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Breakup of quantum liquid filaments into droplets
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We investigate how the Rayleigh-Plateau instability of a filament made of a 41K - 87Rb self-bound mixture may
lead to an array of identical quantum droplets, with typical breaking times which are shorter than the lifetime of
the mixture. If the filament is laterally confined, as it happens in a toroidal trap, and atoms of one species are
in excess with respect to the optimal equilibrium ratio, the droplets are immersed into a superfluid background
made by the excess species which provides global phase coherence to the system, suggesting that the droplet
array in the unbalanced system may display supersolid character. This possibility is investigated by computing
the nonclassical translational inertia coefficient. The filament may be a reasonable representation of a self-bound
mixture subject to toroidal confinement when the bigger circle radius of the torus is much larger than the filament
radius.
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I. INTRODUCTION

A new quantum state of matter has been predicted [1] to
occur in ultracold atomic gases composed of binary mixtures
of Bose atoms where the competition between the interspecies
attractive interactions and quantum fluctuations, which pro-
duce a repulsive interaction, may lead to the formation of
self-bound liquid droplets with ultralow densities about eight
orders of magnitude lower than those of, e.g., the prototypical
quantum fluid, namely liquid helium. Such a novel quan-
tum state was first observed experimentally in dipolar Bose
gases [2,3], by exploiting the competition between contact
repulsion and dipole-dipole attraction, and later in ultracold
binary mixtures of Bose atoms [4–7].

Several binary Bose mixtures which may convert into
quantum liquids have been investigated so far. At variance
with the widely studied short-lived homonuclear mixture of
39K atoms in two different hyperfine states, the heteronuclear
41K - 87Rb mixture studied in Ref. [6], which forms a quantum
liquid state when the 41K - 87Rb scattering length a12 becomes
lower than the critical value a12 = −73.6a0 [6] (a0 being the
Bohr radius), is rather long-lived with lifetimes of the order of
several tens of milliseconds, i.e., more than an order of mag-
nitude longer than those characterizing the 39K mixtures [5].
This opens the possibility of studying phenomena whose dy-
namical development requires time periods in the millisecond
range. One such phenomenon is the dynamical instability of
quantum liquid filaments leading to quantum drops formation,
which is the subject of this work.

Liquid filaments (i.e., threads of liquid with the approx-
imate shape of straight, long cylinders), as well as their
dynamical instabilities, are thoroughly studied subjects in
classical fluids dynamics both because of the underlying fun-
damental physical properties and their potential applications.
Experiments in this field, mainly concentrated on viscous

fluids, are interpreted using theoretical approaches based on
the solution of the Navier-Stokes equation subject to appro-
priate boundary conditions. (For an extended review on the
subject see, e.g., Ref. [8] and references therein.)

The stability of a macroscopic liquid filament, modeled
with an infinitely extended cylinder of radius R, was studied
by Plateau [9], who showed that it exists in an unstable equi-
librium and any perturbation with wavelength λ greater than
2πR triggers an instability where the surface tension breaks
the cylinder into droplets. Lord Rayleigh later showed [10]
that for an inviscid and incompressible liquid, the fastest
growing mode occurs when the wavelength of the axial undu-
lation that leads to the fragmentation of the liquid filament into
droplets is equal to λc = 9.01R or, equivalently, kR = 0.697,
where k = 2π/λc (Rayleigh-Plateau instability). When the
filament breaks up, one or more small satellite drops, result-
ing from the necks breaking, may form between the larger
droplets.

Rayleigh-type instabilities are not limited to classical fluid
only, but may affect also quantum fluids. The dynamics of
contraction and breaking of zero-temperature superfluid 4He
liquid thin filaments in vacuum, triggered by the above kind
of instabilities, has recently been addressed [11] using a
4He density-functional-theory approach which accurately de-
scribes superfluid 4He at zero temperature [12].

We investigate here the instability of thin filaments made
of another superfluid system, namely, a quantum liquid made
of an ultracold bosonic 41K - 87Rb mixture. We note that
the instability of a two-component Bose-Einstein conden-
sate has been investigated [13] in the repulsive (immiscible)
regime, where a cylindrical condensate made of one species
surrounded by the other component was found to undergo
breakup into gaseous bubbles.

We consider here a linear thin filament with periodic
boundary conditions imposed at its ends. One can consider
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such a geometry as a limiting case of a mixture subject to a
toroidal confinement when the bigger circle radius of the torus
is much larger than the filament radius.

To study the instability of quantum liquid filaments,
we will use two different approaches. One is the widely
known mean-field Lee-Huang-Yang (MFLHY) approxima-
tion, which provides a reliable description of the binary
mixture in the quantum liquid regime through the solution in
three dimensions of two coupled nonlinear Gross-Pitaevskii
(GP) equations and applies to arbitrary concentrations of the
two species. Since in the quantum liquid state of the 41K - 87Rb
uniform mixture the equilibrium densities of the two compo-
nents are expected to have a fixed ratio, the system can be
effectively described by one single wave function satisfying
an effective GP equation [14]. Inspired by the work carried
out in Ref. [15] for one-component Bose-Einstein Condensate
(BEC) gases, in the second approach we will use a varia-
tional formalism suited to the geometry we are implementing
in the present work. This allows us to reduce the coupled
three-dimensional (3D) GP equations to one effective 1D GP
equation plus an algebraic equation. We verify the feasibility
of this simplified approach by comparing the filament proper-
ties it yields with the ones obtained by solving the 3D coupled
GP equations. Either approach will disclose the timescale for
filament breakup and the appearance of quantum droplets as a
result of its fragmentation.

Also in this work we will address an interesting aspect
arising when one of the species is in excess with respect to the
optimal density ratio and the droplets resulting from filament
breakup are immersed in a superfluid background made by
the species in excess, which provides global phase coherence
to the system and may lead to supersolid behavior. Such
a possibility is investigated by computing the nonclassical
translational inertia associated with this system.

This work is organized as follows. In Sec. II we review
the theoretical approach used to describe the binary mixture
in the quantum liquid regime, which is based on the MFLHY
approximation, and also introduce a simpler yet accurate vari-
ational approach based on a 1D effective equation introduced
some time ago to describe single-component Bose-Einstein
condensates subject to tight radial harmonic confinement [15].
Such an approach is extended here to the quantum liquid
mixture case and is used to address the dynamical instability
of quantum liquid filaments leading to quantum droplets for-
mation. The results are presented in Sec. III and a summary is
given in Sec. IV.

II. METHOD

The Gross-Pitaevskii energy functional for a Bose-Bose
mixture, including the Lee-Huang-Yang correction account-
ing for quantum fluctuations beyond mean field, reads [1,16]

E =
2∑

i=1

∫
dr

[
h̄2

2mi
|∇ψi(r)|2 + Vi(r)ρi(r)

]
+ 1

2

2∑
i, j=1

gi j

∫
dr ρi(r)ρ j (r) +

∫
dr ELHY(ρ1(r), ρ2(r)), (1)

where Vi(r) and ρi(r) = |ψi(r)|2 represent the external po-
tential and the number density of each component (i = 1 for
41K and i = 2 for 87Rb), respectively. The coupling constants
are g11 = 4πa11h̄2/m1, g22 = 4πa22 h̄2/m2, and g12 = g21 =
2πa12h̄2/mr , where mr = m1m2/(m1 + m2) is the reduced
mass. The number densities ρ1 and ρ2 are normalized such
that

∫
V ρ1(r)dr = N1 and

∫
V ρ2(r)dr = N2. The intraspecies

s-wave scattering lengths a11 and a22 are both positive, while
the interspecies one a12 is negative. The scattering parameters
describing the intraspecies repulsion are fixed and their values
are equal to a11 = 65a0 [17] and a22 = 100.4a0 [18]. The
heteronuclear scattering length a12 can be tuned by means of
Feshbach resonances. The onset of the mean-field collapse
regime leading to the quantum liquid state corresponds to
g12 + √

g11g22 = 0, which occurs at a12 = −73.6a0 [6].
The LHY correction is [1,16]

ELHY = 8

15π2

(
m1

h̄2

)3/2

(g11ρ1)5/2 f

(
m2

m1
,

g2
12

g11g22
,

g22ρ2

g11ρ1

)

≡ C(g11ρ1)5/2 f (z, u, x). (2)

Here f (z, u, x) > 0 is a dimensionless function whose ex-
plicit expression for a heteronuclear mixture can be found in
Ref. [16]. Following Ref. [1], we consider this function at the
mean-field collapse u = 1, i.e., ELHY = C(g11ρ1)5/2 f (z, 1, x).
We note that the actual expression for f can be fitted very
accurately with the same functional form of the homonuclear

(m1 = m2) case [19]

f (z, 1, x) = (1 + zα1 x)β1 , (3)

where α1 and β1 are fitting parameters. For the 41K - 87Rb
mixture (z = 87

41 ) one has [19] α1 = 0.586 and β1 = 2.506. We
will use the form in Eq. (3) for our calculations.

A. 3D equations

Minimization of the action associated with Eq. (1) leads to
the Euler-Lagrange equations (generalized GP equations)

ih̄
∂ψi

∂t
=

[
− h̄2

2mi
∇2 + Vi + μi(ρ1, ρ2)

]
ψi, (4)

where

μi = giiρi + gi jρ j + ∂ELHY

∂ρi
( j �= i) (5)

for
∂ELHY

∂ρ1
= Cg11(g11ρ1)3/2

(
5

2
f − x

∂ f

∂x

)
, (6)

∂ELHY

∂ρ2
= Cg22(g11ρ1)3/2 ∂ f

∂x
, (7)

with C defined in Eq. (2). The numerical solutions of Eq. (4)
provide the time evolution of a 41K - 87Rb mixture with ar-
bitrary compositions N1 and N2 in three dimensions. In the
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following, we will refer to this solution as the 3D model to
distinguish it from a simpler, computationally faster 1D model
approach, which we will describe next.

B. Effective 1D equation

The mixture of the two bosonic species in the homoge-
neous phase is stable against fluctuations in the concentration
N1/N2 if [1]

ρ1

ρ2
=

√
g22

g11
. (8)

For the 41K - 87Rb system investigated in the present work,
ρ1/ρ2 = 0.853. As pointed out in Refs. [1,16,20], it is safe to
assume that this optimal composition is realized everywhere
in the system. Therefore, the energy functional (1) becomes
effectively single component and can be expressed in terms of
the density ρ1 alone as E = ∫

E (r)dr, where

E = α
(∇ρ1)2

ρ1
+ βρ2

1 + γ ρ
5/2
1 , (9)

with

α = 1

4

(
h̄2

2m1
+ h̄2

2m2

√
g11

g22

)
, (10)

β = g11 + g12

√
g11

g22
, (11)

γ = Cg5/2
11 f (z, 1, x). (12)

The 3D differential equation governing the evolution of the
macroscopic wave function 
(r, t ) of the system, such that
|
|2 = ρ1, is[

− h̄2

2m
∇2 + Vext(r) + ∂E

∂ρ1

]

(r, t ) = ih̄

∂
(r, t )

∂t
, (13)

where Vext is any external potential acting on the system and

m =
[

1

m1
+ 1

m2

√
g11

g22

]−1

. (14)

Equation (13) can be derived by applying the quantum least
action principle to the action

S =
∫

dt
∫

dr 
∗(r, t )

[
ih̄

∂

∂t
− Ĥ

]

(r, t ), (15)

where

Ĥ = − h̄2

2m
∇2 + Vext + E

ρ1
, (16)

with E/ρ1 the energy per particle E/N1 in the homogeneous
system

E
ρ1

= βρ1 + γ ρ
3/2
1 . (17)

The external potential is taken here in the form of harmonic
confinement in the transverse direction (in the x-y plane) and
generic in the axial (z) direction:

Vext = 1
2 m1ω

2
⊥(x2 + y2) + V (z). (18)

We assume, as often done in the experiments on heteronuclear
mixtures, that m1ω

2
1 = m2ω

2
2, with ω1 and ω2 the frequen-

cies of the harmonic confinements acting on the two species,
Vi = 1

2 miω
2
i (x2 + y2) in Eq. (1). Therefore, ω2

⊥ = ω2
1(1 +√

g11/g22).
We follow the approach of Ref. [15], where an effective

1D wave equation can be derived using a variational ap-
proach which describes the axial dynamics of a Bose-Einstein
condensate confined in an external potential with cylindrical
symmetry around the z axis. The action functional (15) is
minimized using the trial wave function


(r, t ) = ϕ(x, y, t ; σ (z, t ))h(z, t ), (19)

where the transverse part of the wave function is modeled by
a Gaussian

ϕ(x, y, t ; σ (z, t )) = 1

π1/2σ (z, t )
e−(x2+y2 )/2σ 2(z,t ). (20)

While ϕ is normalized to unity, h is normalized according to
the number of atoms in the species 1,

∫ |h|2dz = N1. We will
show in the following that, for not too high atomic densities,
the choice of a Gaussian to describe the wave function in
the transverse plane is indeed appropriate for the investigated
system.

The variational functions σ (z, t ) and h(z, t ) are determined
by minimizing the action functional after integrating in the
(x, y) plane. A further assumption is made in Ref. [15],
namely, that the transverse wave function is slowly varying
in the axial direction, meaning that ∇2ϕ ∼ ∇2

⊥ϕ, where ∇2
⊥ =

∂2/∂x2 + ∂2/∂y2. After inserting Eq. (19) into the action and
integrating in the (x, y) plane, the action functional becomes

S =
∫

dt
∫

dz h∗
[

ih̄
∂

∂t
+ h̄2

2m

∂2

∂z2
− V (z) − h̄2

2m
σ−2 − 1

2
mω2

⊥σ 2 − β|h|2
2π

σ−2 − 2γ |h|3
5π3/2

σ−3

]
h. (21)

From the variational minimization of the above functional, δS/δh∗ = 0 and δS/δσ = 0, we obtain the two equations

ih̄
∂h

∂t
=

[
− h̄2

2m

∂2

∂z2
+ V (z) + β|h|2

πσ 2
+ γ σ−3

π3/2
|h|3 + h̄2

2m
σ−2 + 1

2
mω2

⊥σ 2

]
h = 0, (22)

h̄2

2m
σ−3 − 1

2
mω2

⊥σ + β|h|2
2π

σ−3 + 3γ |h|3
5π3/2

σ−4 = 0. (23)
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FIG. 1. Capillary time τc as a function of a12 calculated for a
41K - 87Rb cylindrical filament with R = 15 000a0.

Note that the case of a single-species Bose-Einstein conden-
sate confined in an external potential with axial symmetry is
recovered when γ = 0 and β = g/2, with g the scattering am-
plitude of the contact atom-atom interaction. In this case, the
equations above reduce to Eqs. (6) and (7) of Ref. [15]. The
main advantage of this formulation is that the computational
cost of finding the time evolution of the system is low, being
reduced essentially to the numerical solution of a nonlinear 1D
Schrödinger equation instead of solving the more demanding
3D equation (4) or (13).

The above equations are solved by propagating the wave
function h(z, t ) in imaginary time, if stationary states are
sought, or in real time to simulate the dynamics of the sys-
tem starting from specified initial states. In both cases, the
system wave function is mapped onto an equally spaced 1D
Cartesian grid and the differential operator is represented by
a 13-point formula. At each time step, Eq. (23) is solved
using a simple bisection method to provide an updated value
for the function σ (z, t ) to be used in Eq. (22). The latter is
solved in real time by using Hamming’s predictor-modifier-
corrector method initiated by a fourth-order Runge-Kutta-Gill
algorithm [21]. Periodic boundary conditions (PBCs) are im-
posed along the z axis. The spatial mesh spacing and time step
are chosen such that, during the real-time evolution, excellent
conservation of the total energy of the system is guaranteed.

III. RESULTS

A. Timescales for breakup

Possible experimental observations of the instabilities de-
scribed in this work will only be possible if the characteristic
time for breakup of a thin 41K - 87Rb filament is shorter than
the lifetime of the mixture. The timescale for instability and
breakup of a liquid filament in the form of a cylinder with
radius R made of an incompressible fluid with bulk number
density ρ0 and surface tension T0 is set by the capillary time
τc defined as τc =

√
mρ0R3/T0, with m the mass of the atoms

in the liquid [8]. In the case of a binary mixture, we generalize

this definition as

τc =
√

(m1ρ1 + m2ρ2)R3

T0
. (24)

The surface tension of the binary mixture 41K - 87Rb has
been computed for different values of the interspecies scat-
tering length a12 in Ref. [14]. It turns out that relatively
small changes in the interspecies interaction strength cause
order-of-magnitude changes in the surface tension [14], which
ranges from T0 ∼ 102 nK/µm2 for a12 = −80a0 to T0 ∼
105 nK/µm2 for a12 = −100a0.

We note that the surface tension values quoted above are
obtained for a planar interface, though in finite systems like
quantum liquid filaments or droplets there is a contribution
due to the interfacial curvature of the surface. The curvature-
dependent surface tension can be expressed in terms of the
so-called Tolman length [22] δ. To a first approximation, the
Tolman length can be taken independent of the droplet size
and the size-dependent surface tension can be expressed in
terms of that of the planar surface as [23]

T (R) = T0

(
1 − 2δ

R

)
, (25)

where R is the radius of curvature. The Tolman length for
the 41K - 87Rb binary mixture in the self-bound state has been
computed in the MFLHY approach [14]. For the case studied
here, i.e., a12 = −90a0, it is found that δ = (−2.95 × 103)a0,
making the curvature-dependent surface tension higher than
the planar surface one. For typical radii R ∼ (2 × 104)a0 (dis-
cussed in the following), the correction amounts to a sizable
2δ/R ∼ 0.1.

The capillary time calculated by Eq. (24) using the planar
value T0 is plotted in Fig. 1 as a function of the interspecies
scattering length a12, taking R = 15 000a0 as a value represen-
tative of the typical size investigated here. It appears that, even
for values of a12 close to the onset of the self-bound regime
(a12 ∼ −74a0), the capillary time is much shorter than the
typical lifetime of the 41K - 87Rb mixture in the quantum liq-
uid regime (several tens of milliseconds) [6]. Note, however,
that the actual time taken for the filament to break into droplets
depends upon the amplitude of the initial density perturbation
triggering the instability. This will be discussed in Sec. III C.

B. Equilibrium structure of a freestanding cylindrical filament

Prior to the dynamics, we have to obtain the static con-
figuration constituting its starting point. To this end, we
compute the equilibrium structure of a freestanding cylindri-
cal filament, i.e., V (z) = 0 and ω⊥ = 0 in Eq. (22), taking
a12 = −90a0.

Some properties of the equilibrium filament are reported in
Table I. They are computed using the 1D equation for three
values of the linear density N1/L, where L is the length of the
filament, which yield three different radial density profiles and
sizes. In the table, the sharp radius R of the cylinder is defined
as the radial distance at which ρ = ρc/2, with ρc = N1/L the
density along the filament axis. Note that this definition is
strictly appropriate in the case of a thick filament consisting
of a bulk region with flat-top density equal to the equilibrium
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TABLE I. Equilibrium properties for three filaments with a12 = −90a0 calculated with the 1D equation. Atomic units are used for lengths
and energies; times are expressed in milliseconds.

N1/L (a−1
0 ) E/(N1 + N2) (Ha) σ (a0) R (a0) τ σ

c (ms) τR
c (ms) λc (a0) 2πR/λc

0.095 −1.295 × 10−14 16045 13368 1.101 0.837 72910 1.15
0.159 −2.189 × 10−14 17390 14487 1.243 0.945 111300 0.82
0.238 −2.759 × 10−14 19715 16423 1.500 1.141 160680 0.64

density in the homogeneous system separated from the vac-
uum by a finite-width surface profile, the surface width being
much smaller than R. In the present case, this definition of
radius is somewhat arbitrary due to the Gaussian-like nature
of the transverse density profile, as shown in the following.
The capillary times are computed from Eq. (24) using for
the filament radius either the sharp radius or the equilibrium
value for σ . The definition and values of the Rayleigh-Plateau
instability length λc in Table I are discussed in Sec. III C.

To verify the validity of the approximations underlying
the use of Eqs. (22) and (23), we also compute the equi-
librium structure for the same cylindrical filament using
instead the 3D equation (4). The transverse profile of the
filament computed with the two methods (1D and 3D equa-
tions) for N1/L = 0.159a−1

0 is shown in Fig. 2, where we see
good agreement between both and conclude that it is fairly
Gaussian-like. Note that the density profile of the filament
is very different from that of a macroscopic incompressible
liquid cylinder characterized by a flat-top density profile en-
compassing a bulk region with a nearly constant density and
a narrow surface region whose width is determined by the
surface tension [14], like those found for classical viscid
fluids [8] and superfluid 4He [11] filaments. Here we have in-
stead an all-surface highly compressible cylindrical filament.
Experimentally, it is easier to realize this Gaussian-like sys-
tem, since the very large number of atoms required to create a
flat-top density profile is difficult to reach due to the increasing
role played by three-body losses which rapidly deplete the
system. We report in Table II some equilibrium properties
calculated using the 3D equations for the same filaments as
in Table I. The width σ is estimated by assuming that the

FIG. 2. Density profile for the filament with N1/L = 0.159a−1
0

plotted in the transverse direction (perpendicular to the filament
axis). The total density ρ1 + ρ2 is shown in units of a−3

0 . The solid
line shows the 3D model and the dashed line the 1D model.

transverse wave function is a Gaussian as in Eq. (19), i.e.,
σ = √

N1/πLρc, where ρc is the uniform density value along
the filament axis. A comparison with Table I shows overall
good agreement between 1D and 3D models, albeit with some
differences in the case of the thicker filament.

C. Capillary instability

We verify by real-time dynamics that a cylindrical quantum
liquid filament is indeed unstable against a small initial axial
perturbation of the density with a sufficiently large wave-
length, as predicted by the Rayleigh theory. We use both
approaches, i.e., that based on the 3D MFLHY equations and
the one based on the effective 1D equation. For a classi-
cal incompressible fluid, any perturbation with wavelength
λ greater than 2πR makes the system unstable, allowing the
surface tension to break the cylinder into droplets, thus de-
creasing the surface energy of the system.

We study the instability threshold for the three filaments
whose properties are summarized in Tables I and II. To this
end, we apply a weak axial perturbation on the transverse
width of the filament of the form

σ (z) = σ0

[
1 − ε cos

(
2πz

L

)]
, (26)

where L is the total length of the filament, σ0 is the equilibrium
value for the filament transverse size, and ε 	 1. We then let
the system evolve in time; if L is smaller than a critical value
λc, the filament remains intact and we simply observe small-
amplitude surface oscillations due to the initial perturbation.
However, above this critical value, the amplitude of the initial
perturbation starts to grow, a neck develops, and eventually
the filament breaks into droplets. We determine in this way
the value of k = 2π/L that makes the filaments unstable, i.e.,
the critical wavelength λc = 2π/k (see Tables I and II). We
recall that linear theory for a classical fluid filament predicts
(2π/λc)R = 1 [10]; this is only approximately true for the
liquid filaments investigated here, where the ratio R/λc turns
out not to be universal but weakly depends on the linear
density of the system or, equivalently, on the radius, as shown
in Tables I and II. We remark that this is not a limitation due to
the nanoscopic nature of our system; in fact, calculations on
nanoscopic 4He superfluid liquid filaments [11] yielded the
universal result of linear theory for inviscid classical fluids.
Rather, it is likely due to the all-surface nature of the filaments
investigated here and the very large compressibility of quan-
tum liquids [14]; the classical linear theory assumes instead
an incompressible fluid and a sharp surface filament.

The actual time taken for the filament to break into droplets
depends upon the amplitude of the initial density perturbation.
It is defined as the time τb it takes for the wave amplitude
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TABLE II. Equilibrium properties for three filaments with a12 = −90a0 calculated with the 3D equations. Atomic units are used for lengths
and energies; times are expressed in milliseconds.

N1/L (a−1
0 ) E/(N1 + N2) (Ha) σ (a0) R (a0) τ σ

c (ms) τR
c (ms) λc (a0) 2πR/λc

0.095 −1.333 × 10−14 15769 12951 1.101 0.837 73700 1.10
0.159 −2.214 × 10−14 17917 15650 1.243 0.945 103560 0.95
0.238 −2.815 × 10−14 21019 19178 1.500 1.141 135200 0.89

with the largest frequency to grow up to the value of the
filament radius, thus breaking it [24,25]. For a given time, the
amplitude of a perturbation, with some given wave vector k,
evolves as

δ(t ) = δ0eω(k)t . (27)

We compute the dynamics of neck shrinking by monitoring
during the real-time evolution the quantity δ(t ) = (Rmax −
Rmin)/2, where the radii Rmax and Rmin are measured at the two
positions corresponding to a crest (maximum) and a valley
(minimum) in the filament surface. As for 4He filaments [11],
we first check that the exponential law is indeed strictly
followed by the simulations, and from the calculated values
for δ(t )/δ0 we compute ω as a function of the adimensional
quantity kR. The results are shown in Fig. 3 for the filament
with linear density N1/L = 0.159a−1

0 . It appears that there
is a maximum frequency ωmax = 0.84/τc at about kR = 0.7,
i.e., the actual breaking of a filament subject to a most gen-
eral perturbation will be dominated by the fastest mode with
ω = ωmax characterized by a time constant τ ∼ 2π/ωmax ∼
9.3 ms.

The actual dynamics of the instability is provided by the
solutions of the time-dependent equation for the filament.
We use here the 3D equations described before and apply
them to the N1/L = 0.159a−1

0 freestanding filament and to
a filament with the same N1/L value laterally confined by
a harmonic confinement with ωx = ωy = 2π × 100 Hz. We
choose a value for the wavelength corresponding to the max-
imum of the ω(k) curve, i.e., kR ∼ 0.7. Similarly to what
we did when solving the 1D problem, we start the numerical

FIG. 3. Plot of ωτc vs kR for the filament with N1/L = 0.159a−1
0 .

simulations from the previously obtained equilibrium filament
and apply a small axial perturbation with wavelength λc and
initial amplitude ε = 0.05R.

Figure 4 shows some snapshots of the filament density
on a symmetry plane containing the symmetry z axis. It
corresponds to the evolution of the freestanding filament. It
can be seen from the figure that, starting from the perturbed
filament, undulations whose amplitude increases with time
appear along the filament. The instability is caused by the
Laplace pressure increase in constricted regions (necks), driv-
ing out the fluid and hence reducing further the neck radius.
The filament evolves into higher-density bulges connected by
thin threads bridging adjacent bulges. At variance with the
fragmentation of inviscid classical fluids and even superfluid
4He, where such threads eventually break up and form smaller
satellite droplets, here instead they swiftly evaporate. The
main droplets forming after the fragmentation execute oscil-
latory motion, being alternately compressed and elongated in
the filament direction.

In order to check that the fragmentation dynamics of the
filament is not hindered by the presence of an external po-
tential, like the one necessary to confine the filament within a
toroidal geometry, we also address the case where the filament

FIG. 4. Snapshots from the real-time evolution obtained by solv-
ing the 3D equations for a freestanding filament with N1/L =
0.159a−1

0 . The color bar displays the total number density in units
of a−3

0 . The filament is initially perturbed by a periodic perturbation
with kR ∼ 0.7. From top to bottom, the snapshots are taken at t = 0,
15, 19, 21, 24, and 27 ms.
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FIG. 5. Snapshots from the real-time evolution obtained by solv-
ing the 3D equations for a filament with N1/L = 0.159a−1

0 subject
to a lateral harmonic confinement as described in the text. The color
bar displays the total number density in units of a−3

0 . The filament
is initially perturbed by a periodic perturbation with kR ∼ 0.7. From
top to bottom, the snapshots are taken at t = 0, 15, 19, 21, 24, and
27 ms.

is subject to a transverse harmonic confinement. This is shown
in Fig. 5 for the same instants shown in Fig. 4. It appears that
the dynamics of fragmentation is very similar to the case of the
freestanding filament, with some visible effects of the lateral
confinement on the droplet shapes (compare the bottom three
panels in Figs. 4 and 5).

We also study the instability of thin 41K - 87Rb freestanding
filaments triggered by a more general initial axial perturba-
tion. To do so, we consider a “random” modulation of the
initial transverse section σ (z) obtained by superimposing two
sinusoidal modulations with incommensurate periods, one
with a short period ds and another with a longer period dl (see,
e.g., Ref. [26]),

σ (z) = σ0{1 + ε[sin(πz/ds)2 + sin(πz/dl )
2 − 1]}, (28)

where σ0 is the width of the equilibrium filament.
An infinite quasiperiodic disorder results when the ratio

dl/ds is an irrational number. We choose the golden ratio
φ = (

√
5 + 1)/2 for such a number. Since our simulations use

a finite box with periodic boundary conditions, to make the
above expression of σ consistent with the use of PBCs along
the z axis we must approximate this number by the ratio of two
integer numbers, the largest one providing the total length of
the periodic cell used in the calculation. Here we approximate
φ with the ratio of two successive numbers in the Fibonacci
sequence dl/ds = Fj+1/Fj [27], which notoriously converges
towards the golden ratio for large values of j. In particular, we
take L = 8λc, where λc is the instability threshold for filament
breaking. We consider the case N1/L = 0.159a−1

0 , so that
λc = 111 300 (see Table I). We choose the two adjacent ele-
ments 13 and 21 in the Fibonacci sequence, so ds = 42 400a0

FIG. 6. Snapshots from the real-time evolution obtained by
solving the 1D equation for a freestanding filament with N1/L =
0.159a−1

0 . The color bar displays the total number density in units of
a−3

0 . The filament is subject to an initial, mostly generic perturbation,
as described in the text. From top to bottom, the snapshots are taken
at times t = 0, 8, 13, 15, 17, and 19 ms.

and dl = 68 492a0. With this choice, L = 21ds = 13dl , mak-
ing the applied perturbation satisfy the periodic boundary
conditions. We also take ε = 0.06R. Given the large size of the
system, which makes the full 3D calculations computationally
very demanding, we employ here the 1D effective equation.

The time evolution obtained by starting the dynamics
from this initial state is shown in the sequence of snapshots
displayed in Fig. 6. It appears that the filament undergoes
fragmentation, leading to the appearance of five droplets. This
fragmentation pattern is what is expected from an undulation
with wavelength λ = L/5 = (1.6 × 105)a0, where L is the
length of the filament in the figure, which corresponds to a
value kR ∼ 0.7, close to the maximum of the curve shown in
Fig. 3. Therefore, as expected, the fragmentation dynamics is
eventually dominated by the fastest mode compatible with the
length of our simulation cell, resulting in the filament frag-
mentation into regularly arranged, identical droplets. Once
formed, they execute a series of large-amplitude oscillations,
being alternately compressed and elongated in the filament
direction. Eventually, these oscillations will be damped by any
residual friction, resulting in a necklace of identical equidis-
tant quantum droplets.

D. Possible supersolid behavior of the fragmented state

From the previous results, the lowest-energy state resulting
from the fragmentation of a quantum liquid filament appears
to be made of regularly arranged droplets, the interdroplet
spacing being determined by the wavelength of the fastest
mode that matches the filament length L. When the number of
atoms of each species in the mixture is such that the local den-
sities satisfy the equilibrium condition N1/N2 = √

g22/g11,
the resulting droplets are separated by vacuum. However,
when the population ratio deviates from the optimal value,
i.e., there is one species in excess, then the extra atoms in the
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larger component (in the following, the 87Rb species) cannot
bind to the droplets, whose composition already satisfies the
equilibrium ratio, and form instead a uniform halo embed-
ding them. This dilute superfluid background is expected to
provide a degree of global phase coherence to the system,
unlike the case of droplets separated by vacuum where no such
coherence is present between adjacent droplets. This suggests
that the droplet array in the unbalanced system may display
a supersolid character, i.e., coexistence of superfluidity and a
periodic density modulation.

The possibility of supersolid phases in a binary Bose
mixture has recently been put forward in Ref. [28], where
a self-bound 2D supersolid stripe phase in a weakly inter-
acting binary BEC with spin-orbit coupling was proposed,
being stabilized by the Lee-Huang-Yang beyond-mean-field
term. In Ref. [29], a single one-dimensional droplet made of
a binary Bose mixture immersed into a background of the
excess species and subject to periodic boundary conditions (as
a model for a droplet confined in a toroidal trap) was found to
display nonclassical rotational inertia and thus the coexistence
of rigid-body and superfluid character.

In our case, to verify the hypothesis that the fragmented
state in the presence of an excess population of atoms of one
species may indeed show supersolid character, we look for a
hallmark of supersolid behavior of the modulated structures,
namely, a finite nonclassical translational inertia. Following
Refs. [30,31], we define the superfluid fraction fs as the frac-
tion of particles that remain at rest in the comoving frame with
a constant velocity vx,

fs = 1 − lim
vx→0

〈(Px,1 + Px,2)〉
(N1m1 + N2m2)vx

, (29)

where 〈Px,i〉 = −ih̄
∫

ψ∗
i ∂ψi/∂x is the expectation value of

the momentum of the ith species and (N1m1 + N2m2)vx is
the total momentum of the system if all droplets are moving
as a rigid body. A nonzero value for fs reveals global phase
coherence in a periodic system like the one studied here.

The fs parameter should not be confused with the total su-
perfluid fraction. For instance, in the regime where self-bound
droplets form but are separated from each other by a vacuum,
fs is zero but droplets are individually superfluid, meaning that
there is no global phase coherence. In contrast, for an ideal
superfluid filament prior to breakup, fs is equal to 1 since the
system is homogeneous along the filament axis. Any periodic
modulation should result in a finite value 0 < fs < 1.

We calculate fs for the three ground-state structures shown
in Fig. 7, for the case N1/L = 0.159a−1

0 . In Fig. 7(a) the
equilibrium filament is shown. The calculated value for the
superfluid fraction is fs = 1, as expected. Figure 7(b) shows
the fragmented multidroplet state resulting from a mixture
satisfying the equilibrium composition ratio when it has been
subject to an initial perturbation with kR ∼ 0.7. We find for
such a structure fs < 0.001. Figure 7(c) shows the case where
the 87Rb species is in excess. The chosen values of N1 and N2

are such that there is just a small background density due to
the excess species (approximately 2.5% of the total density in
the center of a droplet), as shown in Fig. 8, where a cut of
the densities (41K, 87Rb, and total 41K + 87Rb densities) along
the system symmetry z axis is displayed. In spite of the small

FIG. 7. Lowest-energy configurations for the states described in
the text: (a) freestanding filament prior to fragmentation, (b) frag-
mented state (balanced mixture composition), and (c) fragmented
state (unbalanced mixture composition). The color bar displays the
total number density in units of a−3

0 .

amount of 87Rb density enveloping the 41K - 87Rb droplets, the
resulting superfluid fraction is surprisingly large, fs = 0.53.
This finite value for fs likely indicates a supersolid character
of the droplet array.

IV. SUMMARY AND OUTLOOK

We predicted that a bosonic 41K - 87Rb mixture confined
in a sufficiently long toroidal trap, in the regime where a
self-bound liquid state forms, will undergo Rayleigh-Plateau
instability and produce a necklace of droplets inside the torus.
The droplets will be subject to oscillations also in the tubular
confinement, although some damping in the real system is
expected, which drives them to rest.

In the presence of a nonequilibrated mixture, i.e., when
there is one species in excess with respect to the optimal
ratio N1/N2 = √

g22/g11, the excess species is expelled from
the 41K - 87Rb filament. Due to the presence of transverse

FIG. 8. Density profiles along the filament symmetry z axis for
the droplet array shown in Fig. 7(c). The dotted line shows the 87Rb
density, the dashed line the 41K density, and the solid line the total
(41K + 87Rb) density.
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confinement, the excess part cannot evaporate but remains
instead in the trap, enveloping the 41K - 87Rb liquid droplets
resulting from filament fragmentation. This results in a global
phase coherence between one droplet and the next, leading to
a possible supersolid behavior.

This toroidal geometry is experimentally realizable and
therefore our results could be compared with experiments
when curvature effects can be neglected. In practice, it might
be very challenging to prevent the formation of a single big
droplet inside the toroidal trap during the quenching of a12

required to reach the quantum liquid state. In this regard, it
might help to look for the instability when the value of the
interspecies scattering length a12 is close to the gas-liquid
transition value so that the density of the self-bound state is

not much larger than that in the gas phase. In the presence
of a tight confinement, the single-droplet state should be en-
ergetically disfavored with respect to the (unstable) filament
configuration.
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