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Third-order corrections to the ground-state energy of the gas of spin-s fermions
with arbitrary densities of different spin projections
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Recently, we computed third-order corrections to the ground-state energy of an arbitrarily polarized diluted
gas of spin- 1

2 fermions interacting through a spin-independent repulsive two-body potential. Here we extend this
result to the gas of spin-s fermions [a system whose Hamiltonian has an accidental SU(2s + 1) symmetry] with
arbitrary densities of fermions having different spin projections. The corrections are computed semianalytically
using the effective-field-theory approach and are parametrized by the s- and p-wave scattering lengths a0 and a1

and the s-wave effective radius r0, measurable in the low-energy fermion-fermion elastic scattering. The result
is used to study the impact the higher-order corrections can have on the characteristics of the phase transition (at
zero temperature) to the ordered phase (on the emergence of the itinerant ferromagnetism).
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I. INTRODUCTION

Although clear experimental evidence is still lacking [1],
there is a strong conviction that in a finite-density system
of fermions a transition to the ordered phase, in which the
densities of different spin components are not all equal, should
be induced by a repulsive spin-independent interaction if the
system is sufficiently dense and/or the interaction is strong
enough. Such a transition can be conveniently quantified by a
nonzero value of an order parameter P, which in the usually
considered case of spin s = 1

2 fermions can be defined so
that it has the meaning of the polarization (magnetization)
P = (N↑ − N↓)/N , N = N↑ + N↓, of the system. (An analo-
gous order parameter can be defined in the general case of
spin s > 1

2 if a specific pattern of the ordering is assumed.)
Theoretical investigation of this transition at zero tempera-

ture reduces to computing the energy density of the system
of N fermions enclosed in the volume V as a function of
the densities of different spin projections (or as a function of
the chosen order parameter) and taking the thermodynamic
limit. Such computations are most easily performed using the
effective-field-theory approach within which the underlying
spatially nonlocal binary interaction of fermions is replaced
by an in principle infinite set of local operators of decreasing
length dimension and which yields the expansion of the com-
puted energy density in powers (in higher orders modified also
by logarithms) of the (overall) Fermi wave vector

kF =
(

6π2

gs

N

V

)1/3

, gs = 2s + 1 (1)

of the system. The expansion obtained in this way is naturally
parametrized by the scattering lengths a�, effective radii r�,
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etc., � = 0, 1, . . . , which characterize the elastic scattering
of low-energy fermions in vacuum and which are taken to
specify the underlying interaction potential. This approach,
pioneered in [2] (see also [3,4]), recently allowed the com-
pletion [5] of the order k4

F (with respect to the energy of the
system of completely noninteracting fermions) corrections to
the ground state of the system of spin-s fermions with equal
densities of different spin projections. Using this approach,
it was also easy to reproduce (semianalytically), but in the
universal setting, the old (obtained by considering the specific
model of hard-sphere interactions) result of Kanno [6], who
computed (fully analytically) the order k2

F correction to the
ground state of the system of spin- 1

2 fermions [7] for an
arbitrary value of the system’s polarization P. The effective-
field-theory approach allows us to immediately extend [8] the
result of Kanno to the case of spin-s fermions: The complete,
up to the order k2

F, formula for the ground-state energy den-
sity E�/V as a function of the densities of fermions having
different spin projections can be now written in the form1

E�

V
= k3

F

6π2

3

5

h̄2k2
F

2m f

(
gs∑

σ=1

x5
σ + 20

9π
kFa0

∑
σ ′<σ

x3
σ ′x3

σ

+ 2

π2
(kFa0)2

∑
σ ′<σ

JK (xσ ′ , xσ )

)
, (2)

in which

xσ = pFσ

kF
, pFσ =

(
6π2 Nσ

V

)1/3

(3)

1The order kF correction is the extension (obvious from the
effective-field-theory point of view) of the textbook [9,10] mean-field
result to the case of spin-s fermions.

2469-9926/2023/107(6)/063311(12) 063311-1 ©2023 American Physical Society

https://orcid.org/0000-0001-6030-0177
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.063311&domain=pdf&date_stamp=2023-06-21
https://doi.org/10.1103/PhysRevA.107.063311


CHANKOWSKI, WOJTKIEWICZ, AND AUGUSTYNOWICZ PHYSICAL REVIEW A 107, 063311 (2023)

and

JK (x, y) = 1

21

[
(22x3y3(x + y) − 4x7 ln

(
1 + y

x

)

−4y7 ln

(
1 + x

y

)
+ 1

2
xy(x − y)2(x + y)

× [15(x2 + y2) + 11xy] − 7

4
(x − y)4(x + y)

× [(x + y)2 + xy] ln

(
x + y

x − y

)]
(4)

is the function obtained by Kanno in his computation [6].
The extension to s > 1

2 is of obvious interest in view of the
fact that the systems of interacting fermions (and bosons)
are nowadays investigated in experiments with cold atoms in
which the interaction strength can be tuned by exploiting the
physics of the so-called Feshbach resonance.

The emergence of the spontaneous magnetization (the
paramagnetic to ferromagnetic transition) that occurs in the
system of spin- 1

2 fermions with the (spin-independent) re-
pulsive interaction constitutes the simple textbook example
[9,10] of a continuous phase transition because it exhibits such
a character (when it is induced both by decreasing the tem-
perature and by increasing the density and/or the interaction
strengths) when the computations are restricted to the mean-
field approximation (only the order-kFa0 corrections to the
thermodynamic functions are taken into account). However,
when the order-(kFa0)2 corrections are included this transition
turns at low temperatures into the ordinary first-order one as
has been found in [11] and at exactly T = 0 can be easily
confirmed by using the formula (2) [8,12]. Although in this
approximation the transition at zero temperature occurs at
kFa0 = 1.054, at which value the perturbative expansion can-
not most probably be trusted, such a character of the transition
seems to be in line with the arguments [13] based on general
principles of the Ginzburg-Landau theory.

On the other hand, in a series of papers [14] (overlooked
in [7,12]) the ground-state energy of the system of spin- 1

2
fermions as a function of the polarization P has been com-
puted beyond a fixed order, by performing a resummation
of an infinite subclass of the effective-field-theory diagrams
contributing to it. As the authors of these papers claim, the
transition to the ordered state at T = 0 becomes then again
of the continuous type. Moreover, the critical value of the
parameter kFa0 found by them is in surprisingly good agree-
ment with the estimates based on the quantum Monte Carlo
computations reported in [15]. While assessing the reliability
of the approximations made in [14] is in general difficult, it
might be instructive to see, using the complete order k3

F correc-
tions, which we have recently computed in [16] in the case of
spin 1

2 , how the third-order terms included in the resummation
compare with the ones neglected and how the character of the
phase transition changes when it is analyzed using the com-
plete third-order formula for the ground-state energy. In view
of the mentioned circumstance that in experimental setups the
role of fermions is played by cold atomic gases which can
have spins greater than 1

2 , it is also of interest to investigate the
transition in the case of higher spins. Finally, according to the
power counting rules which organize the expansion within

the effective-field theory [2,17], in the order k3
F to the energy

density for the first time contribute the interaction operators
involving, in addition to four-fermion field operators, also
two spatial derivatives and introduce the dependence on the
p-wave scattering length a1 and the s-wave effective radius
r0, which parametrize the departure of the result from strict
universality. It is therefore natural to check their potential
impact on the phase transition.

Therefore, the plan of the paper is as follows. In the next
section, to prepare the ground, we recall the effective-field-
theory approach allowing us to easily recover the order kFa0

and (kFa0)2 (this one semianalytically) corrections in (2). In
Secs. III and IV we determine the next-order correction to the
formula (2), adapting appropriately the computation [16] of
the third-order correction to the ground-state energy of the
arbitrarily polarized gas of spin- 1

2 fermions. The discussion
of the approach of [14] is included in Sec. III. The character
of the transition to the ordered state is discussed in Sec. V. We
summarize in Sec. VI.

II. SECOND-ORDER CORRECTIONS

As said, the effective-field theory naturally yields an ex-
pansion of the computed quantities in powers of the product
kR of the wave vector k corresponding to the characteristic en-
ergy scale of the problem and of the characteristic length scale
R of the fundamental interaction potential. In the case of the
corrections to the ground-state energy of the gas of fermions,
the role of the characteristic wave vector plays the Fermi
wave vector kF defined in (3) and they are most conveniently
computed (using the standard Feynman rules formulated, e.g.,
in [18]) as the sum of connected vacuum diagrams using the
Dyson expansion of the right-hand side of the formula

lim
T →∞

exp

(
− iT

(
E� − E�0

)
h̄

)

= lim
T →∞

〈�0|T exp

(
− i

h̄

∫ T/2

−T/2
dtV I

int (t )

)
|�0〉, (5)

in which |�0〉 is the ground state of the free Hamiltonian in the
N-fermion subspace of the Fock space, V I

int (t ) is the theory
interaction operator Vint taken in the interaction picture, and
the limits T → ∞ and V → ∞ are implicit (T stands for the
chronological product.

If, as assumed, the underlying fundamental interaction
of spin-s fermions is spin independent and (in the infinite-
volume limit) Galileo invariant, Vint in (5) is the effective-
field-theory interaction operator2 of the form [2]

Vint = C0

∫
d3x

∑
σ ′<σ

ψ
†
σ ′ψσ ′ψ†

σψσ + V (C2 )
int + V

(C′
2 )

int + · · · .

(6)

The terms V (C2 )
int and V

(C′
2 )

int , which will be specified in Sec. IV,
involve two spatial derivatives and are of lower length

2The absence of the σ ′ = σ term in the sum is the immediate con-
sequence of the anticommutativity of the fermionic field operators;
in [7], where only the spin s = 1

2 was treated, the sum in (6) consisted
of a single term only.
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dimension than the first one; the ellipsis stands for other
operators of yet lower length dimension. Despite the infinite
number of interaction terms in (6), only a finite number of
Feynman diagrams [constructed using only a finite subset
of the interaction terms of (6)]—only those dictated by the
so-called power counting rules [2–17]—contribute to a term
proportional to a given power3 of (kR) in the computed
quantity. The couplings C0,C2,C′

2, . . . of the effective-field
theory are fixed by matching the amplitude of the elastic
fermion-fermion scattering computed using the effective-field
theory onto the general form of such an amplitude expanded
in powers of the relative particle momenta and parametrized
by the scattering lengths a�, the effective radii r�, etc., which
with sufficient accuracy characterize the fundamental binary
interaction. Of course, since the effective interaction is lo-
cal, divergences appear and must be regularized (in [7] a
cutoff � on the wave vectors circulating in loops was im-
posed); the relations between computed physical quantities
like a�, r�, E�, . . . and the effective-field-theory parameters
C0,C2, . . . depend then on the regularization, but this depen-
dence disappears when the computed energy is expressed in
terms of the scattering lengths and radii. To the order which is
needed to compute the third-order corrections to the ground-
state energy of the gas of fermions, the relations between the
couplings C0, C2, and C′

2 and the scattering lengths a0, a1, and
the radius r0 are known [5] and (when the cutoff � is used as
the regulator) read

C0(�) = 4π h̄2

m f
a0

(
1 + 2

π
a0� + 4

π2
a2

0�
2 + · · ·

)
, (7)

C2(�) = 4π h̄2

m f

1

2
a2

0r0 + · · ·, C′
2(�) = 4π h̄2

m f
a3

1 + · · ·. (8)

The power counting rules state that the order kFR and
(kFR)2 corrections to the ground-state energy of the gas of
fermions, that is, the order kFa0 and (kFa0)2 terms in the
formula (2), are generated solely by the term in (6) propor-
tional to C0. The correction of order kFa0 is therefore given
by the sum over all possible choices of the (different) pairs
of spin projections σ ′ and σ circulating in the two loops of
a simple two-loop diagram that can be formed by joining
the corresponding pairs of lines representing the interaction
vertex proportional to C0, while that of order (kFa0)2 is given
by a similar sum over spin projections circulating in the three-
loop diagram shown in Fig. 1 on the left. This diagram can be
composed in three equivalent ways (corresponding to different
assignments of the momenta to its internal lines)

1

ih̄

E (2)
�

V
= 1

2!

(
C0

ih̄

)2 ∑
σ ′<σ

∫
d4q

(2π )4
[Aσ ′,σ (q)]2

= 1

2!

(
C0

ih̄

)2 ∑
σ ′<σ

∫
d4q

(2π )4
[Bσ ′,σ (q)]2

= 1

2!

(
C0

ih̄

)2 ∑
σ ′<σ

∫
d4q

(2π )4
Bσ,σ (q)Bσ ′,σ ′ (q), (9)

3Terms proportional to higher powers of (kR) are also modified by
logarithms [2].

Aσ ,σ(q) =

−k+q σ

k σ

Bσ ,σ(q) =

k σ

k+q σ

FIG. 1. The only type of diagrams contributing to the order
(kFR)2 correction to the ground-state energy of the gas of spin-
s fermions and two elementary one-loop diagrams out of which
the second-order and third-order corrections with the C0 couplings
can be constructed. Solid and dashed lines denote propagators of
fermions with different spin projections.

out of the two elementary blocks (corresponding to the two
elementary loops shown in Fig. 1)

Aσ ′,σ (q) =
∫

d3k
(2π )3

i

(
θ (|k − q| − pFσ ′ )θ (|k| − pFσ )

q0 − ωk − ωk−q + i0

− θ (pFσ ′ − |k − q|)θ (pFσ − |k|)
q0 − ωk − ωk−q − i0

)
, (10)

Bσ ′,σ (q) =
∫

d3k
(2π )3

i

(
−θ (pFσ ′ − |k|)θ (|k + q| − pFσ )

q0 + ωk − ωk+q + i0

+ θ (|k| − pFσ ′ )θ (pFσ − |k + q|)
q0 + ωk − ωk+q − i0

)
, (11)

in which ωk = h̄k2/2m f , obtained by the standard integration
over k0 using the residue method. Each of these blocks is
a sum of two parts: those in the elementary block Aσ ′,σ (q),
which will be needed in the discussion of the approach of [14],
can be interpreted as corresponding to the propagation of two
particles (the first part) and the propagation of two holes (the
other part). In either form of (9), after the integration over dq0

only two (out of the possible four) terms are nonzero (and
equal to one another), because in the two other terms all poles
are on the same side of the real q0 axis.

The final form of the order (kFa0)2 contribution to the
energy density is obtained (see [7]) by making the appropriate
change of the remaining integration variables. In this way one
arrives at

E (2)
�

V
= 64m f C2

0

h̄2(2π )6

∑
σ ′<σ

J (pFσ ′ , pFσ ), (12)

with the function J (pFσ , pFσ ′ ) = J (pFσ ′ , pFσ ) given by the
integral

J (pFσ ′ , pFσ ) =
∫ smax

0
ds s2 1

4π

∫
d3t θ (pFσ ′

− |u + s|)θ (pFσ − |t − s|)gσ ′,σ (t, s), (13)

in which smax = 1
2 (pFσ ′ + pFσ ). The function gσ ′,σ (t, s) ≡

gσ ′,σ (|t|, |s|) = gσ,σ ′ (t, s), given by the integral (symmetric in
the labels σ and σ ′)

gσ ′,σ (t, s) ≡ 1

4π

∫
d3u

θ (|u + s| − pFσ ′ )θ (|u − s| − pFσ )

t2 − u2 + i0

= −� + gfin
σ ′,σ (t, s) + t2

�
+ · · · , (14)
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has been obtained in [7] in an analytic form which assumes
(without losing generality) that pFσ ′ � pFσ . It reads

gfin
σ ′,σ (t, s) = 1

2
pFσ + t

4
ln

(pFσ − t )2 − s2

(pFσ + t )2 − s2

+ p2
Fσ − s2 − t2

8s
ln

(pFσ + s)2 − t2

(pFσ − s)2 − t2
, (15)

when 0 < s � 1
2 (pFσ − pFσ ′ ), and

gfin
σ ′,σ (t, s) = 1

4
(pFσ ′ + pFσ + 2s)

+ t

4
ln

pFσ ′ + s − t

pFσ ′ + s + t
+ t

4
ln

pFσ + s − t

pFσ + s + t

+ p2
Fσ ′ − t2 − s2

8s
ln

(pFσ ′ + s)2 − t2

u2
0 − t2

+ p2
Fσ − t2 − s2

8s
ln

(pFσ + s)2 − t2

u2
0 − t2

, (16)

where

u2
0 = 1

2

(
p2

Fσ ′ + p2
Fσ

) − s2, (17)

when 1
2 (pFσ − pFσ ′ ) < s � smax.

It is convenient to write the function J (pFσ ′ , pFσ ) as the
sum

J = Jdiv + Jfin + J1/� + · · · ,

where the successive terms directly correspond to the terms in
(14). Therefore, Jfin is independent of the cutoff �, while J1/�

and the ellipsis stand for terms vanishing in the limit � → ∞.
As ∫ smax

0
ds s2 1

4π

∫
d3t θ (pFσ ′ − |u + s|)θ (pFσ − |t − s|)

= p3
Fσ ′ p3

Fσ

72
(18)

[7], Jdiv = −(�/72)p3
Fσ ′ p3

Fσ and it is straightforward to check
that the divergences arising from Jdiv cancel against similar
terms proportional to � arising when C0 in the correction

E (1)
�

V
= C0

36π4

∑
σ ′<σ

p3
Fσ ′ p3

Fσ , (19)

arising from the mentioned two-loop diagrams, is expressed in
terms of the s-wave scattering length a0 as in (7). The cutoff
independent terms of (19) give then the term proportional to
kFa0 in (2) and the terms proportional to inverse powers of
� (which would be absent if the dimensional regularization
were used instead of the cutoff �) can be, if the computation
is restricted to the second order, simply discarded. In the
computation including higher-order corrections they cancel
against similar spurious contributions arising in higher orders.

If the densities of fermions having different spin projec-
tions are all equal (Nσ = N/gs and pFσ = kF for all σ =
1, . . . , gs), one numerically finds that

Jfin(kF, kF) = k7
F

840
(11 − 2 ln 2).

FIG. 2. Single particle-particle and two different particle-hole
vacuum diagrams contributing in the order C3

0 to E�. Different types
of lines represent propagators of fermions having different spin pro-
jections. The second particle-hole diagram exists only if there are
more than two different spin projections (s > 1

2 ).

The sum over pairs of different spin projections gives in this
case the factor 1

2 gs(gs − 1) and one recovers the well-known
result rederived in [2] using the effective-field theory. If the
densities of fermions with different spin projections are not
equal, numerical evaluation of the integrals defining the func-
tion J (pFσ ′ , pFσ ) shows it is proportional to the function JK

(4) introduced by Kanno, with the precise relation being4

160Jfin(pFσ ′ , pFσ ) = k7
FJK (xσ ′, xσ ).

This leads to the result (2) obtained recently in a somewhat
different way in [8].

III. THIRD-ORDER CORRECTIONS
PROPORTIONAL TO C3

0

According to the power counting rules, the order (kFR)3

corrections to the ground-state energy density arise from the
four-loop diagrams with three interaction vertices propor-
tional to C0 and from the two-loop diagrams with a single
C2 or C′

2 interaction vertex [the terms V (C2 )
int and V

(C′
2 )

int in (6)].
In this section we work out the contribution of the first class
of diagrams; the contribution of diagrams with the vertices
generated by the interaction terms proportional to C2 and C′

2
will be computed in Sec. IV.

If s > 1
2 , three kinds of nonvanishing four-loop diagrams

with three interaction vertices proportional to the C0 coupling
can be formed. They are shown in Fig. 2. The first one is the
so-called particle-particle diagram, while the remaining two
are called particle-hole diagrams.

The contribution of the order C3
0 particle-particle diagram

shown in Fig. 2 on the left is (2 is the combinatoric factor)

1

ih̄

E (3)pp
�

V
= 1

3!

(
C0

ih̄

)3

2
∑
σ ′<σ

∫
d4q

(2π )4
[Aσ ′,σ (q)]3. (20)

As it is clear from the spin structure of the interaction term
proportional to C0 and the flow of the spin projections in
the diagram, the sum runs only over pairs of different spin
projection labels σ ′ 
= σ . There are gs(gs − 1)/2 such pairs
and, if densities of fermions with different spin projections
are all equal, the summation reproduces the usual spin factor
associated with this contribution [2]. For the sake of further
discussion, we note that the product of three A blocks gives

4From the formulas (13) and (14) it is clear that J (pFσ ′ , pFσ ) ≡
J (xσ ′ kF, xσ kF ) = k7

FJ (xσ ′ , xσ ).
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rise to 23 = 8 terms out of which two are eliminated by the
integration over dq0 (they have all poles on the same side
of the real q0 axis), while the remaining six split into three
identical terms which arise from the products of two terms
corresponding in (10) (appealing to the interpretation of the
two terms of the A block) to the propagation of particles and
one corresponding to the propagation of holes, and another
three identical ones in which this composition is reversed. As
a result, this contribution to the energy density can be written
in terms of two functions G(1)(pFσ ′ , pFσ ) and G(2)(pFσ ′ , pFσ )

(corresponding respectively to these two kinds of composi-
tions):

E (3)pp
�

V
= 128m2

f C
3
0

(2π )8h̄4

∑
σ ′<σ

[G(1)(pFσ ′ , pFσ ) + G(2)(pFσ ′ , pFσ )].

(21)

The functions G(1)(pFσ ′ , pFσ ) and G(2)(pFσ ′ , pFσ ) are given by
the integrals

G(1)(pFσ ′, pFσ ) =
∫ smax

0
ds s2 1

4π

∫
d3t θ (pFσ ′ − |t + s|)θ (pFσ − |t − s|)[gσ ′,σ (t, s)]2, (22)

G(2)(pFσ ′, pFσ ) =
∫ smax

0
ds s2 1

4π

∫
d3t θ (|t + s| − pFσ ′ )θ (|t − s| − pFσ )[hσ ′,σ (t, s)]2, (23)

in which gσ ′,σ (t, s) is the function defined by (14) and hσ ′,σ (t, s) ≡ hσ ′,σ (|t|, |s|) = hσ,σ ′ (t, s) is given by the finite integral

hσ ′,σ (t, s) = 1

4π

∫
d3u

θ (pFσ ′ − |u + s|)θ (pFσ − |u − s|)
t2 − u2 − i0

. (24)

The explicit form of the function hσ ′,σ (t, s) has been obtained5 using the same method (based on the trick introduced in
Appendix C of [19]) by which the function gσ ′,σ (t, s) was computed in [7]. Assuming without loss of generality that pFσ ′ � pFσ ,
it reads

hσ ′,σ (t, s) = −1

2
pFσ ′ − t

4
ln

t − (pFσ ′ − s)

t + (pFσ ′ − s)
− t

4
ln

t − (pFσ ′ + s)

t + (pFσ ′ + s)
+ t2 − (

p2
Fσ ′ − s2

)
8s

ln
t2 − (pFσ ′ + s)2

t2 − (pFσ ′ − s)2
, (25)

if 0 � s � 1
2 (pFσ − pFσ ′ ), and [u2

0 is again given by (17)]

hσ ′,σ (t, s) = 1

2
(2s − pFσ ′ − pFσ ) − t

4
ln

t − (pFσ ′ − s)

t + (pFσ ′ − s)
− t

4
ln

t − (pFσ − s)

t + (pFσ − s)
− 1

8s

[
(pFσ − s)2 + (pFσ ′ − s)2 − 2u2

0

]

− t2 − p2
Fσ + s2

8s
ln

t2 − (pFσ − s)2

t2 − u2
0

− t2 − p2
Fσ ′ + s2

8s
ln

t2 − (pFσ ′ − s)2

t2 − u2
0

, (26)

if 1
2 (pFσ − pFσ ′ ) � s � smax = 1

2 (pFσ + pFσ ′ ). Expanding both these expression, one finds that the function hσ ′,σ (t, s) behaves
as 1/t2 when t = |t| → ∞. Therefore, although the integral over d3t in (23) covers the infinite exterior of the two Fermi
spheres, it is convergent; unlike the function G(1)(pFσ ′ , pFσ ), which depends on the divergent function gσ ′,σ (t, s), the function
G(2)(pFσ ′ , pFσ ) is finite.

Since the remaining order-C3
0 contributions to E�/V will turn out to be finite, already at this point one can check the

cancellation of ultraviolet divergences in the expression


E�

V
=

∑
σ ′<σ

(
p3

Fσ ′ p3
Fσ

36π4
C0 + 64m f C2

0

(2π )6h̄2 J (pFσ ′ , pFσ ) + 128m2
f C

3
0

(2π )8h̄4 G(1)(pFσ ′ , pFσ )

)
+ · · · .

Inserting here the expansions (7) of C0 (truncated to the ap-
propriate order), writing

[gσ ′,σ (t, s)]2 = �2 − 2�gfin
σ ′,σ + (

gfin
σ ′,σ

)2 − 2t2 + · · ·, (27)

and using the result (18), it is a matter of a simple algebra to
check that all terms diverging with � → ∞ as well as the spu-
rious terms specific for the adopted regularization [that is, the
finite term arising from the product of the term proportional
to a0� and the term t2/� from gσ ′,σ (t, s) in the contribution

5Analysis of the integration domains of (24) shows that the pole at
t2 = u2 is never reached.

proportional to C2
0 and the term −2t2 in (27)] completely

cancel out, as they should. As a result, to obtain the relevant
contribution to E�/V one can simply drop all �-dependent
terms in the function gσ ′,σ (t, s) and set C0 = (4π h̄2/m f )a0

(the remaining part of the function G(1) will be denoted by
G(1)

fin ).
The first type of particle-hole diagrams (the middle one

in Fig. 2) was computed in [16] in the case of spin s = 1
2

fermions. The generalization of the formulas obtained there
is straightforward and reduces to taking again the sum over
pairs of different spin projections:

1

ih̄

E (3)ph1
�

V
= 1

3!

(
C0

ih̄

)3

2
∑
σ ′<σ

∫
d4q

(2π )4
[Bσ ′,σ (q)]3. (28)
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(Again 2 is the combinatoric factor.) This gives

E (3)ph1
�

V
= −32m2

f C
3
0

(2π )8h̄4

∑
σ ′<σ

[K (1)(pFσ ′ , pFσ )

+ K (2)(pFσ ′ , pFσ )], (29)

where the functions K (1)(pFσ ′ , pFσ ) and K (2)(pFσ ′ , pFσ ) are
given by

K (1)(pFσ ′ , pFσ ) =
∫ ∞

0
ds s2 1

4π

∫
d3tθ (|t + s| − pFσ ′ )

× θ (pFσ − |t − s|)[ f (1)
σ ′,σ (t · s, s)

]2
,

(30)

K (2)(pFσ ′ , pFσ ) =
∫ ∞

0
ds s2 1

4π

∫
d3tθ (pFσ ′ − |t + s|)

× θ (|t − s| − pFσ )
[

f (2)
σ ′,σ (t · s, s)

]2

(31)

and the functions f (1)
σ ′,σ (t · s, s) and f (2)

σ ′,σ (t · s, s) are defined by
the integrals

f (1)
σ ′,σ (t · s, s)

= 1

4π

∫
d3u

θ (pFσ ′ − |u + s|)θ (|u − s| − pFσ )

(u − t) · s + i0
(32)

and

f (2)
σ ′,σ (t · s, s)

= 1

4π

∫
d3u

θ (|u + s| − pFσ ′ )θ (pFσ − |u − s|)
(u − t) · s − i0

.

(33)

Finally, the contribution of the last type of diagrams (the
rightmost one in Fig. 2) is given by

1

ih̄

E (3)ph2
�

V
= 1

3!

(
C0

ih̄

)3

(−3!)
∑

σ ′′,σ ′,σ

∫
d4q

(2π )4

× Bσ ′′,σ ′′ (q)Bσ ′,σ ′ (q)Bσ,σ (q), (34)

where −3! is the sign-combinatoric factor and the sum is over
all triplets of different spin projections (σ 
= σ ′ 
= σ ′′ and σ 
=
σ ′′). After the standard steps this leads to

E (3)ph2
�

V
= 32m2

f C
3
0

(2π )8h̄4

∑
σ ′′,σ ′,σ

[K̃ (1)(pFσ ′′ ; pFσ ′ , pFσ ) + K̃ (2)(pFσ ′′ ; pFσ ′ , pFσ ) + K̃ (1)(pFσ ′ ; pFσ , pFσ ′′ )

+ K̃ (2)(pFσ ′ ; pFσ , pFσ ′′ ) + K̃ (1)(pFσ ; pFσ ′′ , pFσ ′ ) + K̃ (2)(pFσ ; pFσ ′′ , pFσ ′ )], (35)

where the functions K̃ (1)(pFσ ′′ ; pFσ ′ , pFσ ) and K̃ (2)(pFσ ′′ ; pFσ ′ , pFσ ), symmetric in their second and third Fermi momentum labels,
are given by the nested integrals

K̃ (1)(pFσ ′′ ; pFσ ′ , pFσ ) =
∫ ∞

0
ds s2 1

4π

∫
d3t θ (|t + s| − pFσ ′′ )θ (pFσ ′′ − |t − s|) f (1)

σ ′,σ ′ (t · s, s) f (1)
σ,σ (t · s, s), (36)

K̃ (2)(pFσ ′′ ; pFσ ′ , pFσ ) =
∫ ∞

0
ds s2 1

4π

∫
d3t θ (pFσ ′′ − |t + s|)θ (|t − s| − pFσ ′′ ) f (2)

σ ′,σ ′ (t · s, s) f (2)
σ,σ (t · s, s). (37)

However, the change s → −s in the integrals defining the functions K̃ (1) and K̃ (2) makes it obvious that

K̃ (2)(pFσ ′′ ; pFσ ′ , pFσ ) = K̃ (1)(pFσ ′′ ; pFσ ′ , pFσ ). (38)

This allows us to simplify the right-hand side of (35) by retaining in it (and doubling) only, say, the functions K̃ (2).
If the densities Nσ /V of fermions having different spin projection are all equal (pFσ = pFσ ′ = pFσ ′′ = kF), then

K̃ (2)(kF; kF, kF) = K (1)(kF, kF) = K (2)(kF, kF). The spin factors of the sum of the contributions (29) and (35) combine in this
case into

−gs(gs − 1)

2
+ 3

gs(gs − 1)(gs − 2)

6
= 1

2
gs(gs − 1)(gs − 3),

which is the spin factor associated with the particle-hole diagram in this case [2].
Analysis of the integration domains in the formulas defining the K functions reveals that the poles of the inte-

grands at u · s = t · s are never reached, so the prescriptions ±i0 can be dropped. Still, obtaining the analytic forms
of the functions f (1,2)

σ ′,σ (t · s, s) is rather cumbersome; hence we do not give the technical details of the computation.
The final formulas (different in the regimes of small, intermediate, and large s) for these functions can be found
in [16]; the formulas for the function f (2)

σ,σ (s · t, s) (not given in [16]) can in principle be obtained as a pFσ ′ =
pFσ limit of the function f (2)

σ ′,σ (s · t, s), but for this particular case a much simpler formula can be obtained.6 It

6We have of course checked numerically that f (2)
σ ′,σ (s · t, s) agrees with f (2)

σ,σ (s · t, s) in the limit pFσ ′ = pFσ

063311-6
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reads

f (2)
σσ (t · s, s) = s(pFσ − t ) + 1

4

(
p2

Fσ − s2 + 2st
)

ln

((
t2 − p2

Fσ + s2 − 2st
)(

t pFσ − p2
Fσ + s2 − st

)
t2(t pFσ + k2 − s2 + st )

)

− 1

4

(
p2

Fσ − s2 − 2st
)

ln

((
t2 − p2

Fσ + s2 + 2st
)(

t pFσ − p2
Fσ + s2 + st

)
t2

(
t pFσ + p2

Fσ − s2 − st
)

)

+ 1

2

(
p2

Fσ − s2
)

ln
pFσ + s

pFσ − s
− t2 ln

t − s − pFσ

t + s − pFσ

,

with f (2)
σσ (t · s, s) = − f (1)

σσ (t · s, s).
With the analytical formulas for these functions, the remaining integrals in (30), (31), and (37) can be evaluated numerically

using the standard Mathematica built-in routine for multidimensional integration over a prescribed domain. The resulting order
(kFa0)3 correction that adds up to the terms in large parentheses in (2) is7

160

π3
(kFa0)3

( ∑
σ ′<σ

[
4G(1)

fin (xσ ′ , xσ ) + 4G(2)(xσ ′, xσ ) − K (1)(xσ ′ , xσ ) − K (2)(xσ ′, xσ )
]

+
∑

σ ′′,σ ′,σ

[2K̃ (2)(xσ ′′ ; xσ ′ , xσ ) + 2K̃ (2)(xσ ′ ; xσ , xσ ′′ ) + 2K̃ (2)(xσ ; xσ ′′ , xσ ′ )]

)
, (39)

where the second sum is over all triplets of different indices
σ ′′, σ ′, and σ .

With these results, one can try to verify the reliability of
the approach developed in [14]. Its authors considered only
the case of spin- 1

2 fermions and only the contributions to the
ground-state energy density which, like the order-C2

0 contribu-
tion (9) and the order-C3

0 contribution (20), can be composed
of the A blocks. Of the corresponding nth-order contribution
[(n − 1)! is the combinatoric factor]

1

ih̄

E (n)pp
�

V
= 1

n!

(
C0

ih̄

)n

(n − 1)!
∑
σ ′<σ

∫
d4q

(2π )4
[Aσ ′,σ (q)]n,

(40)

which gives rise to 2n − 2 nonvanishing terms, they retain
only n identical ones obtained by taking n − 1 parts of the
A block corresponding to the propagation of particles and
one part corresponding to the propagation of holes (again
appealing to the interpretation introduced earlier). Thus, out
of the complete order-C3

0 contribution obtained above, they
take only the function G(1)

fin (pFσ ′ , pFσ ), discarding the con-
tributions of the function G(2)(pFσ ′ , pFσ ) and of the sum
1
4 [K (1)(pFσ ′ , pFσ ) + K (2)(pFσ ′ , pFσ )]. As Fig. 3 shows, the
first of these two functions is indeed one order of magnitude
smaller than G(1)

fin in the entire range of the ratio r = pFσ ′/pFσ

(both these functions, similarly to the functions K (1,2) and
K̃ (2), vanish at r = 0 as a result of the absence of s-wave
interaction of fermions obeying the Pauli exclusion principle),
but the same is not true of the second function, which is

7From the defining formulas it is clear that all the functions
G(1,2)(pFσ ′ , pFσ ), K (1,2)(pFσ ′ , pFσ ), and K̃2)(pFσ ′′ ; pFσ ′ , pFσ ) scale
like the eighth power of the wave vector kF which effectively reduces
them to functions of the single variable r = xσ ′/xσ : G(1)(pFσ ′ , pFσ ) =
p8

Fσ G(1)(xσ ′/xσ , 1), etc.

always comparable to G(1)
fin and enters (39) with the opposite

sign strongly reducing the contribution of the function G(1)
fin .

Moreover, in higher orders the number of discarded terms
arising from (40) rapidly grows and if each of the discarded
(2n − 2) − n terms of the contribution (40) is only one order
of magnitude smaller than each of the n terms taken into
account, the domination of the latter can be invalidated (as the
transition to the ordered state is expected to occur at kFa0

<∼ 1,
the higher-order contributions are not much suppressed by the
powers of the expansion parameter kFa0). Moreover, in higher
orders the number of other types of diagrams (with topologies
different from those shown in Fig. 2) grows and their contri-
bution, like the one of K (1)(pFσ ′ , pFσ ) + K (2)(pFσ ′ , pFσ ), may
dominate the one of the retained terms. Thus the reliability
of the approximations made in [14] may be questioned even
though the numerical results obtained there agree quite well
with those obtained by the quantum Monte Carlo methods.

FIG. 3. Plot of the functions G(1)
fin (r, 1) (the highest, blue, curve),

G(2)(r, 1) (the lowest, orange, curve), and 1
4 [K (1)(r, 1) + K (2)(r, 1)]

(the middle, green, curve).
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IV. CONTRIBUTION OF THE INTERACTION TERMS PROPORTIONAL TO C2 AND C′
2

According to the power counting rule in the order k3
F(h̄2k2

F/2m f )(kFR)3, one has to take into account also the operators

V (C2 )
int = −C2

8

∫
d3x

∑
σ<σ ′

[ψ†
σψ

†
σ ′ (ψσ ′∇2ψσ − 2∇ψσ ′ · ∇ψσ + ∇2ψσ ′ψσ ) + (∇2ψ†

σψ
†
σ ′ − 2∇ψ†

σ · ∇ψ
†
σ ′ + ψ†

σ∇2ψ
†
σ ′ )ψσ ′ψσ ]

(41)

and

V
(C′

2 )
int = −C′

2

8

∫
d3x

∑
σ,σ ′

(∇ψ†
σψ

†
σ ′ − ψ†

σ∇ψ
†
σ ′ ) · (∇ψσ ′ψσ − ψσ ′∇ψσ ). (42)

(Notice that in the second operator the sum involves also terms
with σ = σ ′.) Their contribution to the ground-state energy
density in the case of nonequal densities of spin- 1

2 fermions
having different spin projections has been explicitly written
down in [16]. Generalization of these formulas to the case
of spin-s fermions with different densities of their gs spin
projections is straightforward. They read

E (C2 )
�

V
= C2

240π4

∑
σ ′<σ

p3
Fσ ′ p3

Fσ

(
p2

Fσ ′ + p2
Fσ

)

= k3
F

6π2

3

5

h̄2k2
F

2m f

1

6π
k3

Fa2
0r0

∑
σ ′<σ

x3
σ ′x3

σ

(
x2
σ ′ + x2

σ

)
, (43)

E
(C′

2 )
�

V
= C′

2

120π4

(
gs∑

σ=1

p8
Fσ + 1

2

∑
σ ′<σ

p3
Fσ ′ p3

Fσ (p2
Fσ ′ + p2

Fσ )

)

= k3
F

6π2

3

5

h̄2k2
F

2m f

2

3π
(kFa1)3

×
(

gs∑
σ=1

x8
σ + 1

2

∑
σ ′<σ

x3
σ ′x3

σ

(
x2
σ ′ + x2

σ

))
. (44)

For equal densities of all spin projections this reduces to the
known results given, e.g., in [2]. The contribution E

(C′
2 )

� is spe-
cial in that, unlike the remaining ones (to this order), it does
not vanish if all fermions have the same spin projection. This
has important consequences for the transition to the ordered
state.

V. PHASE TRANSITION TO THE ORDERED STATE

A short-range repulsive interaction, cooperating with the
Pauli exclusion rule, can, if its strength is high enough and the
gas density is not too low, cause the transition to the ordered
state. The qualitative explanation of this phenomenon is that
because of the Pauli exclusion, the dominant s-wave interac-
tion energy of two fermions with the same spin projection
must vanish (it is positive if the spin projections are different);
hence assuming by the majority of fermions the same spin
projection and decreasing thereby the interaction energy may
become energetically more favorable than minimizing the ki-
netic energy by having all spin projections equally populated.
Since the effect is due to the competition between the energy
of the free system and the interaction energy, it can occur
only if the interaction is sufficiently strong, which implies
that it hardly can be treated perturbatively. In the mean-field

approximation, [equivalent to taking into account in (2) only
the order kFa0 correction], and for spin s = 1

2 fermions this
happens when kFa0 > π/2 (see, e.g., [9,10,20]).

In this simplest case the role the order parameter naturally
plays is the polarization P = (N+ − N−)/N and seeking the
minimum of the ground-state energy E�(P) as a function
of P is straightforward. In the case of spin-s fermions there
are in principle many possible configurations with nonequal
densities of different spin projections, but from the heuristic
argument given above it follows that in this case the minimum
of the ground-state energy should be in the configuration in
which only one spin projection has density higher than the
remaining ones, which all have equal densities.8 Of course,
in the ordered phase there are then gs = 2s + 1 degenerate
ground states related to one another by the SU(gs) symmetry
because in the absence of an external field any of the gs spin
projections can be that one which is populated by the majority
of fermions. Therefore, the natural order parameter P defined
by setting (without loss of generality we assume that it is the
first spin component which is populated differently from the
remaining ones)

x1 = (1+ P)1/3, xσ =
(

1− P

gs −1

)1/3

, σ = 2, . . . , gs,

(45)

x3
1 + x3

2 + · · · + x3
gs

= gs, −1 � P � gs − 1, (46)

which corresponds to

P = gsN1 − N

N
= (gs − 1)

N1 − N2

N
, (47)

ceases to have the simple interpretation of the system’s po-
larization.9 In terms of the factors x1(P) and x2(P, gs) given
by (45), the term in large parentheses in the formula (2) takes

8The authors of [8] claim to have proved this mathematically, but a
cursory look at their argument, which relies on the obvious symmetry
of the equations determining the densities of the spin projections
other than the distinguished one, shows it is not valid.

9Obviously, if the spontaneous ordering is approached in the usual
thermodynamic limit by switching off an external magnetic field
coupled to the fermion spin, it will be the largest spin projection
in the direction of the field that will be singled out. In this case
the magnetization will be given by NμP/(gs − 1), where μ is the
magnetic moment associated with a single spin.
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the form

fs(P) = x5
1 + (gs − 1)x5

2 + 20

9π
kFa0(gs − 1)x3

2

×
(

x3
1 + 1

2
(gs − 2)x3

2

)
+ 2

π2
(kFa0)2(gs − 1)

×
(

JK (x1, x2) + 1

2
(gs − 2)

44 − 8 ln 2

21

)
. (48)

In the case of spin- 1
2 fermions the phase transition to the

ordered state at kFa0 = π/2 in the mean-field approximation,
equivalent to retaining in (2) only the first two terms in the
large parentheses, is known to be continuous. This results
however from a numerical coincidence which makes the sec-
ond derivative of EMF

� (P) with respect to P to vanish at P = 0
for kFa0 = π/2, precisely when the nontrivial minimum first
appears. This does not happen if s > 1

2 and in the mean-field
approximation the phase transitions to the ordered states are
in all these cases of first order.10 It can also be easily checked
that the critical value of kFa0 at which it occurs decreases
with the spin s but rather slowly: (kFa0)MF

cr ≈ 1.43 for s = 3
2 ,

(kFa0)MF
cr ≈ 1.21 for s = 7

2 , and (kFa0)MF
cr ≈ 1.14 for s = 9

2 .
In view of the qualitative explanation of the reasons for the
transition, such a behavior is easy to understand: The gas
kinetic energy is linear in the number gs of possible spin pro-
jections, while the interaction depends on it (in the mean-field
approximation) quadratically. One can also observe that only
for s = 3

2 (and of course s = 1
2 ) is the spontaneous polariza-

tion P not maximal at (kFa0)MF
cr ; for all higher spins it becomes

maximal (P = gs − 1) already at the transition point.
If the corrections of order (kFa0)2 are included, i.e., the

full formula (48) is used, the transition to the ordered state
(at zero temperature) becomes of first order also for s = 1

2
(and retains, of course, this character for s > 1

2 ). The relevant
plots for s = 1

2 can be found in [12] as well as in [8] and for
s > 1

2 in [12]. The transition occurs now at (kFa0)2nd
cr ≈ 1.054

for s = 1
2 , (kFa0)2nd

cr ≈ 0.954 for s = 3
2 , (kFa0)2nd

cr ≈ 0.840 for
s = 7

2 , and (kFa0)2nd
cr ≈ 0.804 for s = 9

2 . Moreover, in this
approximation only for s = 1

2 does the polarization gradually
approach the maximal value P = 1 [P ≈ 0.58 exactly at the

10Taking the effects of the interaction in the first nontrivial order
and restricting oneself to the configurations specified by (45), one
can repeat the steps taken in [9] and obtain the full low-temperature
profile of the transition to the ordered phase for any spin s. At zero
magnetic field H , the equation

gsμH + 4gs

3π
kFa0P

= (gs − 1)

{
(1 + P)2/3 −

(
1 − P

gs − 1

)2/3

− π 2

12

(
kBT

ε
(s)
F

)2[
(1 + P)−2/3 −

(
1 − P

gs − 1

)−2/3
]

+ · · ·
}

,

which determines the parameter P starts, for s > 1
2 to have a nontriv-

ial solution before the slopes at P = 0 of its both sides equalize; this
shows that the transition is of first order.

FIG. 4. Plot of the term in large square brackets in the expression
(49) as a function of the order parameter P defined by (45) for gs = 3
(the lower, blue, curve) and gs = 4 (the upper, orange, curve). Its
vanishing for the maximal value of P (Pmax = gs − 1) follows from
the vanishing of the s-wave interaction of fermions in the same spin
state.

critical coupling kFa0 = (kFa0)2nd
cr ]; in the remaining cases

it jumps immediately to the maximal possible value Pmax =
gs − 1.

Inclusion of the order-(kFa0)3 corrections to the energy
density treated as a function of the order parameter P amounts
to adding to the function fs(P) given by (48) the term

160

π3
(kFa0)3(gs − 1)

{
4G(1)

fin (x2, x1) + 4G(2)(x2, x1)

− K (1)(x2, x1) − K (2)(x2, x1) + 1
2 (gs − 2)

[
4G(1)

fin (x2, x2)

+4G(2)(x2, x2) − K (1)(x2, x2) − K (2)(x2, x2)
]

+ (gs − 2)
[
K̃ (2)(x1; x2, x2) + 2K̃ (2)(x2; x2, x1)

+ (gs − 3)K̃ (2)(x2; x2, x2)]
}
. (49)

(The content of the curly brackets is plotted as a function
of the order parameter P if Fig. 4 for gs = 3 and 4.) This
has the following consequences. First, the critical value of
the expansion parameter kFa0 is further reduced: The tran-
sition occurs now at (kFa0)3rd

cr = 0.990 96 for s = 1
2 [and at

(kFa0)3rd
cr = 0.741 90 and 0.494 45 for s = 3

2 and s = 9
2 , re-

spectively]. Second, the first-order character of the transition,
which is quite clear without this correction, becomes now
much less pronounced: while for s = 1

2 the height of the hill
(separating the minimum at P = 0 from the one at P 
= 0)
remains almost unchanged, greatly reduced is the nonzero
value of the order parameter right at the transition. This is
clear from the comparison of Figs. 5(a) and 5(b) showing the
shape of the function fs(P) for three values of kFa0 close to
the critical one (corresponding to the approximation used): In
Fig. 5(a) the order-(kFa0)3 corrections are not included while
in Fig. 5(b) they are. This aspect, the reduction of the the
nonzero value of the order parameter right at the transition,
is even more dramatic in the case of higher spins: Without the
third-order corrections this value is maximal P = gs − 1; with
these corrections it is reduced to approximately 0.12 (prac-
tically independent of the value of s). Moreover, for s > 1

2
also the height of the hill separating the symmetry breaking
minimum from the symmetry preserving one at P = 0 is re-
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(a) (b)

FIG. 5. Plots of the ground-state energy of the system of spin- 1
2 fermions as a function of the order parameter P in units of

(k3
F/6π 2)( 3

5 )(h̄2k2
F/2mf ), i.e., of the function fs(P), (a) without the order (kFa0 )3 corrections, with the lines corresponding to kFa0 = 1.054 04

(the lowest, blue, line), 1.054 09 (the middle, orange, line), and 1.105 414 (the highest, green, line), and (b) with the order (kFa0)3 corrections,
with the lines corresponding to kFa0 = 0.990 91 (the lowest, blue, line), 0.990 96 (the middle, orange, line), and 0.991 01 (the highest, green,
line). In both panels the middle line corresponds to the respective critical value of kFa0.

duced by roughly three orders of magnitude for s = 3
2 and up

to four for s = 9
2 . In the case of spin 3

2 this is shown in Fig. 6.
The results for different values of the spin s are presented in
Table I, in which we have included also integer spin values;
in the case of atomic gases different hyperfine levels can play
the role of the effective spin and therefore its integer values
are also compatible with the Fermi statistics. The dependence
of the ground-state energy on the polarization P in the case
of three states (spin 1), most studied in experiments with cold
atoms, is shown in Fig. 7.

These purely perturbative results strongly point towards the
possibility that the transition to the ordered state is, when
all effects associated with the interactions other than that
proportional to the coupling C0 in (6) are ignored (which is
equivalent to setting to zero all the higher partial wave scat-
tering lengths a� and all the effective radii r�), indeed of the
continuous type. Most probably with the inclusion of higher
and higher corrections its character becomes less and less first
order and becomes truly continuous when a resummation of
the sort performed in [14] is made but becomes practically
indistinguishable from such a transition already at a finite (not

very high, as our computation shows) order of the ordinary
perturbative expansion.

Finally, we can briefly discuss effects induced by the po-
tential presence of a non-negligibly small s-wave effective
radius r0 and/or p-wave scattering length a1. They are intro-
duced through the two lower length dimension operators in
(6) which are given explicitly by the formulas (41) and (42).
In the configuration of densities assumed in this section these
interactions add to the function fs(P) the terms
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If the effects of these operators are subleading compared to
the effects caused by the order-k3

F corrections of the operator
proportional to C0 (that is, when |r0|, |a1| � a0), they modify
the general picture described above only slightly. For instance,

(a) (b)

FIG. 6. Plots of the ground-state energy of the system of spin- 3
2 fermions as a function of the order parameter P in units of

(k3
F/6π 2)( 3

5 )(h̄2k2
F/2mf ), i.e., of the function fs(P), (a) without the order (kFa0)3 corrections, with the lines corresponding to kFa0 = 0.9532

(the lowest, blue, line), 0.9542 (the middle, orange, line), and 0.9552 (the highest, green, line), and (b) with the order (kFa0)3 corrections, with
the lines corresponding to kFa0 = 0.741 88 (the lowest, blue, line), 0.741 90 (the middle, orange, line), and 0.741 92 (the highest, green, line).
In both panels the middle line corresponds to the respective critical value of kFa0.
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TABLE I. Characteristics of the transitions to the ordered state at T = 0 for different values of the spin s of fermions.

s (kF a0)MF
cr PMF

cr (kF a0 )2nd
cr P2nd

cr (kF a0)3rd
cr P3rd

cr

1
2 π/2 0 1.05408 0.58 0.99097 0.11
1 1.51075 1.45 1.001 Pmax 0.83396 0.13
3
2 1.4298 2.78 0.9543 Pmax 0.74190 0.14
2 1.3598 3.95 0.9176 Pmax 0.67636 0.14
5
2 1.3016 Pmax 0.8877 Pmax 0.62560 0.125
3 1.2531 Pmax 0.8627 Pmax 0.58432 0.12
7
2 1.2118 Pmax 0.8405 Pmax 0.54976 0.115
4 1.1756 Pmax 0.8212 Pmax 0.52018 0.11
9
2 1.1439 Pmax 0.8040 Pmax 0.49445 0.105
5 1.0901 Pmax 0.7886 Pmax 0.47178 0.10
11
2 1.0901 Pmax 0.7753 Pmax 0.45164 0.10

in the case of s = 1
2 the presence of r0 ≈ a0/10 decreases by

less than 1% the critical value of the parameter kFa0, while
r0 ≈ −a0/10 increases it by the same amount, in agreement
with the observation made in [14]. In both cases the character
of the phase transition is not appreciably changed. Somewhat
surprising is however the observation that for larger spin val-
ues this pattern is reversed: Negative r0 decreases slightly the
critical value of kFa0, while positive r0 increases it. The reason
for this is that while for s = 1

2 the first line of (50) is a function
of P monotonically decreasing to zero (the contribution to the
energy density of the interaction proportional to C2 is by the
Pauli exclusion principle also bound to vanish at P = 1), for
higher spins it is a slightly increasing function, precisely in
the range in which the new minimum of the energy density
forms.

In general, the correction induced by the operator (42) is
larger than the one induced by (41). Moreover, in the pertur-
bation series for E�/V it is the first correction which is not
bound to vanish at P = 1 by the Pauli exclusion principle.
Nevertheless, if one assumes that |a1| is of the same order
as |r0| and much smaller than a0, its contribution is not larger
than that of (41) simply because it is proportional to a3

1. In the
configuration of the densities considered here, the expression
in the second line of (50) is for all values of the spin s a mono-

tonically increasing function. For this reason the contribution
increases the value of (kFa0)cr for a1 > 0 and lowers if for
a1 < 0 by roughly 1% so long as |a1| <∼ a0/10 without affect-
ing significantly the character of the transition. Thus, it seems
likely that if all the scattering lengths a�, � = 1, 2, . . . , all the
radii r�, etc., are subleading with respect to a0, the continuous
character of the transition will emerge after all corrections are
taken into account (being, from the practical point of view,
indistinguishable from continuous already starting from some
fixed order of the perturbative expansion).

VI. CONCLUSION

Computing the ground-state energy of a finite density sys-
tem of fermions interacting through a binary spin-independent
repulsive interaction is a classic problem of many-body
quantum mechanics. The modern effective-field-theory ap-
proach greatly simplifies this task. In particular, it allowed
the completion of the computation of the fourth-order (i.e.,
proportional to k4

F) corrections in the case of spin-s fermions
and equal densities of different spin projections [5] and the
extension to the third order the computation of energy of
spin- 1

2 fermions for an arbitrary value of the system’s polar-
ization [16]. Here we have extended the latter result to the

(a) (b)

FIG. 7. Plots of the ground-state energy of the system of spin-1 (gs = 3) fermions as a function of the order parameter P in units of
(k3

F/6π 2)( 3
5 )(h̄2k2

F/2mf ), i.e., of the function fs(P), (a) without the order (kFa0)3 corrections, with the lines corresponding to kFa0 = 1.1000
(the lowest, blue, line), 1.1001 (the middle, orange, line), and 0.1002 (the highest, green, line), and (b) with the order (kFa0)3 corrections, with
the lines corresponding to kFa0 = 0.833 92 (the lowest, blue, line), 0.833 96 (the middle, orange, line), and 0.834 00 (the highest, green, line).
In both panels the middle line corresponds to the respective critical value of kFa0.
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case of spin-s fermions and arbitrary densities of different
spin projections. The derived formulas allowed us to compute
the ground-state energy semianalytically exploiting only the
built-in routines of the Mathematica package.

We have used this result to discuss two issues. First, we
checked numerically how the magnitude of the third-order
term included in the resummation of an infinite subset of
corrections done in [14] compares with the magnitudes of the
rejected terms and found that it is not obviously dominant.
Second, we discussed the impact the third-order corrections
have on the characteristics of the system’s transition to the
ordered phase at zero temperature. We found that already the
third-order corrections tend to erase the first-order character
of this transition independently of the value s of the spin of
fermions. Although our observations were made on the basis
of the perturbative expansion used in the regime, which is
probably beyond the domain of its applicability (the compar-
ison of the results of the quantum Monte Carlo computations
of the ground-state energy of the unpolarized gas of spin- 1

2
fermions with the perturbative computation revealed [15] that
the expansion is reliable up to kFa0

<∼ 0.6; in the case of s > 1
2

the value of the expansion parameter kFa0 at which the transi-
tion to the ordered state occurs is smaller, but since at the same

time the magnitude of the successive terms of the perturbation
series is increased by the growing powers of the factor gs,
the limit of the reliability of the expansion probably also
decreases with s), they nevertheless seem to lend some support
to the claim made in [14] that the transition is continuous
rather than first order. It seems that the picture which emerges
is quite sensible: Since a continuous transition is associated
with fluctuations at all length scales, at any finite order of
the perturbative expansion such a transition should look like a
first-order one (the continuous transition in the system of spin-
1
2 fermions obtained in the mean-field approximation is from
this perspective a mere numerical coincidence), though its
first-order character may rapidly disappear with an increased
order of the approximation (so that it quickly may become
indistinguishable from a continuous one from the practical
point of view); the truly continuous character of a transition
can really be revealed only by a (partial) resummation of all
order contributions, of the sort proposed in [14].
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