the mixture is in
the miscible phase. Instead of a full analysis of various atomic
boson-fermion mixtures, we check a specific case of 7Li −6 Li
mixtures with equal population of all species. The conditions
g′

b f � g′
bb and half filling are sufficient to maintain a miscible

phase for the selected case. However, the formalism presented
here is generic and can be applied to atomic boson-fermion
mixtures in general.

The total ground-state energy functional of a mixture of
bosons and fermions in a quasi-1D box of length L, assuming
the fermions form a BCS superfluid, is given by

Emix = Eg + Eb + gb f

∫ L

0
dx ρb(x)ρ(x). (23)

Here Eg is the BCS ground-state energy shown in Eq. (5) and
the energy of the bosons is

Eb =
∫ L

0
dx

(
h̄2

2mb
|∂xψb|2 + 1

2
gbb|ψb|4

)
. (24)

In the mean-field description of the ground state, the con-
densate wave function of the bosons is governed by the
Gross-Pitaevskii (GP) equation [1,2]. To find the minimal-
energy configuration, we implement the imaginary-time
formalism [2,76] by searching for the stable solution to the
imaginary-time evolution equation −∂ψb/∂τ = δEmix/δψ

∗
b

in the τ → ∞ limit, starting from a trial initial configura-
tion. The normalization

∫ |ψb|2dx = Nb is imposed at each
imaginary-time increment to project out higher-energy states.
Here τ = it is the imaginary time. Explicitly,

−h̄
∂ψb

∂τ
= − h̄2

2mb
∂2

x ψb + gbbρbψb + gb f ρψb. (25)

The fermions are described by the BdG equation (8) with
the replacement of the discretization of h(x) = − h̄2

2m
∂2

∂x2 −
μ + gb f ρb. The bosonic density is ρb(x) = |ψb(x)|2, while
ρ(x) = 2

∑′
ñ |vñ(x)|2 for the fermions as before.

For a uniform and miscible mixture of bosons and
fermions, the mean-field treatment shifts the chemical poten-
tial of the fermions by gb f ρb, which shows up only in the
diagonal of the BdG equation. Therefore, the gap function

is not affected directly by the bosons. This implies that the
scaling of the fermionic correlation functions are insensitive
to the bosonic background as long as the mixture remains uni-
form and miscible. However, the presence of a step-function
or spatial quench of boson-fermion mixtures in a quasi-1D
box may introduce complications due to the inhomogeneous
pairing interaction and confining potential. We numerically
solve the coupled BdG and GP equations for a miscible boson-
fermion mixture in a quasi-1D box to verify if the exponents
of the fermionic correlation lengths ξF and ξC are affected by
the bosonic background.

To solve the coupled BdG and GP equations by self-
consistent iteration with given numbers of bosons Nb and
fermions N , we begin with the trial chemical potential μ,
boson wave function ψb, and gap function 	(x) and first solve
the BdG equation following the procedure implemented in
the previous sections. The gap function 	(x) and fermionic
density ρ(x) are then obtained from the eigenfunctions uñ(x)
and vñ(x). Next we evolve the imaginary-time evolution equa-
tion (25) to get the ground-state bosonic density ρb(x). We
continue the iterations between the BdG and GP equations un-
til the final convergence of the gap function 	(x) and the
bosonic density

∫ L
0 |ρold

b (x) − ρnew
b (x)|dx < 10−5 is reached.

During the iterations, we also adjust the chemical potential
μ for the BdG equation to meet the fixed number of total
fermions. Similar to the case with only fermions, different
initial states have been used to confirm the ground state
for both species by checking the ground-state energy using
Eq. (23). Since we focus on the case with a uniform bosonic
background, we confine our parameters to g′

b f � g′
bb, where

the convergence to the miscible phase is found in all our trials
of the initial states. Similar to the procedures of step-function
and spatial quenches discussed above, we calculated the pair
wave function F (x) and correlation function C(r) to extract
the corresponding correlation lengths ξF and ξC , respectively.

Samples of the profiles of the density, gap function, and
pair wave function of the step-function and spatial quenches
of fermions in a boson-fermion mixture are shown in Fig. 7.
For the step-function quench, we also evaluate the BCS co-
herence length ξ	 from the bulk values on the superfluid side.
From our numerical results, we found that the inclusion of a
bosonic background with uniform parameters does not alter
the scaling behavior of ξF and ξC of the fermions. All the
scaling from the step-function quench and the spatial quench
of boson-fermion mixtures are within numerical accuracy the
same as those without the bosons, which have been shown in
Figs. 3(c) and 5. As shown in Fig. 7, this is mainly because
the density profile of bosons becomes quite flat already at
relatively small g′

bb, making the bosonic background basically
uniform, and does not further complicate the behavior of the
fermions.

Nevertheless, the phase-separation structures of boson-
fermion mixtures can exhibit various inhomogeneous profiles
already for binary mixtures in the presence of uniform in-
teractions [83,84]. Adding inhomogeneous interactions to the
fermions, such as the step-function or spatial quench of the
pairing interaction studied here, is expected to lead to richer
structures. Extracting the correlation lengths in such highly
inhomogeneous setups will be a challenge and await future
research.
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FIG. 7. Profiles of (a) and (d) density, (b) and (e) gap func-
tion, and (c) and (f) pair wave function of the (a)–(c) step-function
quench and (d)–(f) spatial quench of 6Li in a 6Li-7Li mixture. The
inhomogeneous interaction applies only to the pairing interaction be-
tween the fermions, and other interactions are uniform. The vertical
dashed lines indicate where the interaction drops to zero. For the
step-function quench, nx = 1000, N = Nb = 1000, and c = 1. For
the spatial quench, nx = 1000, N = Nb = 1000, c = 1, and d = 0.1.
For both cases, g′

bb = 0.1 and g′
b f = 0.05.

V. DISCUSSION AND IMPLICATION

We elaborate on some subtle differences between the
spatial KZM in the transverse-field Ising model studied in
Refs. [36,46] and the quasi-1D Fermi gases studied here.
The absence of interaction in the normal-gas region of
the two-component Fermi gas resembles the spatial quench
of the magnetic field in the quantum Ising model [46], where
the field is absent in the ferromagnetic phase. However, the
broken-symmetry phase of the transverse-field Ising model is
in the region without the magnetic field, while the broken-
symmetry phase of the Fermi gas is in the region with finite
pairing interactions.

In the study of the spatial KZM of the quantum transverse-
field Ising model [36,46], it was shown that both the
magnetization, which is the expectation of the local spin
and corresponds to the order parameter, and the spin-spin
correlation function exhibit the same scaling behavior in the
symmetric phase. The exponents extracted from both quan-
tities agree with the spatial KZM prediction. In contrast, we
have shown that for the spatial KZM of Fermi gases with
spatially varying pairing interactions, the scaling behavior of
the correlation length from the pair wave function F (x) differs
from that from the pair correlation function C(r) because of

the nonanalytic behavior of the T = 0 BCS theory and possi-
ble higher-order correlations. Therefore, the scaling behavior
of the Fermi superfluid with spatial quench of the pairing
interaction exhibits rich contents and extends the scope of the
spatial KZM.

Experimentally, ultracold atoms usually have been subject
to uniform interactions due to the small cloud size compared
to the magnetic field for tuning Feshbach resonance [2,85].
There have been several ways to induce inhomogeneous in-
teractions in cold atoms. One approach is to use optical
techniques to control the interactions between atoms. Exam-
ples include optical Feshbach resonance [4,5,86] and optically
controlled magnetic Feshbach resonance [10,87]. References
[10,88] demonstrated spatial modulation of the interaction in
BECs [10] and 6Li fermions [88] by optical controls with
high speed and precision. Optical techniques may suffer atom
loss and heating, so they are more suitable for changing the
interaction with a short length or timescale. Another approach
is based on magnetic Feshbach resonance and magnetic-field
gradient [11], which allows for longer observation time. Thus,
the inhomogeneous interactions for realizing the step-function
and spatial quenches may become feasible with the rapid de-
velopments in manipulating ultracold atoms. We also mention
that two-component atomic Fermi gases in 3D [89] and 2D
[90] box potentials have been realized, and similar techniques
may realize atomic Fermi gases in quasi-1D box potentials in
the future.

Recent progress in quantum gas microscopy allows map-
ping of site-resolved density or spin correlations of the
Fermi-Hubbard model [91–93]. Reference [94] demonstrates
site-resolved location and spin of each fermion in the at-
tractive Fermi-Hubbard system using a bilayer quantum-gas
microscope and reveals the formation and spatial ordering of
fermion pairs. In addition, rf spectroscopy has been used to
measure the excitation energy that reveals the pairing gap in
atomic Fermi gases [95–98]. Future developments may allow
spatial resolution of the rf spectroscopy for cold atoms. Those
spatially resolved measurements of the pairing correlation of
atomic Fermi gases are promising for observing the scaling
behavior of the step-function and spatial quenches analyzed
here.

VI. CONCLUSION

We have shown that atomic Fermi gases with tunable inter-
actions in real space provide a powerful simulator for studying
the analogs of the proximity effect and spatial KZM. Through
numerical calculations with a step-function or spatial quench
of the pairing interaction, we characterized the penetration of
the pair wave function and pair correlation into the noninter-
acting region. The scaling analyses of the correlation lengths
from the step-function and spatial quenches reveal the similar-
ities and differences of the corresponding quantities. For the
step-function quench, the correlation lengths follow the BCS
coherence length due to the lack of additional length scale in
the system. In contrast, the correlation lengths of the pair wave
function and pair correlation function exhibit different scaling
behavior in the spatial quench. The rapid development in ma-
nipulating and measuring inhomogeneous structures of cold
atoms will allow us to explore more interesting phenomena
on such a unified platform.
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