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Quench dynamics of thermal Bose gases across wide and narrow Feshbach resonances
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Using high-temperature virial expansion, we study the quench dynamics of the thermal Bose gases near wide,
narrow, and intermediate Feshbach resonances. Our results show that the shallow bound state near Feshbach
resonances leads to oscillation of n̂k. Near the wide Feshbach resonance, the long-time momentum distribution
n̂k oscillates when the scattering length as is quenched to large but with finite positive values. The oscillation
frequency is determined by the bound-state energy. When as is quenched to infinity or negative value, the
oscillation vanishes. Near the narrow Feshbach resonance, when the background scattering length abg is larger
than de Broglie wave length λ, there is an oscillation, and the frequency is determined by the energy of the
shallow bound state in the open channel. When abg < 0 or 0 < abg � λ, there is no shallow bound state in the
open channel, and hence no oscillation. We check our conclusion using some realistic systems, and the results
are consistent with our conclusion.
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I. INTRODUCTION

Thanks to Feshbach resonances, the pairwise interaction
between atoms can be controlled flexibly by tuning external
fields, and the equilibrium properties in strongly interact-
ing atomic gases have been extensively studied [1,2]. The
timescale of the Hamiltonian manipulation can be much
smaller than the relaxation time. As such, ultracold atomic
gases have also become one of the most ideal platforms to
investigate nonequilibrium physics, including the quench dy-
namics [3–9].

Here, quench dynamics refers to the evolution of ini-
tial states under an abruptly changed Hamiltonian. For
instance, the s-wave scattering length as can be controlled
by the magnetic field. When as is sinusoidally modulated
by time-dependent external fields, the particle number of
the noncondensation modes will exponentially grow, i.e.,
Bose-Einstein condensation (BEC) is depleted. If the mod-
ulation phase is suddenly changed by π , it was found that
the excited particle number decreases, i.e., BEC revives [10].
Motivated by this phenomenon, a new kind of echo theory
has also been proposed in BEC, which can be realized by
quenching as or the trapping potential [11,12]. In the same
spirit, there are many other studies on quench dynamics via
quenching parameters of the Hamiltonian. Many-body local-
ization and thermalization can be distinguished by the quench
dynamics of the entanglement entropy [13]. The topology of
Hamiltonian of band insulators can be extracted in the quench
dynamics of the linking number [14–16]. The dynamical frac-
tal has been established in quantum gases with discrete scaling
symmetry [17].

In the seminal experiment by the Cambridge group [7], a
series of universal quench dynamics of Bose gas have been
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revealed by quenching the interaction from zero to unitary.
Both degenerate and thermal Bose gases of 39K are studied
near a Feshbach resonance located at ∼402.7G. This is a
resonance of intermediate width, sres ∼ 2.1 [1]. In the follow-
up theoretical studies, it has been treated as a wide one, and
the comparison of theoretical and experimental results are
satisfactory for both degenerate and thermal gases [18,19].
A natural question arises: What are the effects induced by
resonance width? For ultracold Bose gases, the influence of
few-body effects and short-range correlations has been exten-
sively examined near a narrow Feshbach resonance, utilizing
the two-channel zero-range model [20–22]. In this manuscript
our attention is directed towards the dynamics of thermal Bose
gases near both narrow- and intermediate-width Feshbach
resonances. Our calculations employ a combination of the
two-channel zero-range and square well models to describe
the Feshbach resonance, while the dynamics of the momen-
tum distribution is studied through the application of a virial
expansion.

The virial expansion builds a connection between the few-
body and the many-body physics [23–36]. It works well when
comparing with experiments [37–44]. The control parameter
is the fugacity z = eμ/(kBT ), where μ is the chemical potential
and kB is the Boltzmann constant. At high temperature, μ

is large and negative; therefore z < 1. Near both wide and
narrow Feshbach resonances, this method has been applied
to quantum gas in equilibrium [27,30,33,34,45–53]. Recently,
it has also been implemented to the quench dynamics of Bose
gas near a wide Feshbach resonance [19]. As such, it is natural
to extend the virial expansion for dynamics to the narrow
Feshbach resonance and a crossover from a wide one to a
narrow one. Our main results are summarized in Table I.

This manuscript is organized as follows: In Sec. II, we
introduce the virial expansion method and its application to
quench dynamics. Section III focuses on the differences in
quench dynamics near narrow and wide Feshbach resonances.
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TABLE I. Long-time behavior of the momentum distribution nk

dynamics near Feshbach resonance.

Resonance width Oscillation Nonoscillation

sres � 1 (wide s-wave scattering s-wave scattering
resonance) length, as � λ as < 0 or

as = ∞
sres � 1 (narrow Background Background

resonance) or scattering length, scattering length,
sres ∼ 1 abg � λ abg < 0 or

(intermediate width) 0 < abg � λ

We emphasize these differences using the two-channel square
well model. In Sec. IV we investigate quench dynamics under
different scenarios using the zero-range model. We consider
variations in the s-wave scattering length as and the back-
ground scattering length abg. In Sec. V we consider realistic
systems with different resonance widths and background scat-
tering lengths. We demonstrate the conclusions reached in the
previous sections within the context of these systems. Finally,
we summarize the main findings of the paper and provide
concluding remarks in Sec. VI.

II. VIRIAL EXPANSION FOR DYNAMICS

Let us first review the basics of virial expansion for quench
dynamics. We consider thermal Bose gases with temperature
T , then quench the interaction from zero to finite or unitary.
The Hamiltonian becomes Ĥ = Ĥ0 + V̂ , with V̂ denoting the
interaction. For later time t > 0, the system evolves under the
full Hamiltonian Ĥ and eventually achieves a new equilibrium
state. Some universal physics can be revealed in the prether-
mal process. To this end we could measure an observable Ŵ ,
the expectation value W (t ) of which can be written as [19]

W (t ) = Tr[e−β(Ĥ0−μN̂ )eiĤtŴ e−iĤt ]

Tr[e−β(Ĥ0−μN̂ )]
, (1)

where β = 1/kBT denotes the inverse temperature, and N̂ is
the total particle number of Bose gases. Here and hereafter,
we set h̄ = kB = 1 for convenience. The exact evaluation of
W (t ) is formidable in a many-body system because Ŵ does
not commute with the Hamiltonian.

At high temperature we expand the observable W (t ), in-
stead of the thermodynamic potential �, in terms of the
fugacity z. To the order of z2, W (t ) is expressed as

W (t ) = X1z + (−Q1X1 + X2)z2 + O(z3). (2)

Here, Xn and Qn are defined as

Xn = Trn[�(t )e−βĤ0 eitĤŴ e−it Ĥ ]

=
∑
α,γ ,κ

e−βE (n)
α G(n)

κα (t )
〈
ψ (n)

κ

∣∣Ŵ ∣∣ψ (n)
γ

〉
G(n)

γα (t ), (3)

Qn = Trn[e−βĤ0 ], (4)

respectively; n = 1, 2 . . . denotes the particle number; E (n)
α

and ψ (n)
α represent the energy and wave function of the n-

particle noninteraction state, respectively. �(t ) is the step
function. G(n)(t ) is the retarded Green’s function of the

n-particle interacting system and is defined as

G(n)
γα (t ) = 〈

ψ (n)
γ

∣∣�(t )e−it Ĥ
∣∣ψ (n)

α

〉
= i

2π

∫ ∞

−∞
dωe−iωt G(n)

γα (ω + i0+). (5)

Therefore, by solving the n-particle problem we can de-
termine the evolution of the many-body system, with the
accuracy improving as we increase n.

The same as the experiment, we consider the dynamics of
the particle number in the k mode, i.e., Ŵ = n̂k. For a single
particle system, Ĥ = Ĥ0, and

X1 = Tr1
[
�(t )e−βĤ0 eitĤ0 n̂ke−it Ĥ0

] = e−βk2/(2m). (6)

Therefore X1 and Qn are independent of time t . The evolution
of momentum distribution δnk = nk(t ) − nk(0) depends only
on X2 in Eq. (2), i.e.,

δnk = [X2(t ) − X2(0)]z2, (7)

which can be obtained by solving the two-body problem.
For the two-body problem, the noninteracting wave function
is labeled by |ψ (2)

a 〉 = |P, q〉, with P and q being the total
and relative momentum of two bosons, respectively. The cor-
responding energy reads E (2)

a = P2/(4m) + q2/m, where m
is the reduced mass. According to the Lippmann-Schwinger
function, the retarded Green’s function can be written as

G(2)
αβ (s) = G0αβ (s) + G0αβ (s)T2(s)G0αβ (s)

=
[

〈qα|qβ〉
s − εqα

+ T2(s)

(s − εqα
)(s − εqβ

)

]
δPα,Pβ

, (8)

where s = ω + i0+, εqα
= q2

α/m is the kinetic energy of the
relative motion, and T2(s) denotes the T matrix of the two-
body scattering. We have also used the free Green’s function
for the relative motion G0(s) = (s − q2/m)−1 in the second
line of Eq. (8).

III. WIDE AND NARROW RESONANCES

Before embarking on the difference between wide and
narrow resonance, let us recall the two-body scattering theory.
The generic relation between scattering amplitude f (k′ ←
k) and scattering T matrix T (k′, k; E ) is f (k′ ← k) =
− m

4π
T2(k′, k; E ). For the partial-wave scattering, the scatter-

ing amplitude f�(k) is defined by the partial-wave scattering
matrix s� = e2iδ� ,

f�(k) = s� − 1

2ik
= − 1

ik − k/ tan δ�(k)
, (9)

where δ�(k) is the energy-dependent phase shift of the �th
partial wave. In this manuscript we consider the s-wave scat-
tering, and the T matrix is written as

T2(s) = 4π/m

−√
ms/ tan δ0 − √−ms

. (10)

In the effective-range theory,
√

ms/ tan δ0 = −1/as +
reffms/2 + · · · , with as and reff denoting the s-wave
scattering length and the effective range, respectively.
For wide resonance, the effective-range effect can be ignored,
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and as is the only parameter to characterize the interaction.
For narrow resonance, one has to include the effective range
to incorporate the energy-dependence of the phase shift. For
the van der Waals interaction, the quantum defect theory can
give the exact phase shift [54,55]. For simplicity, we consider
a two-channel square well model to mimic the interaction
between atoms [1,2]. In the basis spanned by the closed and
open channel, the interaction can be written as

V̂ (r) =

⎧⎪⎪⎨
⎪⎪⎩

[−Vo W
W −Vc + δμBB

]
, for r < r0;[

0 0
0 ∞

]
, for r > r0,

(11)

where Vc and Vo represent the closed-channel and open-
channel potential, and W is the inter-channel coupling
strength. r0 is the potential range, and the corresponding en-
ergy scale is E0 = 1/(mr2

0 ). δμB is the magnetic momentum
difference between the closed and open channel. By tuning
the magnetic field, a series of Feshbach resonances appear
(refer to Appendix A). Although this toy model does not
quantitatively capture the interaction potential detail, it pro-
vides a reliable qualitative picture. By solving the two-channel
model, the effective phase shift can be analytically obtained.
Upon substituting the phase shift into Eqs. (10) and (8), the
evolution of momentum distribution δnk(t ) can be obtained.
To precisely distinguish wide and narrow Feshbach resonance,
we define the parameter

sres = abg

r0

δμB�

E0
, (12)

where abg is the background scattering length determined by
Vo. � is the magnetic field width of the resonance. sres �
(�)1 indicates a wide (narrow) resonance; when sres ∼ 1, it
is of intermediate width.

In Fig. 1 we depict sin2 δ0 as a function of the magnetic
field and incident energy for both wide resonance (a) and
narrow resonance (b). The sres ∼ 260 and sres ∼ 0.04 for the
wide and narrow resonance. When δ0 = π/2, i.e., sin2 δ0 = 1,
the resonance happens. It is clear that the phase shift of wide
resonance almost does not depend on the incident energy, as
shown in (a). In contrast, the phase shift of narrow resonance
strongly depends on the incident energy, as shown in (b). For
both cases we quench the interaction by abruptly changing
the magnetic field to Bres, the position of resonance, and
measure the dynamics of momentum distribution. Near the
wide resonance, the low-momentum (kλ < 4.5) δnk decreases
monotonically after quenching and tends to a stable value
after a long-time evolution; the high-momentum (kλ > 4.5)
δnk increases monotonically and tends to a stable value after a
long-time evolution. There is a critical momentum (kλ = 4.5),
where nk goes up and down, and tends to its initial value.
This observation is consistent with experimental results [7]
and theoretical results given by the zero-range potential [19].
Here λ = √

2π/(mT ) denotes the thermal de Broglie wave-
length, and we define a time unit tλ = 1/T . However, near
the narrow resonance, the momentum distribution dynamics
show very different behavior in contrast to their wide reso-
nance counterpart. Although the tendency of δnk for low and
high momentum remains, there is oscillation with damping
amplitude, which means that there must be an intrinsic energy

FIG. 1. The phase shift sin2 δ0 and momentum distribution δnk

evolution of thermal Bose gas near wide and narrow resonance.
The interaction is quenched by abruptly changing the magnetic field
to resonance. sres = 260 for the wide resonance (a), sres = 0.003
and abg = 0.3λ for the narrow resonance (b). (c) Near the wide
resonance, the low-momentum nk monotonically decreases and the
high-momentum nk monotonically increases. The critical momentum
is around kλ = 4.5. (d) Near the narrow resonance, nk shows damped
oscillation when it decreases or increases.

scale near the narrow resonance. The critical momentum shifts
slightly.

IV. ZERO-RANGE MODEL

To gain insight into this phenomenon, let us examine the
zero-range model. For the wide resonance, the two-channel
model in Eq. (11) can be approximated by a zero-range
single-channel model. The two-body scattering T matrix T2(s)
reduces to

T2(s) = 4π/m

a−1
s − √−ms

. (13)

The pole of T2(s) gives the energy of the shallow bound
state, Eb = −1/(ma2

s ). When the interaction is quenched to
unitary, i.e., as = ∞, the bound-state energy vanishes. The
Hamiltonian is scale invariant, and the only relevant length
scales are the interparticle spacing and the thermal de Broglie
wavelength. As such, the dynamics driven by the scale-
invariant Hamiltonian are universal. Nevertheless, when as

is quenched to a positive finite value, this extra length scale
would exhibit itself in the dynamics.

In Fig. 2 we show the momentum distribution dynamics
when the quenched interaction deviates from the resonance
position. For final as > 0, we observe a long-time oscilla-
tion in the momentum distribution dynamics, as shown in
(a), similar to that near the narrow resonance. The oscillation
frequency for different momentum is the same, as depicted
in (c). We extract the oscillation frequency for varying as. To
this end we apply the fast Fourier transform to the oscillation
part of δnk. This allows us to obtain a spectrum A(ω), which
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FIG. 2. The evolution of the momentum distribution when the
quenched interaction deviates from the resonance position. (a) Final
as = λ/

√
2π . (b) Final as = −λ/

√
2π . (c) δnk evolution for three

particular momentums: blue solid line (kλ = 6), black dashed-dotted
(cross momentum), red dashed line (kλ = 3). (d) The shallow bound-
state energy |Eb| = 1/(ma2

s ) and oscillation frequency ω of the
momentum dynamics. The value of ω closely follows the bound-state
energy. Inset: The spectrum A(ω) for the final as = λ/

√
2π .

represents the distribution of frequencies present in the oscil-
lations. By analyzing the location of the peak in this spectrum,
we can identify the dominant frequency associated with the
oscillations. Our results show that the value of frequency ω

closely follows the bound-state energy |Eb| = 1/(ma2
s ), as

shown in (d). Therefore we conclude that the oscillation in
dynamics originates from the shallow bound state. When the
final as < 0, there is no shallow bound state and hence no
oscillation in the dynamics, as shown in (b).

Now we turn to the dynamics near the narrow- or
intermediate-width Feshbach resonance, where the single-
channel model is not sufficient to characterize the interaction.
As such, we need to adopt the two-channel zero-range model
[56], the two-body scattering T matrix T2 of which can be
written as (refer to Appendix B)

T2(s) = 4π/m
s−δμB (B−Bres )

abg[s+δμB�−δμB (B−Bres )] − √−ms
, (14)

where Bres denotes the magnetic field at resonance. The pole
of T2(s) in Eq. (14) gives two bound states. By substituting
Eq. (14) into Eq. (8), we can evaluate the momentum distribu-
tion nk.

Figure 3(a) shows the momentum distribution dynamics of
nk after quenching the interaction to resonance. We compare
the results of the two-channel square model (solid curves)
and zero-range model (dashed curves) for some particular
momentum. Near the narrow resonance (sres = 0.003), both
results show that there is a long-time oscillation, but the fre-
quencies are different. Near resonance of intermediate width
(sres = 2), the dynamics are almost the same as that near
the wide resonance. This explains why the single-channel
model gives consistent results with the experiment. Another

FIG. 3. The evolution of the momentum distribution after
quenching the interaction to resonance. (a) Dynamics of nk near
the narrow and intermediate Feshbach resonance. The numbers
in the legend represent (sres, abg). Solid (dashed) curves represent
two-channel square (zero-range) model. kλ = 7(3) for narrow (inter-
mediate) resonance. (b) Binding energy given a two-channel square
(solid lines) model and zero-range (dashed lines) model. The green
lines indicate the bound-state energy in the open channel. The blue
circle and red triangle are the oscillation frequency extracted from
the dynamics of nk.

important observation is that when abg < 0, δnk also exhibits
a monotonically decreasing behavior near the intermediate
resonance (sres = 1), as indicated by the black curves. This
behavior arises due to the absence of a shallow bound state in
the open channel.

Near the narrow resonance, the oscillation frequency ω is
determined by the binding energy of the open-channel bound
state instead of the shallow bound state near the threshold.
In Fig. 3(b) we present the binding energy given by the
two-channel square model and zero-range model. The binding
energies at the threshold of these two models are the same, as
illustrated by the blue dashed and red solid lines. However,
the other bound states originate from the open channel, and
binding energies given by these two models are different, as
shown by the green dashed and green solid lines. We extract
the oscillation frequency near narrow resonance in Fig. 3(a).
It closely follows the binding energy of the bound state in the
open channel, instead of that at the threshold. The importance
of the open-channel bound state near a narrow resonance can
be understood as follows: In the long-range regime, there is
no coupling between the open and closed channels, and the
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FIG. 4. The dynamics of δnk for realistic systems near Feshbach resonance. (a, b) 133Cs near the wide resonance with sres = 560. (c, d)133Cs
near the intermediate resonance with sres = 0.67 and abg = 926a0. (e, f) 7Li near the intermediate resonance with sres = 0.8 and abg = −25a0.
(g, h) 133Cs near the narrow resonance with sres = 0.002 and abg = 160a0. Here a0 is Bohr’s radius.

atoms primarily occupy the open channel. However, as they
come closer in the short-range regime, the coupling between
these channels becomes significant, resulting in the atoms
existing in superposition states involving both the open and
closed channels. However, near a narrow resonance, the cou-
pling strength W between the two channels is relatively weak.
As a result, the bound state in the open channel becomes
dominant and governs the oscillation behavior observed in the
dynamics.

V. APPLICATION TO REALISTIC SYSTEMS

We show the quench dynamics of some realistic systems.
Here we consider four different systems including wide, nar-
row, and intermediate resonance [1]. (I) We choose 133Cs
near a wide resonance with sres = 560. When the interac-
tion is quenched to unitary, the evolution of the momentum
distribution is the same as that near the wide resonance, as
shown in Fig. 4(a). (II) In contrast, for 133Cs near the narrow
resonance with sres = 0.002 and abg = 160a0 (a0 is the Bohr
radius), shown in Fig. 4(d), we see that the momentum dis-
tribution oscillates, which originates from the bound state in
the open channel. (III) For quench dynamics near resonance
of intermediate width, we choose two systems, 133Cs near
resonance with sres = 0.67 (b) and 7Li near resonance with
sres = 0.8 (c). However, the background scattering lengths
are different for these two systems. For 133Cs, abg = 926a0

implies a shallow bound state in the open channel, and we see
that the momentum distribution oscillates. Nevertheless, for
7Li, abg = −25a0, there is no shallow bound state in the open
channel and thus no oscillation in the momentum distribution.

VI. CONCLUSION

In summary, we used virial expansion to study quench
dynamics across the wide and narrow Feshbach resonances.
Taking the dynamics of momentum distribution as an

example, we showed the dynamics can be affected by the
bound state, and the frequency of oscillation is determined
by the energy of the bound state. Specifically, near the wide
resonance, the relevant bound state is the shallow bound state
near the threshold, while near the narrow or intermediate-
width resonance, the relevant bound state is the bound state
of the open channel. We checked our conclusion using some
realistic systems. A three-body bound state leads to interesting
effects in ultracold Bose gas [57–59]. It is worth investigating
the three-body effect in the dynamics of thermal Bose gas in
future studies.
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APPENDIX A: TWO-CHANNEL SQUARE WELL MODEL

We here solve the two-channel square model to show
Feshbach resonances and use a spherical box potential V with
the interaction range of r0 to describe the interaction between
two atoms. We consider the s-wave scattering, so that the
radial wave function is given by � = χ/r, with � being the
wave function. χ satisfies the Schrödinger equation,

− 1

m

d2χ

dr2
I + V (r)χ = Eχ, (A1)

V (r) =

⎧⎪⎪⎨
⎪⎪⎩

[−Vo W
W −Vc + δμBB

]
, for r < r0;[

0 0
0 ∞

]
, for r > r0,

(A2)
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where m is the mass of particles, Vc and Vo represent the
closed-channel |c〉 and open-channel |o〉 potential, and W
is the interchannel coupling strength. δμB is the magnetic
momentum difference between closed and open channel. I
denotes the 2 × 2 identity.

At the distance r > r0, the wave function is written as

χ = A sin(kr + δ0)|o〉, (A3)

while at a distance r < r0, those two channels are coupled. We
define a set of bases |+〉 and |−〉 such that the wave function
and the Hamiltonian are diagonalized. Thus the wave function
can be rewritten as χ = χ+|+〉 + χ−|−〉, and the bases |±〉
are a superposition of |o〉 and |c〉:

[|+〉
|−〉

]
=

[
cos θ sin θ

− sin θ cos θ

][|o〉
|c〉

]
. (A4)

In the region r < r0, the wave function satisfies the boundary
condition χ (r = 0) = 0, and the solution is given by

χ± = C sin(
√

m(E − V±)r), (A5)

where

V± = −Vc − Vo + δμBB

2
± 1

2

√
(Vc − Vo − δμBB)2 + 4W 2.

(A6)

Considering the boundary condition at r = r0, the closed-
channel wave function vanishes and the open-channel wave
function keeps the continuum. With the solution given in
Eqs. (A3) and (A5), we obtain

k

tan δ0
=

√
m(E − V+) cot[

√
m(E − V+)r0] cos2 θ

+
√

m(E − V−) cot[
√

m(E − V−)r0] sin2 θ. (A7)

The relation between the scattering amplitude and the T ma-
trix reads

f0(k) = − 1

ik − k cot δ0
= − m

4π
T2(k′, k; E ), (A8)

and thus we obtain the two-body scattering T matrix with the
phase shift given in Eq. (A7).

Next we consider the bound-state energy. At the distance
r > r0, the wave function of bound state is written as

χ = e−kbr |o〉. (A9)

At distance r < r0, the same as Eq. (A5), the solution is
given by

χ± = D sin
[√

m
( − k2

b − V±
)
r
]
. (A10)

By matching the boundary condition at r = r0, we obtain

−kb =
√

m
( − k2

b − V+
)

cot
[√

m
( − k2

b − V+
)
r0

]
cos2 θ

+
√

m
( − k2

b − V−
)

cot
[√

m
( − k2

b − V−
)
r0

]
sin2 θ.

(A11)

The solution kb of Eq. (A11) should be a positive real.
In order to distinguish wide and narrow resonances, we can

define the parameter sres as

sres = abg

r0

δμB�

E0
, (A12)

where abg is the background scattering length, � is the res-
onance width, and E0 = 1/(mr2

0 ). The background scattering
length abg is determined by the open channel:

abg = √−mVo cot(
√−mVor0). (A13)

Figure 5(a) shows the scattering length as of resonances
with sres = 260, and it diverges at the position of resonance
δμBBres = 5.2kBT . Figure 5(c) shows a broad region of phase
shift near Bres where sin2 δ0 ≈ 1, and it remains stable when
the incoming energy increases. Figure 5(d) shows the bind-
ing energy near the threshold, The solid line represents the
binding energy given by Eq. (A11), which is consistent with
the energy E = −h̄2/(ma2

s ). In this resonance we can also find
another bound-state energy, but its energy is four to five orders
of magnitude smaller.

Figure 5(b) shows the scattering length of narrow reso-
nances with sres = 0.04. Figure 5(f) shows the binding energy
near these resonances. First we can see the energy given
by the exact solution no longer matches the energy given
by the single-channel model. This means that when dealing
with narrow resonance-related problems, we should use the
two-channel model. Second, we obtain two bound states near
the position of resonance, and one of the energies is near the
threshold (solid line). The deeper energy is mainly contributed
by the open channel, which is represented by the dashed line.
Here we choose Vo = 4.68kBT , and thus the bare bound-state
energy supported by the open channel is Eb = 0.75kBT , which
is close to the deeper binding energy.

APPENDIX B: T MATRIX OF TWO-CHANNEL
ZERO-RANGE MODEL

In this section we derive the T matrix of the two-
channel zero-range model. With a contact potential, the
second-quantized Hamiltonian in the momentum space can be
written as

Ĥ =
∑

k

k2

2m
�̂

†
k�̂k +

∑
k

(
k2

4m
+ ν

)
b̂†

kb̂k

+ g

V

∑
k,k1,k2

�
†
k
2 +k1

�
†
k
2 −k1

� k
2 −k2

� k
2 +k2

+ α√
V

∑
k,k1

�
†
k
2 +k1

�
†
k
2 −k1

b̂k + b̂†
k� k

2 −k1
� k

2 +k1
. (B1)

Here g is the bare interaction between open-channel atoms
themselves, �†

σ and �σ are the creation and annihilation
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FIG. 5. Feshbach resonance scattering lengths and the binding energies. (a, b) The scattering length as changes with magnetic field strength
B under the wide and narrow resonances, respectively. (c, e) Changes of sin2 δ0 with energy E . (d, f) Energy of the bound state where the solid
line represents the binding energy given by Eq. (A11), the red dot-dashed line represents the binding energy given by E = −h̄2/(ma2

s ), and
the blue dashed line in (f) represents another binding energy under narrow resonances. Here we choose Vc = 20kBT , Vo = 2.5kBT , and the
coupling strength W = 0.5kBT as wide resonances in (a), (c), and (d), respectively, and Vc = 20kBT , Vo = 4.68kBT , and W = 0.35kBT as
narrow resonances in (b), (e), and (f), respectively

operators for scattering states in the open channels, and
V is the volume of the system. b̂† and b̂ are the creation
and annihilation operators of the two-body bound state in
the closed channel, and ν is the detuning of the molecular
state in the closed channel. The last term denotes the con-
version between the open-channel scattering states and the
closed-channel molecular state, with the strength given by
α. The ladder diagram for the two-channel model is shown
in Fig. 6. The summation of the ladder diagram leads to the
Schwinger-Dyson equation,

T2(E ) = g + |α|2
E − ν

+
(

g + |α|2
E − ν

)
1

V

∑
k

1

E − k2/m
T2(E ),

(B2)
which leads to

T2(E ) = g + |α|2
E−ν

1 − (
g + |α|2

E−ν

)
1
V

∑
k

1
E−k2/m

. (B3)

Notice that the T matrix given in Eq. (B3) is renormalizable.
This two-body T matrix should be related to the s-wave scat-
tering amplitude, and therefore we have

T2(E = 0) = −4π

m
f0(k = 0) = 4π

m
abg

(
1 − �

B − Bres

)
.

(B4)

It should be noticed that by equaling T2 in Eq. (B4) and that
give by the zero-range model in Eq. (B3), we can build the
relations between the bare parameters in Eq. (B1). In addition,
features of Feshbach resonance can also be encapsulated by
the zero-range model, including the sres parameter.

We also define ν = δμB(B − Bres) + νp. When detuning
the magnetic field away from the resonance position |B −
Bres| � |�|, we have

T2(E = 0) = 4π

m
abg = 1

1
g + 1

V

∑
k

1
k2/m

. (B5)

Hence, we reach the renormalization identity that relates g to
a physical quantity abg,

1

g
= m

4πabg
− �, (B6)

where � denotes

� = 1

V

∑
k

1

k2/m
. (B7)

FIG. 6. Ladder diagrams for two-body scattering T matrix of the two-channel model.
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By comparing Eq. (B3) with Eq. (B4) and using the relation
between g and abg, the remainder renormalization conditions
can be given by

1

α
=

(
1 − 4πabg

m
�

)√
m

4πabgδμB�
, (B8)

ν = δμB(B − Bres) + �

1 − 4πabg

m �

4πabgδμB�

m
. (B9)

By substituting Eqs. (B6), (B8), and (B9) into Eq. (B3),
we have

T2 = 4π/m
E−δμB (B−Bres )

abg[E+δμB�−δμB (B−Bres )] − √−mE
. (B10)
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