
PHYSICAL REVIEW A 107, 063307 (2023)

Transversal effects on the ground state of hard-core dipolar bosons
in one-dimensional optical lattices
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Polar lattice gases are usually assumed to have an intersite interaction that decays with the interparticle
distance r as 1/r3. However, a loose-enough transversal confinement may strongly modify the dipolar decay
in one-dimensional lattices. We show that this modification alters significantly the ground-state properties
of hard-core dipolar bosons. For repulsive intersite interactions, the corrected decay alters the conditions for
devil’s staircase insulators, affecting significantly the particle distribution in the presence of an overall harmonic
confinement. For attractive interactions, it results in a reduction of the critical dipole interaction for the formation
of self-bound clusters, and for a marked enhancement of the region of liquefied lattice droplets.
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I. INTRODUCTION

Ultracold quantum gases in optical lattices constitute an
optimal platform for studying many-body physics under
precisely controlled conditions [1–3]. In most current experi-
ments, the interactions between particles are short range and
well modeled by a contact pseudopotential. However, seminal
experiments on dipolar systems formed by magnetic atoms
[4–6] and polar molecules [7,8] in optical lattices are starting
to explore exciting physics beyond the short-range scenario.
Due to the anisotropic and long-range character of the dipole-
dipole potential, polar gases confined in optical lattices are
characterized not only by on-site interactions, but, crucially,
also by anisotropic intersite interactions. As a result, dipolar
lattice gases of pinned particles can be employed as quantum
simulators for spin models, whereas itinerant particles real-
ize different forms of the extended-Hubbard model [9,10].
Compared to their non-dipolar counterparts, dipolar lattice
gases present a much richer ground-state physics, including
crystalline phases [11] and supersolids [12], or the Haldane-
insulator phase [13].

The spatial decay of the intersite interactions plays a cru-
cial role in polar lattice gases. Due to the form of the dipolar
interaction in free space, this decay is typically assumed to
be 1/r3, with r being the intersite distance. However, the
interaction decay may be significantly affected by the con-
finement transversal to the lattice axis [14]. This confinement
alters the on-site wave functions, introducing a modification
of the intersite interaction, which may potentially depart very
significantly from the 1/r3 dependence and hence alter the
equilibrium and out-of-equilibrium physics of the polar lattice
gas [14,15].

In this paper, we show that the modification of the
interaction decay in the presence of a loose-enough transver-
sal confinement results in a significant modification of
the ground-state properties of hard-core dipolar bosons. In

contrast to Ref. [14], which focused on strong transversal con-
finement, we show that the ground state is much more altered
in the experimentally relevant regime of a weak transversal
confinement. We first consider the case of repulsive interac-
tions, showing that the modified decay results in markedly
shifted insulating phases, which translate into a distorted
particle distribution in the presence of an overall harmonic
confinement. For attractive dipoles, we show that the modified
decay may significantly ease the conditions for the realization
of self-bound clusters. Moreover, it results in a much wider
parameter region for the observation of liquefied self-bound
droplets [16] without the need of superexchange processes.

This paper is organized as follows. In Sec. II, we introduce
the lattice model considered and show how the transver-
sal confinement modifies the intersite interaction decay. In
Sec. III, we study the effects of the modified interaction on
the phase diagram of repulsive hard-core bosons, whereas
Sec. IV focuses on the attractive case. Finally, in Sec. V, we
summarize our conclusions.

II. MODIFIED INTERACTION DECAY

We consider dipolar hard-core bosons of mass m con-
fined longitudinally by a one-dimensional optical lattice,
U0 sin2(πz/a), with a being the lattice constant, and transver-
sally by an isotropic harmonic potential, 1

2 mω2
⊥(x2 + y2), with

ω⊥ being the trap frequency [see Fig. 1(a)]. The dipole mo-
ments are assumed to be oriented by an external field on the
xz plane forming an angle α with the lattice axis z. Within the
tight-binding approximation, the system is well described by
the extended Hubbard model:

Ĥ =
∑

i

[
− t (b̂†

i+1b̂i + H.c.)+
∑
j>0

Vjn̂in̂i+ j − μn̂i

]
, (1)
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(a)

(b)

FIG. 1. (a) Schematic representation of the dipolar gas confined
longitudinally by an optical lattice and transversely by a harmonic
trap. (b) Modified dipole-dipole interaction vs lattice site for different
βeff (see main text). Notice the log scale in the vertical axis.

where t is the tunneling amplitude between nearest neighbors,
b̂†

i (b̂i) is the creation (annihilation) operator at site i, n̂i = b̂†
i b̂i

is the corresponding particle number operator, and μ is the
chemical potential. The hard-core constraint means that no
double occupancy is allowed; i.e., (b̂†

i )2 = 0. This restriction
can be achieved by means of strong-enough on-site interac-
tions (which may demand the use of Feshbach resonances).
The intersite interaction between dipoles separated by j sites
is given by

Vj =
∫

d3r
∫

d3r′V (�r − �r′)|φ(�r)|2|φ(�r − ja�ez )|2, (2)

with V (�r) = Cdd
4πr3 (1 − 3 (x sin α+z cos α)2

r2 ) being the dipole-dipole
interaction. The coupling constant Cdd is μ0μ

2 for particles
having a permanent magnetic dipole moment μ (μ0 is the
permeability of vacuum) and d2/ε0 for particles having a per-
manent electric dipole moment d (ε0 is the vacuum dielectric
constant).

The on-site wave function can be written as φ(�r) =
ψ0(x, y)W (z), where W (z) is the Wannier function associated

with the lowest-energy band, and ψ0(x, y) = e−(x2+y2 )/2	⊥√
π	⊥

is the
ground-state wave function of the transversal confinement,
with 	⊥ = √

h̄/mω⊥ being the harmonic oscillator length. For
deep-enough lattices, s � 5, where s = U0/ER is the lattice
depth and ER = π2 h̄2

2ma2 is the recoil energy, the actual Wannier
function can be well approximated (for the purpose of the
calculation of the intersite interactions) by a Gaussian [1],

W (z) � e−z2/2	√√
π	

, with 	 = a/(πs1/4) being the effective on-site

harmonic oscillator length. After some straightforward alge-
bra, one can show that for 	⊥ > 	 [15]

Vj

ER
= 3B3/2

2π2
(3 cos2 α − 1)

(
add

a

)
f (

√
B j), (3)

where add = mCdd/(12π h̄2) is the dipolar length, B=π2

2
χ

1− χ

2
√

2
,

χ = h̄ω⊥/ER, and

f (ξ ) = 2ξ −
√

2π (1 + ξ 2)eξ 2/2erfc(ξ/
√

2). (4)

By using V = V1, the interaction potential in Eq. (3) can be
written as Vj = V Gj (B), with Gj (B) = f (

√
B j)/ f (

√
B). The

resulting interaction decay has hence a universal dependence
on the parameter B, which is a function of the confinement
parameters only.

Although for sufficiently large distances the potential in
Eq. (3) recovers the standard dipolar tail, i.e., Vj→∞/V →
1/ j3, the modification of the interaction to the neighboring
sites may be very significant [see Fig. 1(b)]. The modification
of the form of the tail Vj/V is uniquely defined once the
ratio V2/V is fixed. Below we parametrize such a ratio (for
any value of l⊥/l) by means of the effective exponent βeff,
defined as V2/V = 1/2βeff [15]. The ground-state properties
are then fully determined by the value of V/t (which sets
the interaction strength) and βeff (which fixes the form of the
decay Vj/V ). By changing the transversal confinement, βeff

can be tuned within the interval 0 < βeff < 3.2 [15]. When
	⊥ < 	, βeff > 3, whereas the opposite is true if 	⊥ > 	.
When βeff = 3, the decay corresponds exactly to the standard
Vj/V = 1/ j3, and hence we employ interchangeably 1/ j3 or
βeff = 3 to denote the standard decay. For 	⊥ 	 	, the case
discussed in Ref. [14], βeff is only slightly larger than 3, and
hence the modification to the 1/ j3 dependence is small. As a
result the corrections to the ground-state properties are minor
[14]. In contrast, the deviation from the standard decay may be
large when 	⊥ > 	, leading to a very significant modification
of the ground-state properties, as discussed below.

III. REPULSIVE POLAR LATTICE GAS

We focus first on the ground-state properties for the case of
repulsive intersite interactions, V > 0. In the absence of dipo-
lar interaction, the standard Hubbard model with hard-core
bosons may present only two phases, either a superfluid (SF)
phase or a band insulator, with filling factor n̄ = N/L = 1,
with N being the number of bosons and L the number of
sites. Note that the latter is equivalent to the vacuum (n̄ = 0)
due to particle-hole symmetry. In the presence of intersite
dipolar interactions, and depending on the dipole strength V/t
and the chemical potential μ, the system may present differ-
ent insulating phases with commensurate fractional fillings
(devil’s staircase) [11]. Particularly relevant are the half-filled
density wave (2DW) (n̄ = 1/2), which for t = 0 acquires the
form | · · · • ◦ • ◦ · · · 〉, and the one-third-filled density wave
(3DW) (n̄ = 1/3) | · · · • ◦ ◦ • ◦ ◦ · · · 〉 (or equivalently the
phase with n̄ = 2/3). Other fractional fillings are possible but
they require significantly larger V/t ratios.

We are interested in how the modified interaction decay
alters the boundaries of the insulating phases. We employ
density-matrix renormalization group (DMRG) techniques to
obtain the ground-state of a system of L = 120 sites, as-
suming periodic boundary conditions. Superfluid (insulating)
phases are characterized by a polynomial (exponential) de-
cay of the single-particle correlation, CSF(i, j) = 〈â†

i âi+ j〉.
To distinguish amongst the different insulating phases, we
evaluate the structure factor M(k) = 1

L

∑L−1
j=1 e−ik j〈n̂in̂i+ j〉,

where k ∈ [−π, π ] is the quasimomentum. For an insulat-
ing phase with filling n̄ = 1

m , M(k) presents peaks at k =
± 2π

m . Due to particle-hole symmetry, the same is true for
the phase with n̄ = m−1

m . Note that particle-hole symmetry
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(a)

(b)

FIG. 2. (a) Phase diagram in the (t/V, μ̃/V ) plane for standard
1/ j3 decay (blue lobes) and the modified dipolar interaction with
βeff = 2 (red lobes). (b) Critical V/t for the 2DW (blue) and the 3DW
(red) for different values of βeff, normalized to the value expected for
the 1/ j3 decay. Error bars indicate the exact value of (V/t )cr and are
set by the fidelity of numerical input parameters.

results in a mirror symmetry of the phase diagram on the
(t/V, μ/V ) plane around the chemical potential (μ/V )0(B) =∑

j>0 Gj (B). In order to compare properly the results for dif-
ferent B values, we introduce the rescaled chemical potential
μ̃ = μ/[2

∑
j>0 Gj (B)], such that the phase diagram presents

mirror symmetry around μ̃/V = 1
2 . With this shift, the borders

of the band insulator, n̄ = 1, and the vacuum, n = 0, are given
by μ̃/V = 0 and 1.

In Fig. 2(a), we depict the phase diagram for a 1/r3

decay (blue) and for the modified dipolar interaction with
βeff = 2 (red). Due to the enhanced role of the next-to-nearest-
neighbor interaction V2 compared to the usual 1/ j3 decay,
the central lobe, which corresponds to the 2DW phase, is
significantly smaller for βeff = 2. This must be compared to
the results of Ref. [14], which focused on the case 	⊥ 	 	

(and hence βeff � 3), for which the modification of the 2DW
lobe compared to that expected for the 1/ j3 dependence is
very small.

The relative deviation from the results considering the
standard 1/ j3 dependence is even more relevant for insu-
lating phases at lower fillings. In Fig. 2(a) we observe as
well the lobes with fillings n̄ = 1/3 and n̄ = 1/4, and the

(a)

(b)

FIG. 3. (a) Boundaries of the lobes with n = 1/2, 1/3, and 1/4
for t = 0 as a function of the shifted chemical potential μ̃/V and
βeff. The lobes are evaluated analytically considering a cutoff of the
interactions at four neighbors. (b) Spatial density distribution 〈ni〉
for N = 39 bosons, �/t = 0.03, and for 1/ j3 decay (blue) and for
βeff = 2 (red) obtained from DMRG calculations.

particle-hole symmetric ones for n̄ = 2/3 and n̄ = 3/4. Note
that these lobes, which are depicted in detail in the inset, are
significantly modified, again due to the enhanced values of
V2 and V3 compared to the standard 1/ j3 decay. In particular,
for βeff = 2, the critical V/t for the observation of the 3DW
is strongly reduced from a critical V/t � 47 to V/t � 27.
Figure 2(b) shows the critical (V/t )cr for 2DW and 3DW, as a
function of βeff, normalized to the value expected for a 1/ j3

decay. Note that for 2DW (3DW) (V/t )cr increases (decreases)
by approximately a factor of 2 when reducing βeff down to 1.

The lobes are also changed in their dependence with chem-
ical potential. In addition to the abovementioned (μ/V )0(B)
shift, the width (in chemical potential) of the 2DW (3DW)
lobe significantly shrinks (widens) with decreasing βeff . This
is illustrated in Fig. 3(a), where we consider t = 0, for which
the phase boundaries may be evaluated analytically.
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FIG. 4. Energy spectrum EK as a function of the center-of-mass
quasimomentum K for several effective powers of the dipole-dipole
interaction. In all panels the interaction strength is V/t = −4.

The modification of the insulating lobes has significant
consequences for the spatial particle distribution in the the
presence of an overall harmonic confinement. The confine-
ment results in an additional term, �

∑
i(i − L/2)2n̂i, in

Eq. (1). For a sufficiently weak confinement, local-density ap-
proximation arguments apply, and the density profile presents
the expected wedding-cake profile. Figure 3(b) shows the lo-
cal mean occupation 〈ni〉 obtained from DMRG calculations.
In the plateaus, which characterize the DW phases, we average
over neighboring sites to flatten the DW oscillations in 〈ni〉. In
agreement with the phase diagram, the central 2DW plateau
shrinks while the 3DW plateau widens when decreasing βeff.

IV. ATTRACTIVE POLAR LATTICE GAS

We analyze at this point the case of V < 0, focusing first
on the simplest case of just two bosons and then discussing
the formation of self-bound lattice droplets.

A. Dimers

The wave function characterizing a state of two bosons can
be separated as (R, r) = eiKR�K (r), where R = (i1+i2)/2
is the center-of-mass, r = i1 − i2 is the relative coordi-
nate, and i j=1,2 is the lattice site in which particle j is.
The wave function �K (r) depends on the center-of-mass
quasimomentum K ∈ [−π, π ] and satisfies the Schrödinger
equation ĤK |�K〉 = EK�K , with

ĤK = − 2t cos

(
Ka

2

)∑
r�1

(|K, r + 1〉〈K, r| + H.c.)

+ V
∑
r�1

Gj (B)|K, r〉〈K, r|, (5)

where |K, r〉 stands for the state with center-of-mass quasi-
momentum K and interparticle separation r. Diagonalizing
ĤK for different K in the Brillouin zone provides the energy
spectrum, depicted in Fig. 4 for V/t = −4 and different values
of βeff. Compared to the case 1/r3 for the same V/t , the
modification of the dipolar tail results in additional bound
eigenstates.

The two-body ground state is given for all βeff values by a
bound pair with K = 0 and a spatial distribution peaked at
nearest neighbors. However, the binding becomes stronger;
i.e., pairing (and in general the formation of clusters, as dis-
cussed below) demands a smaller |V |/t when βeff decreases.
Furthermore, dimer mobility may be strongly modified by
tuning the transversal confinement. Note that the curvature
of the lowest branch at K = 0, associated with the effective
mass of the ground-state dimer, is significantly modified as a
function of βeff . This is best illustrated with the case of strong
V/t , for which the lowest bound-state branch corresponds to
bound nearest-neighbor dimers, which move via second-order
hopping with amplitude

tD = 1

1 − 2−βeff

t2

V
. (6)

This should be compared to the corresponding value tD =
8t2/7V for the case of 1/r3 decay. Note that, e.g., for βeff = 1,
tD = 2t2/V , and hence the dimer dynamics is approximately
twice faster.

B. Self-bound lattice droplets

The formation of bound dimers in the two-body problem
extends in the many-body case to the formation of self-bound
lattice droplets formed by potentially many particles. These
resemble those recently discussed in binary mixtures [17,18]
and cavities [19,20]. Dipolar self-bound lattice droplets have
been discussed in the context of out-of-equilibrium polar lat-
tice gases after a quench of the confinement potential [21].
Very recently, ground-state self-bound dipolar lattice droplets
have been studied in Ref. [16]. Although self-bound lat-
tice droplets present some interesting similarities to quantum
droplets in binary and dipolar Bose-Einstein condensates [22],
they differ from them in the physical mechanism as well
as in the fact that lattice droplets are self-pinned; i.e., they
remain for any practical purposes immobile, due to their large
effective mass.

In Ref. [16], it was shown that droplets can be either a
self-bound Mott insulator (with saturated unit filling) or in a
liquefied state (self-bound but with a filling lower than unity).
It was argued that liquefaction arises due to the interplay
between intersite dipolar attraction and the superexchange
processes originating from short-range repulsion in soft-core
Bose systems. In the following, we show that self-bound
droplets in hard-core gases (where superexchange is absent)
are generally in either a saturated regime or a liquid regime,
and that the boundaries between the saturated, liquid, and
unbound (gas) phases are strongly dependent on βeff .

In order to analyze self-bound lattice droplets, we develop
a variational approach similar to that used in Ref. [16]. We
assume that the impenetrable lattice gas is well described by a
Tonks-Girardeau |TG〉 = �k<kF b̂†

k|0〉 ansatz with the density
n = kF /π as a variational parameter, with kF being the Fermi
momentum of the fermionized bosons. Although this ansatz
is only exact for noninteracting one-dimensional hard-core
bosons, it can perturbatively capture the main features of
dipolar hard-core gases [16]. Evaluating 〈TG|Ĥ |TG〉 yields
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(a)

(b) (c) (d)

FIG. 5. (a) Phase diagram for impenetrable dipolar bosons as a
function of the absolute value of the interaction strength |V |/t and
βeff. We found a saturated droplet regime (b), a droplet superfluid (c),
and an unbound phase (gas) (d). The Tonks-Girardeau analysis cor-
responds to the color scheme shown: saturated droplet regime, red;
droplet superfluid, blue; and gaseous phase, white. Orange stars and
green circles are associated with the boundary lines of the saturated
droplet and liquid regimes from DMRG calculations, respectively.
The dashed yellow line indicates the threshold for a two-body bound
state (dimer). The lower panels display characteristic density profiles
of the different phases.

the energy per particle:

E [n]

tN
= −2 sin nπ

nπ
+ V

tn

∑
r>0

Gr

[
1 − sin2 nπr

π2r2

]
. (7)

The first and second terms are associated with the kinetic
energy and the modified dipolar interaction, respectively. Fol-
lowing Ref. [16], we classify the quantum phases of the
dipolar system according to the value of the density nc at
which the energy per particle is minimal. In the unbound (gas)
phase, the dipoles spread uniformly over all available sites. As
a result, the gas phase is characterized by a vanishing density
nc = 0. In contrast, in a liquid phase, where the droplets are
self-bound and localized at zero pressure [17,18], the energy
per particle takes its minimal value at a finite density 0 <

nc < 1. Furthermore, the energy per particle at nc is smaller
than the bottom of the scattering band, i.e., E [nc]/N < −2t .
Lastly, we define the saturated droplet regime as that in which
the energy per particle becomes minimal at nc = 1. In such
a phase, the droplet is incompressible and hole propagation
within the droplet is inhibited due to the high energy cost of
breaking a dipole bond [21]. In Fig. 5, we show, in a color

scheme, the resulting phase diagram of impenetrable dipolar
bosons as a function of the interaction strength |V |/t and
βeff. The saturated droplet regime is indicated in red, whereas
the liquid and gaseous phases are shown in white and blue,
respectively. In stark contrast to the bare dipolar potential 1/r3

[16], the modified interaction gives rise to a wide liquefied
region without removing the hard-core constraint.

In addition to the Tonks-Girardeau analysis, we calculate
the ground state of the dipolar system for different values
of |V |/t using DMRG simulations with N = 24 bosons in
L = 80 sites. In our DMRG simulations, we define the gas-
to-liquid transition at the interaction strength |Vc|/t in which
the energy per particle is equal to the bottom of the scattering
band E/N = −2t . Meanwhile, we define the saturated droplet
regime as that in which the central density of the ground state
reaches unity; i.e., the density distribution acquires a flat-top
profile. Note that the wings of the droplet are not necessarily
saturated, although when |V |/t increases eventually the whole
droplet enters the unit filling regime. Green circles and or-
ange stars in Fig. 5 correspond to our DMRG results for the
gas-to-liquid and liquid-to-saturated boundaries, respectively.
A good agreement is found between the Tonks-Girardeau
analysis and the DMRG results. Note as well that the gas-to-
liquid transition is well-estimated by the threshold of dimer
bound-state formation (dashed line in Fig. 5), obtained from
the two-body calculations discussed above.

V. CONCLUSIONS

A sufficiently loose transversal confinement results in a
significant modification of the intersite interaction between
dipoles in a one-dimensional optical lattice, which departs
from the usually assumed 1/ j3 dependence. We have shown
that this modification, which acquires a universal dependence
on the confinement parameters, may significantly modify the
ground-state properties of hard-core bosons. For repulsive
dipoles, it leads to a marked shift of the boundaries of the
insulating devil’s staircase phases, which translates in a sig-
nificantly modified particle distribution in the presence of an
overall harmonic potential. For attractive dipoles, the modified
interaction decay results in a lower critical dipolar strength
for the formation of self-bound clusters and in a much wider
parameter region for the observation of liquefied droplets
without the need of superexchange processes. The discussed
effects should play a relevant role in future lattice experiments
on magnetic atoms or polar molecules.
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