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Time-orbiting-potential chip trap for cold atoms

C. A. Sackett *

Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA

J. A. Stickney
Space Dynamics Laboratory, North Logan, Utah 84341, USA

(Received 31 January 2023; accepted 19 May 2023; published 12 June 2023)

We present a design for an atom chip trap that uses the time-orbiting-potential technique. The design offers
several advantages compared with other chip-trap methods. It uses a simple crossed-wire pattern on the chip,
along with a rotating bias field. The trap is naturally close to spherically symmetric, and it can be modified to
be exactly symmetric in quadratic order of the coordinates. Loading from a magneto-optical trap is facilitated
because the trap can be positioned an arbitrary distance from the chip. The fields can be modified to provide
a gradient for support against gravity, and the three-dimensional trap can be adiabatically transformed into a
two-dimensional guide.
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I. INTRODUCTION

Over the past two decades, atom chips have become a
critical technology for ultracold atom science [1–3]. An atom
chip consists of small current-carrying wires patterned onto a
planar substrate. Atoms near the wires experience very large
magnetic-field gradients, which enables the production of
tightly confining magnetic traps with relatively low electrical
power consumption. Atom chips are used in many research
laboratories, they are the basis for commercial ultracold atom
systems [4,5], and they have enabled the production of cold
atoms in microgravity [6,7].

Most implementations of an atom chip use the Ioffe-
Pritchard trap configuration [8]. This can be produced, for
instance, by a Z-shaped wire as in Fig. 1(a) [1]. Such a “Z
trap” is suitable for evaporative cooling and has been used
to produce quantum degenerate gases in many experiments.
It does, however, have some drawbacks that our design aims
to redress. First, the distance of the atoms to the chip is
constrained by the Z geometry: if the center segment of
the Z has length 2a, then the potential minimum cannot be
located further than 1.2a from the chip surface due to an
inflection point in the field curvature [9]. In contrast, for chip
distances much smaller than a the trap confinement is weak
along the wire direction, leading to a highly asymmetric trap.
This problem can be addressed by adding more wires to the
chip [1], but in general it is challenging to implement an
approximately spherically symmetric trap over a wide range
of chip distances.

A second drawback of Z traps is that the atoms are nec-
essarily in a state with a nonzero magnetic moment, making
them sensitive to background field fluctuations. This can be
a limitation for experiments such as atom interferometry [10]
or entanglement [11] where the phase evolution of the atoms
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must be carefully controlled. One way to avoid this prob-
lem is with a time-orbiting potential (TOP) trap [12]. Here
a uniformly rotating bias field is combined with a static or
oscillating gradient field to produce a time-averaged poten-
tial that is approximately harmonic. TOP traps are generally
insensitive to static or low-frequency field noise since the
time average of the atomic moments are zero. TOP traps also
permit the use of AC electronic techniques like transformers
and resonant circuits, which can simplify the current driver
implementation.

TOP traps are typically produced using macroscopic coils
and are less confining than chip traps. For instance, the atomic
Sagnac interferometer demonstrated in Ref. [13] used a TOP
trap produced by centimeter-scale coils with maximum con-
finement frequencies of about 200 Hz [14] for 87Rb atoms
trapped in the F = 2, m = 2 state. In comparison, chip traps
can achieve confinement frequencies of 1 kHz or more [1]. A
tighter trap would be useful for applications like the Sagnac
interferometer since it would increase the speed of evapora-
tive cooling and thus allow faster operation rates. The TOP
technique has been previously applied with atom chips for a
few special uses, either to make a toroidal ring trap [15] or
to reduce roughness in the potential produced by nearby chip
wires [16].

II. TRAP DESIGN

We describe here an atom-chip TOP trap that provides tight
confinement with no intrinsic geometry scale. The chip wire
configuration is shown in Fig. 1(b). The concept of this trap
is slightly different from that of a conventional TOP trap:
Consider first a DC current passing through the x wire of
the cross in Fig. 1(b). Adding a bias field β in the +y direc-
tion produces a line of field zeros running above the x axis.
An additional bias-field component γ along x converts this
line into a harmonic minimum, which provides confinement
along the y and z directions but a uniform potential along x.
To generate three-dimensional confinement, the cross wires
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FIG. 1. Atom chip configurations. Thin lines represent wires on
the chip carrying current I , and thicker arrows represent uniform field
components. (a) Ioffe-Pritchard Z trap configuration. The β field sets
the distance of the trap from the chip, while the γ field provides a
nonzero bias at the trap center. (b) Cross trap configuration. The β

and γ fields play similar roles as in the Z trap, but here the bias fields
rotate in sync with the oscillating wire currents. The diagram shows
the field and current directions when �t = π/4

are instead driven with oscillating currents cos �t and sin �t
while the bias fields rotate in sync. The shape of the net
field is not constant in time, but it approximates a rotating
two-dimensional trap. As long as � is sufficiently large, the
atoms experience the time-averaged field, which results in a
three-dimensional trap.

To analyze the system, we set the coordinate origin at the
center of the cross. The fields involved can be expressed as

B(t ) =μ0I0

2π

[
yẑ − zŷ

y2 + z2
cos �t + zx̂ − xẑ

x2 + z2
sin �t

]

+ β(ŷ cos �t − x̂ sin �t ) + γ (x̂ cos �t + ŷ sin �t ).
(1)

The first line gives the field from the chip wires, which are
assumed to be long and thin. Here I0 is the current amplitude,
μ0 is the magnetic constant, and � is the TOP frequency.
The second line gives the bias component perpendicular
to the wires, with amplitude β. The trap center will occur
where the chip field and the β field cancel, at distance

z0 ≡ μ0I0

2πβ
. (2)

We use z0 and β as independent variables in the following
since z0 is experimentally significant and the combination
leads to relatively simple expressions. We then take implicitly
I0 = 2πβz0/μ0. The third line in Eq. (1) is the bias compo-
nent γ that provides a nonzero trap minimum. Although the
decomposition shown here is convenient for analysis, the total
bias can be implemented as a single rotating field

Bbias(t ) =
√

β2 + γ 2[x̂ cos (�t + θ ) + ŷ sin (�t + θ )], (3)

with phase θ = tan−1(β/γ ) relative to the chip currents.
To characterize the trap, we Taylor expand the field com-

ponents around the trap center, with ζ ≡ z − z0. The field
magnitude is

B(t ) =
√

B2
x + B2

y + B2
z

≈ γ + β2

2γ z2
0

(x2 cos2 �t + y2 sin2 �t + ζ 2)

− 2β

z2
0

(x2 + xy − y2) sin �t cos �t (4)

to second order in the coordinates. Time averaging yields the
effective potential

V (r) = μ〈B〉 = μγ + μβ2

4γ z2
0

(ρ2 + 2ζ 2), (5)

where μ is the magnetic moment of the atomic state and
ρ2 = x2 + y2. The potential is confining and cylindrically
symmetric, with harmonic oscillation frequencies

ωρ =
√

μβ2

2mγ z2
0

, ωz =
√

2ωρ, (6)

for atomic mass m.
In comparison, a Z trap with chip distance z0 � a has

oscillation frequencies

ω(Z )
y = ω(Z )

z =
√

μβ2

mγ z2
0

, ω(Z )
x = 2z2

0

a2
ω(Z )

z , (7)

where β and γ are again the transverse and longitudinal bias
fields. Here we see that the net curvature ω2

x + ω2
y + ω2

z is the
same for both traps (neglecting z4

0/a4), while (ωxωyωz )1/3 is
larger in the cross trap by a factor of (a/z0)2/3. The density of
the trapped atom cloud is set by the geometric mean, making it
most relevant for efficient evaporative cooling and many other
applications.

Figure 2 compares the numerically calculated trap potential
to the harmonic approximation derived above. As to be ex-
pected, the confining potential is harmonic only very near the
trap center. It is possible to extend the analytical calculation to
higher orders and extract the leading anharmonic terms. With
the aid of symbolic math software, we find the fourth-order
expansion

〈B〉 ≈ γ + β2

4γ z2
0

{
ρ2 + 2z2 − 2

z0
(ρ2z + z3)

− 1

16z2
0

[(
20 + 3β2

γ 2

)
ρ4 +

(
28 + 3β2

γ 2

)
x2y2

+ 8β2

γ 2
(xy3 − x3y) + 8

(
β2

γ 2
− 4

)
ρ2z2

+ 8

(
β2

γ 2
− 12

)
z4

]}
. (8)

The anharmonic terms become important for coordinate
excursions on the order of z0 or γ z0/β, whichever is
smaller.

III. TRAP CHARACTERISTICS

The preceding results confirm that there is no intrinsic geo-
metrical length scale for the cross chip TOP trap, since z0 can
be made as small or large as desired simply by adjusting the
field and current amplitudes. In practice, however, the range of
z0 will be constrained on the large side by the length L of the
cross wires. The impact of finite L will depend on how current
is delivered to the chip. If the current enters via long lead
wires perpendicular to the chip, the dominant effect is that the
leads contribute a field parallel to the β field, which moves
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FIG. 2. Trapping potential for cross trap for parameters I0 =
20 A, β = 40 G, and γ = 4 G. These provide a potential mini-
mum at z0 = 1 mm. The heavier curves show the time-averaged
magnetic-field magnitude and the lighter curves are the quadratic
approximation of Eq. (5). (a) Plot of the average field and quadratic
approximation along the x axis at z = z0. (b) Plot of the aver-
age field and quadratic approximation along the line x = y, for
ρ = (x2 + y2)1/2 and with z = z0. (c) Plot of the average field and
quadratic approximation along the z axis with ζ = z − z0.

the trap minimum closer to the chip and makes the trap more
confining. If β is reduced to keep z0 constant, there is a modest
reduction in the confinement frequencies. For L/z0 > 4, the
reduction is less than 10%. The range of z0 is limited on the
small side by the width w of the chip wires, since the thin-wire
approximation will fail. If the wires are modeled as flat strips,
we find that as z0 is reduced, the trap minimum moves closer
to the chip than z0 and the confinement becomes weaker. Both

z/z0 and 
ω/ω remain less than 10% down to z0 = w.

Unlike a conventional TOP trap [12], the cross chip trap
has no field zero, so there is no “circle of death” limiting the
trap depth. Instead the depth D is set by the time-averaged
field above the wires far from the origin. The depth cannot

FIG. 3. Trap depth D for the cross trap, where D0 =
(β2 + γ 2 )1/2 − γ . For large γ /β, the depth approaches D0/3 =
β2/6γ , and for γ /β → 0, the depth approaches 2D0/π = 2β/π .

be expressed as a simple analytic function, but it is of order
D0 ≡ (β2 + γ 2)1/2 − γ . A numerical calculation of the depth
is shown in Fig. 3.

Applications such as atom interferometry can make use
of a weakly confining trap, in which case it is nec-
essary to compensate for gravity. The cross trap can
achieve this by changing the relationship between the chip
fields and the bias fields. A convenient parametrization
is via a phase φ in the γ field of Eq. (1), making it
γ [x̂ cos(�t + φ) + ŷ sin(�t + φ)]. In terms of the total bias
field of Eq. (3), this corresponds to correlated shifts in am-
plitude and phase |Bbias| → (β2 + γ 2 + 2γ β sin φ)1/2 and
θ → tan−1[(β + γ sin φ)/(γ cos φ)]. Reevaluating the time-
averaged field to second order yields

〈B〉 = γ + β sin φ
ζ

z0
+

(
β2

4γ
+ 1

2
β sin φ

)
ρ2

z2
0

+
(

β2

2γ
cos2 φ − β sin φ

)
ζ 2

z2
0

. (9)

The term linear in ζ can compensate for gravity in the z
direction.

We can also use this approach to model a case where the
γ field rotation rate is different from � by setting φ = 
t for
constant 
. We then have 〈sin φ〉 → 0 and 〈cos2 φ〉 → 1/2,
leading to a spherically symmetric trap with isotropic fre-
quency ω2 = μβ2/(2mγ z2

0 ). One way to achieve this is with

 = −�, corresponding to a static field γ pointing in any
direction parallel to the chip. Use of a static field, however,
would re-introduce sensitivity to DC background fields.

As an example of a potential application, we describe an
atom chip capable of capturing atoms from a MOT located
several mm from the chip, and then compressing the atoms to
a trap with confinement frequencies above 1 kHz for evapora-
tive cooling. We consider a chip fabricated from 100-µm-thick
direct-bonded copper on an aluminum-nitride substrate [17].
The side of the chip facing the atoms is patterned to produce
cross wires that are 100 µm wide. The opposite side is has a
matching cross pattern with wires 3 mm wide. The chip size
L is 3 cm and the chip thickness is 1 mm. The wider cross
is used to produce a distant trap for loading. Using a current
amplitude I0 = 75 A, bias fields β = 20 G, γ = 2 G, and a
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phase φ = 0.85 rad, the resulting trap is 7 mm from the chip.
For 87Rb atoms in the F = 2, mF = 2 Zeeman state where μ is
equal to the Bohr magneton, this trap provides support against
gravity and confinement frequencies ωρ ≈ 2π × 18 Hz and
ωz ≈ 2π × 13 Hz, with a trap depth of 12 G ≈ 800 µK. These
are appropriate values for direct loading from a MOT [18].
The total power consumption on the chip is about 10 W, which
is well within the capacity of this type of substrate [17].

After the trap is loaded, current through the wide cross can
be adiabatically decreased, which reduces z0 and compresses
the trap. Once the atoms are within a few mm of the chip, the
current is adiabatically shunted to the thin cross, supporting
smaller z0. A current of 5 A and bias fields β = 40 G, γ = 2
G would generate a trap 0.25 mm from the chip surface with
ωρ ≈ 2π × 1 kHz and ωz ≈ 2π × 1.4 kHz. This makes a suit-
able trap for rapid evaporative cooling. Power dissipation on
the chip would be about 1 W. If a two-layer chip as described
here is undesirable, another way to support a wide range of
z0 values is with tapered wires whose widths decrease as they
approach the cross center. We note that the trap considered
here is far enough from the chip that roughness of the wire and
other surfaces effects are unlikely to be significant [16,19].

An important question for a TOP chip trap is the value
of the oscillation frequency �. The frequency must be large
compared with the highest confinement frequency of the trap,
ωm, so that atom motion is negligible during the TOP period
2π/�. The frequency must also be small compared with the
Larmor frequency ≈ μBγ /h̄ so that the TOP fields do not
drive spin transitions. Typical TOP frequencies are on the
order of 10 kHz, while typical confinement frequencies are
on the order of 100 Hz. Because the atom-chip trap pre-
sented here can achieve confinement frequencies above 1 kHz,
it may be necessary to use a correspondingly greater TOP
frequency.

We explore the minimum usable ratio of TOP frequency
to confinement frequency. The lowest ratio we find in the
literature uses �/ωm ≈ 20 [20]. The trap described by Horne
and Sackett [14] uses a TOP field rotating at 10 kHz and a
maximum confinement frequency of 200 Hz, but the plane of
the TOP field precesses at 1 kHz. The potential experienced
by the atoms is significantly modulated at the 1 kHz frequency
without observable effects, suggesting that �/ωm � 5 may be
sufficient. These results indicate that a 1.4 kHz chip trap as
described above could use a TOP frequency below 30 kHz,
and perhaps as low as 7 kHz. TOP traps operating at 20 kHz
have been demonstrated [21], so we expect the drive require-
ments here to be achievable. At a bias field of 2 G, the Larmor
frequency for 87Rb is 1.4 MHz, so the parameters proposed
here do not approach the high-frequency limit.

Another technical concern is how the chip current sources
could be implemented. Since the two chip wires intersect, it
is necessary either for the two driver circuits to float with
respect to ground, or for each driver to be balanced so that the
center of the cross is at a common ground potential. Either
of these solutions can be readily achieved using isolation
transformers, which are efficient and stable at frequencies of
order 10 kHz [22].

A final noteworthy feature of the cross TOP configura-
tion is that the three-dimensional trap can be adiabatically

converted to a two-dimensional guide. This can be achieved
by reducing the current through one of the wires to zero along
with the corresponding β field component. For a guide along
the x axis, the resulting field is

B(t ) = β cos �t

[
ŷ + z0(yẑ − zŷ)

y2 + z2

]

+ γ (x̂ cos �t + ŷ sin �t ), (10)

with still z0 = μ0I0/2πβ for chip current amplitude I0. The
time-averaged field has the form

〈B〉 = γ + β2

4γ z2
0

(
y2 + 3

4
ζ 2

)
, (11)

with ζ = z − z0 and thus provides harmonic confinement
with ω2

y = μβ2/(2γ z2
0 ) and ωz = (

√
3/2)ωy. For example, if

β = 40 G, γ = 2 G, and I = 5 A as in the trap previously
considered, the guide distance remains at 0.25 mm and the
confinement frequencies for 87Rb are about 1 kHz and 800 Hz.
Power dissipation on the chip is reduced by a factor of two
compared with the equivalent trap. The guide potential can
again be modified to support gravity by introducing a phase φ

to the γ field as in Eq. (9), resulting in

〈B〉 = γ + 1

2
β sin φ

ζ

z0
+

(
β2

4γ
+ 1

2
β sin φ

)
y2

z2
0

+
[

β2

16γ

(
1 + 2 cos2 φ

) − 1

2
β sin φ

]
ζ 2

z2
0

. (12)

Linear guides are useful for many applications involving atom
transport [3], including atom interferometry [10,23].

IV. CONCLUSIONS

In summary, the cross TOP trap provides a chip-based trap
with confinement comparable or better than that of typical
Ioffe-Pritchard configurations. The confinement is naturally
cylindrically symmetric and can be readily modified to be
spherically symmetric and to provide support against gravity.
The trap center can be positioned further from the chip than
possible with conventional approaches, and the same chip ge-
ometry can provide a two-dimensional atom guide. We expect
that these features will make the cross TOP useful for a variety
of applications. One example is the atomic Sagnac interfer-
ometer of Ref. [13], where the cross trap could significantly
simplify the apparatus and allow faster production of Bose
condensates, thus increasing the sensing bandwidth. For this
purpose, the cylindrical symmetry of the trap is critical. We
are also exploring how the approach could be extended to
produce bias fields with the chip itself, and thereby remove the
need for external coils. By such means, we hope this method
will facilitate the use of ultracold atom techniques in practical
applications.
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