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Resonance-facilitated three-channel p-wave scattering
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Feshbach resonances of arbitrary width are typically described in terms of two-channel models. Within these
models, one usually considers a single dressed resonance, with the option to extend the analysis by including
resonant open-channel features that can drastically change the observed threshold effects. For the strong 40K
p-wave resonance studied [Ahmed-Braun et al., Phys. Rev. Res. 3, 033269 (2021)], the interplay between an
open-channel shape resonance and the Feshbach resonance could explain the unexpected nonlinear variation of
the binding energy with magnetic field. However, the presented two-channel treatment relies on the introduction
of two independent fitting parameters, whereas the typical Breit-Wigner expression would only account for
one. This results in an effective magnetic moment that acquires a nonphysical value, which is an indication
of a major shortcoming of the two-channel model treatment. In this study, we observe how the presence of
a closed-channel shape resonance explains the physical mechanism behind the observations and demonstrates
the need of a three-channel treatment. We introduce our model as resonance facilitated, where all coupling is
mediated by the Feshbach state, while there is no direct coupling between the additional channel and the open
channel. Notably, the resonance-facilitated structure greatly reduces the complexity of the full three-channel
model. The typical Breit-Wigner form of the two-channel Feshbach formalism is retained and the full effect of the
added channel can be captured by a single resonance dressing factor, which describes how the free propagation
in the Feshbach state is dressed by the added channel.
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I. INTRODUCTION

Feshbach resonances have given experimentalists un-
precedented control over two-body interactions in quantum
degenerate fluids, greatly adding to the versatility of quantum
gases. The tunability of Feshbach resonances follows from the
magnetic moment difference δμ between hyperfine channels.
Whereas the multichannel nature of these resonances is es-
sential, they are complex in nature. The easiest approach to
retain the magnetic-field dependence is to use a two-channel
model. Especially for pairs formed in s-wave channels, these
models have been successful in describing both resonance
width-dependent as well as universal behavior [1].

Following the experimental observation of p-wave reso-
nances, [2–14], recent studies have revealed the existence of
p-wave universal behavior [15–19]. These systems are con-
siderably different from their s-wave counterparts. Despite the
presence of strong three-body losses, they exhibit interesting
features.

P-wave interactions allow for the existence of multiple
superfluid phases related to different projections of the angu-
lar momentum of Cooper pairs, some of which are similar
to the phases of superfluid He-3 [20] and exhibit a phase
transition if tuned from BCS to BEC rather than a smooth
crossover [21]. In addition, the prospects of duality between
strongly interacting odd waves and weakly interacting even
waves in one-dimensional systems with suppressed three-
body losses [22–28] and the topological phase transitions in
two-dimensional systems [29,30], one-dimensional systems
[31,32], and engineered states [33–35] explain the interest in
understanding the details of p-wave interactions.

The explicit two-channel treatment of p-wave resonances
has been the topic of several theoretical studies [10,36,37].
Similar to their s-wave counterparts, two-channel models with
nonzero partial-wave interactions (� �= 0) allow for the in-
clusion of resonant open-channel features and can correctly
capture the interplay between open-channel and Feshbach
resonances [38–41]. However, since the Feshbach channel
in these models can comprise multiple hyperfine channels,
resonant features in these hyperfine channels cannot be treated
explicitly in this formalism. The breakdown of the two-
channel model can be observed in the 40K Feshbach resonance
studied in Ref. [39]. Here, the Feshbach part of the two-
channel scattering matrix, or S-matrix, element SFB had to be
redefined in order to match coupled-channels (CC) data. The
typical Breit-Wigner form of the S-matrix element [42,43]
was replaced by a function where the resonance width and
shift could be fit to the CC data independently, such that

SFB = 1 − i�(E )

E − δμ(B − Bn) − �res(E ) + i
2�(E )

→ 1 − igk3

E − c + i
2 gk3

. (1)

Whereas the two-channel model can capture the cor-
rect low-energy scaling, the differential magnetic moment
δμ ≈ 0.5 G/MHz that can be extracted from the fit by map-
ping the artificial model back onto the Breit-Wigner form,
results in a poor quantitative match of the realistic two-
channel model with the CC data, as shown in Fig. 3(c) of
Ref. [39] and reproduced here in Fig. 1.
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FIG. 1. Binding energy and inelastic loss in the |bb〉 channel.
The below-threshold binding energy Eb (full blue line) and above-
threshold inelastic loss (contour plot) of the |bb〉 state (two atoms in
the | f , mf 〉 = |9/2, −7/2〉 state) as a function of magnetic field B
are extracted from CC calculations. The green dashed line follows
from the artificial two-channel model mapped back onto the original
Breit-Wigner form. Whereas it captures the bending of the dimer
energy near-threshold consistent with CC data, it fails to match
the data quantitatively due to the poorly fitted differential magnetic
moment δμ.

In this paper we relate this discrepancy to the presence
of a near-threshold shape resonance in one of the hyperfine
channels other than the entrance channel. The need to treat
this channel explicitly and hence upgrade to a three-channel
model to correctly capture the physics is not specific to Fesh-
bach resonances. Other fields of physics, including two-color
photo-association experiments, stimulated Raman adiabatic
passage (STIRAP) [44,45] as well as electromagnetic induced
transparency (EIT) [46–49] similarly reveal new physics that
cannot be explained by reduced two-channel models. The
inclusion of extra channels to the scattering problem rapidly
increases the complexity of the analysis and risks obscuring
the intuitive understanding of the physics that two-channel
models offer. As motivated in Sec. II B, the magnetic-field
dependence of the inelastic loss in the |bb〉 channel presented
in Fig. 1 leads us to expect that the system is well-described
in terms of a model where all interactions are facilitated by
the Feshbach resonance. This resonance-facilitated structure
reduces the complexity significantly. It allows the effect of the
third channel to be fully captured by a single dressing factor,
later defined as D. Physically, this factor describes how the
free propagation in the Feshbach state is dressed by the third
channel. As such, we retain the overall Breit-Wigner form of
the two-channel S-matrix, allowing for a relatively straightfor-
ward physical interpretation of the results as compared with
full CC output. We find that the resonance-facilitated three-
channel model with shape resonances in the entrance channel
and the added third channel contains the correct low-energy
physics and, as outlined in Sec. II A, allows for the direct
implementation of values for δμ consistent with CC data.

This paper is outlined as follows. In Sec. II we study the
CC structure of the relevant 40K system and use full CC data
to motivate the reduction to the resonance-facilitated model.
Next, in Sec. III we analyze how the presence of open-channel
resonances can generally affect the threshold behavior of a

ramping p-wave Feshbach state. We then proceed with the
derivation of the resonance-facilitated three-channel model
in Sec. IV, and discuss how we use a Gamow expansion
to account for the shape resonances. In Sec. V, we present
the field dependence of the resonance-scattering parameters.
These parameters will then be used to interpret the results
in Sec. VI, compute the resonance width and to form the
conclusions in Sec. VII.

II. COUPLED-CHANNELS CALCULATIONS

We study fermionic 40K, which has a nuclear spin of four
and ground state 2S 1

2
. Hence, the single-particle hyperfine

ground-state manifold contains the total spin states f = 9/2
and f = 7/2, with respectively ten and eight spin components
with projections m f . We label these states as |a〉, |b〉, |c〉, . . . in
order of increasing energy. As 40K has an inverted hyperfine
structure, the entrance channel of interest in this paper with
two atoms in the | f , m f 〉 = |9/2,−7/2〉 state at zero B field
corresponds to the |bb〉 channel. Apart from the Feshbach
state, which is a magnetic-field dependent combination of
hyperfine channels, we explicitly include the |ac〉 channel in
the three-channel model.

A. Coupled-channels structure

To account for the relative angular momentum between two
interacting atoms, we extend the two-particle hyperfine basis
by including the partial-wave quantum numbers L and ML.
Since we are interested in the collision between two atoms
which are both in the |b〉 state, the antisymmetry requirement
for fermions implies that these atoms can only collide with
odd L values. In the low-energy limit, this results in the dom-
inance of p-wave interactions with L = 1 and ML = −1, 0,
or 1. At small interparticle separations, the |b〉 atoms experi-
ence direct spin-exchange interactions that couple hyperfine
channels with conserved m f1 + m f2 . However, the anisotropy
of the p-wave interaction additionally results in a nonzero
dipole-dipole interaction that couples additional channels with
conserved Mtot = m f1 + m f2 + ML. This means that the col-
lision channels with Mtot = −8, −7, and −6 couple 8, 13,
and 20 channels respectively. Figure 2 shows the channel
potentials that are coupled for interactions with Mtot = −7.
Whereas the inset reveals that the interaction potential Vint is
much larger for direct spin-exchange interactions, the dipole-
dipole interaction can generally not be neglected and results
in the experimentally observable splitting of the Feshbach
resonance for different values of |ML| [50].

For all values of Mtot, there are five channels that couple
through direct spin-exchange interactions. As can be seen
in Fig. 2, three of these channels, |bb〉, |rr〉, and |ac〉, are
predominantly triplet in character, whereas the channels |aq〉
and |br〉 are mostly singlet. The inset reveals that the coupling
between the singlet channels and the |bb〉 state is about three
times larger than the coupling between the triplet channels
and the |bb〉 state. This is consistent with the spin-exchange
interaction following from the energy difference between the
singlet and triplet potentials, such that it should be larger for
states with predominantly different spin symmetry.

Similarly to the |bb〉 state, the |ac〉 channel has a near-
threshold shape resonance. It is the interplay between this
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FIG. 2. Channel and interaction potentials. Channel potentials
Vch,ch in the Mtot = −7 subspace expressed in units of the van der
Waals (vdW) energy EvdW/h = 23.375 MHz as a function of the
interparticle distance in terms of the vdW length rvdW = 65.0223a0,
with Bohr radius a0. Channels are either coupled to the |bb〉 entrance
channel (black line) through spin-exchange interactions (red lines) or
dipole-dipole interactions (blue lines). All channels are listed on the
right side of the figure in order of decreasing asymptotic energy and
on the left side of the figure in order of potential energy in the plotted
regime. Here, the top group of potentials is predominantly triplet,
whereas the bottom group of potentials is predominantly singlet.
Using the same color coding, we indicate the interaction potentials to
the |bb〉 channel Vbb,ch in the inset. Only channels directly coupled to
the |bb〉 state through spin-exchange interactions have a distinguish-
able value on this scale.

additional shape resonance and the Feshbach state which we
aim to capture by going from a two- to a three-channel model.

B. The differential magnetic moment and inelastic losses

Around resonance (B ≈ 198.3/8 G) the channels |bb〉 and
|ac〉 are separated by an asymptotic energy difference of
Eth/h ≈ 2.4 MHz. Defining the energy E of the incoming
state with respect to the |bb〉 threshold, this means that |ac〉
is energetically closed for E < Eth and open for E � Eth. Fig-
ure 1 shows the rapid increase in the |bb〉 channel inelastic loss
once the |ac〉 channel opens. The shape resonances in the |bb〉
and |ac〉 are magnetic-field independent and the energy differ-
ence Eth scales with the magnetic moment difference between
|bb〉 and |ac〉, which is small.1 This means that loss caused by
direct coupling between the two shape resonances should be
largely magnetic-field independent. However, Fig. 1 instead
shows that the observed loss feature is strongly magnetic-field
dependent. This implies the importance of the ramping Fesh-
bach state and motivates the usage of the resonance-facilitated
three-channel model where |bb〉 and |ac〉 are solely coupled to
the Feshbach state.

1This is expected for two channels that are both predominantly
triplet and is clearly visible in Fig. 3(b) of Ref. [39].

FIG. 3. Computing the differential magnetic moment. (a) The
below-threshold binding energy (blue line) and above-threshold
value of |Sab,ab|2. The |ab〉 state is weakly interacting with |bb〉 and
is therefore an excellent probe of δμ. The blue circles indicate the
localization of the binding energy or loss maxima. The dashed green
line indicates how the slope dE/dB is significantly different below
and above threshold. (b) The dashed red line shows the differential
magnetic moment computed using the binding-energy values and
loss maxima as a function of B field. The blue line represents a
quadratic fit of the data points. The values of this fit are used to define
δμ(B).

The magnetic-field dependence of the Feshbach channel is
quantified by δμ. Away from resonance, where the dressing
of the (quasi)-bound state by the |bb〉 and |ac〉 channels is
negligible, δμ can be calculated from the slope of the (quasi)-
bound state energy versus magnetic field. Connecting the
below- and above- threshold regions as visualized in Fig. 3(a)
through interpolation, we find the magnetic-field dependent
δμ as presented in Fig. 3(b).2 The interpolated values for δμ

will be used in the comparison of the resonance-facilitated
three-channel model to the CC data. Hence, contrary to the
method followed in Ref. [39], δμ is not a free parameter in
our analysis and has a physically realistic value.

III. POLES AND RESONANCES OF THE S MATRIX

Considering the effect of the |bb〉 shape resonance, the Fes-
hbach coupling and the dipole-dipole interaction separately,

2The B-field dependence of δμ is also visible in Fig. 3(b) of
Ref. [39], where the value of μ(B) for various hyperfine channels
is presented. In the case of constant δμ, the lines in Fig. 3(b) should
remain parallel. This is, however, clearly not the case in the B-field
regime considered.
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we express the total S matrix as

Stot = SPSFBSdip, (2)

where SP represents the direct-scattering part and where Sdip

represents the dipole-dipole contribution. Using the Born ap-
proximation presented in Sec. IV C of Ref. [39] to factor
out the dipole-dipole contribution, the remaining S matrix
S = StotS

−1
dip should follow the typical effective range approxi-

mation (ERA) for p-wave interactions, as stated in Eq. (31)
and used in the remainder of this paper. In the following
two sections, we proceed with the separate analysis of the
remaining contributions SP and SFB.

A. Single channel

1. Factorizing the S matrix

Solving the radial Schödinger equation one can generally
define ψ�(k, r) as the physical solution which satisfies two
boundary conditions and which represents the radial part of
the wave function of the normalized state |E , �, m〉. Whereas
physically correct, the two boundary conditions imply that
the normalization of the wave function is a function of the
potential at all points. For physically realistic potentials this
is often complex and one has to rely on numerical methods to
compute the radial wave function.

Hence, one can alternatively define a different class of
solutions which satisfy single-point boundary conditions. Two
of such solutions are the regularized wave function φ�(k, r)
and the Jost solutions f�(k, r)±, respectively defined as [51]

lim
r→0

(2� + 1)!!r−�−1φ�(k, r) = 1, (3)

lim
r→∞e±ikr f ±

� (k, r) = i±l . (4)

The previous two expressions indicate that φ�(k, r) is defined
to be regular at the origin whereas the Jost solutions f�(k, r)±
are set to define purely incoming and outgoing waves, but are
nonregular at the origin.

As both classes of solutions solve the Schrödinger equa-
tion, they can be matched by considering their asymptotic
limits, finding that ψ�(k, r) = φ�(k, r)/F�(k) and more no-
tably [43]

S�(k) = F�(−k)

F�(k)
, (5)

where we have introduced the Jost function

F�(k) = lim
r→0

(−kr)�

(2� − 1)!!
f ±
� (k, r). (6)

Equation (5) is particularly useful as the single-point bound-
ary condition which is used to define the Jost functions
ensures that these functions can be solved iteratively for any
potential V (r) and allows for a Hadamard expansion [52]

f�(k, r) = f�(0, r)eikrc
∏

n

(
1 − kn

k

)
, (7)

with momentum-space poles kn and undetermined constants
f�(0, r) and rc which are set by nonresonant background scat-
tering processes. Substituting Eq. (7) into Eq. (5), we find the

FIG. 4. Poles of the S matrix of the p-wave square-well in the
complex momentum plane. Increasing color intensity corresponds
to increasing depth of the potential well. The arrows indicate the
direction in which the poles move. The inset shows the poles of the
S matrix of the s-wave square well.

Ning-Hu representation of the S matrix [53]:

S�(k) = e−2ikrc
∏

n

(
kn + k

kn − k

)
. (8)

Equation (8) enables us to express the full S-matrix in terms
of its resonant poles. These resonant poles can be divided into
four categories depending on their position in the complex
momentum plane [54].

First of all, the poles located on the positive imaginary axis
(kn = iβ, with β > 0) correspond to bound states. The wave
function of these states decays exponentially in the asymptotic
regime, such that ψ�(kn, r) ≈

r→∞ e−βr . Of all the four classes

of poles, only these poles correspond to physical states. The
second class of poles are located the negative imaginary axis
(kn = −iβ) and are referred to as virtual, or antibound states.
Contrary to the bound states, the asymptotic part of the wave
function of these virtual states increases exponentially, such
that ψ�(kn, r) ≈

r→∞ eβr . The third and fourth classes of poles

are related as, according to the Schwarz reflection principle
[51], they always occur as twin poles located at k = ±α − iβ
with α > 0. The resonance states (k = α − iβ) represent out-
going waves whose amplitude increase exponentially, such
that ψ�(kn, r) ≈

r→∞ eiαreβr and are hence also referred to as

decaying states. The antiresonance states on the other hand
(k = −α − iβ) represent incoming waves with an asymptotic
wave function of the form ψ�(kn, r) ≈

r→∞ e−iαreβr and are

hence also referred to as capturing states. Whereas all four
classes of poles can occur for all partial-wave states, the pres-
ence of a centrifugal barrier impacts the pole locations. As first
studied for square wells in Ref. [55] and as indicated in Fig. 4,
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particularly the decaying and capturing poles are affected
by the centrifugal barrier. For s-wave collisions, these poles
collide in the lower half of the complex momentum plane
upon increasing the potential interaction strength and turn
into virtual states. For higher partial waves on the other hand,
the centrifugal barrier shifts the collision point to the origin.
This means that the capturing state turns into a virtual state,
whereas the decaying state immediately turns into a bound
state. Physically we can regard this process as the decaying
state corresponding to a quasibound state, or shape resonance,
trapped behind the centrifugal barrier and transforming into a
true bound state upon an increase in the potential depth.

Since only the poles that are sufficiently close to the real
axis of the complex momentum plane produce experimentally
observable sudden changes in the phase shift δ�(k), it is gener-
ally possible to truncate the infinite product over the n states in
Eq. (8). As, contrary to s-wave scattering, the complex poles
for � �= 0 scattering processes propagate close to the real mo-
mentum axis before they collide at the origin, they generally
provide a non-negligible contribution to the phase shift. This
emphasizes the importance of the inclusion of p-wave shape
resonances in the analysis of the S matrix.

2. Gamow states

As presented in Eq. (8), the S matrix can be fully expanded
in terms of its poles. As such, it is convenient to introduce the
set of wave functions 
�,n(r) that are the eigenstates of the
Schrödinger equation with eigenvalues kn such that


�,n(r) = lim
k→kn

ψ�(k, r), (9)

which satisfy the following set of boundary conditions:


�,n(0) = 0, (10)

d
�,n(R)

dr
= ikn
�,n(R), (11)

where R is an arbitrary distance chosen in the asymptotic
regime. The wave functions 
�,n(r) are more commonly re-
ferred to as Gamow states, named after G. Gamow who first
studied the decaying states as introduced in Sec. III A 1 in the
context of alpha decay. Since the wave number kn is complex
for decaying states (k = α − iβ), the amplitude of the corre-
sponding Gamow state grows exponentially and the solutions
are non-Hermitian. This is not problematic since the decay
states (as well as the virtual and capturing states) are located
on the second, nonphysical, energy sheet. On this sheet the
Hamiltonian is not necessarily Hermitian [54]. It is however
possible to form a biorthogonal set by including the dual states
|
D

�,n〉 that satisfy purely incoming boundary conditions and
correspond to the capturing poles (k = −α − iβ), such that
|
D

�,n〉 ≡ |
�,n〉∗ and 〈
D
�,n|
�,n′ 〉

R
= δn,n′ .3

In the limit where α → 0, the (dual) Gamow state reduces
to the (virtual) bound state wave function. The Gamow and
its dual state thus provides a useful set of eigenfunctions
of the Schrödinger equation in the entire complex momen-
tum plane. Their usefulness is particularly clear upon using

3Where 〈. . .〉R represents the regularized orthogonality condition.

the Mittag-Leffler theorem [56] and upon realizing that the
Green’s function shares poles with the S matrix, such that we
can expand the Green’s function in the following convergent
series [51,57]:

G+
� (E , r, r′) =

N∑
n=1


�,n(r)
D,∗
�,n (r′)

k�,n(k − k�,n)
+ 1

2

×
∞∑

n=N+1

[

�,n(r)
D,∗

�,n (r′)
k�,n(k − k�,n)

− 
D
�,n(r)
∗

�,n(r′)
k∗
�,n(k + k∗

�,n)

]
,

(12)

where N is the (finite) number of bound and virtual states.
As discussed in Sec. III A 1 it is generally possible to truncate
the summation over the infinite number of complex poles to
a finite number of poles with observable contributions to the
phase shift.

B. Two channels

Whereas the previous section focused on single-channel
resonances, the multichannel nature of scattering can result in
the presence of additional (near) resonant states. In this sec-
tion we will treat the interplay between these single channel
and multichannel (Feshbach) resonances.

1. Feshbach resonances

For small interparticle spacings, central interactions be-
tween two particles can couple different hyperfine channels.
This allows for the presence of Feshbach resonances. Contrary
to single channel resonances, these Feshbach resonances are
magnetic-field dependent due to the difference in the magnetic
moment between hyperfine states and can hence be tuned
through the variation of an externally applied magnetic field.

Retaining the multichannel nature of these resonances but
limiting the complexity of the analysis, these Feshbach reso-
nances are generally treated in a two-channel model. Here, the
coupling of a (near) resonant state in a closed-channel sub-
space Q to the open channel subspace P results in the desired
resonance. The S matrix in the open channel subspace P for
these two-channel models been the topic of many studies and
can generally be expressed as

S = Sp

(
1 − i�(E )

E − εc − �res(E ) + i
2�(E )

)
, (13)

where �(E ) represents the resonance width, εc represents the
bare resonance energy, �res(E ) represents the shift of the
resonance energy due to the dressing of the Feshbach state,
and where SP represents the direct open channel scattering
matrix that can contain background as well as resonant effects
as treated in Sec. III A 1.

Short-range p-wave interactions allow for an effective
range expansion in the low-energy regime. Using this ex-
pansion (stated explicitly for the phase shift in Eq. (31)),
one can observe the bound-state poles located in the two-
channel part of the S matrix in Eq. (13) to vary linearly with
magnetic field. However, in the presence of (near) resonant
open channel interactions, the poles in the direct part of the S
matrix Sp, contained in the Ning-Hu representation of Eq. (8),
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(a) (b) (c)

FIG. 5. Energy of a Feshbach resonance versus magnetic field (in arbitrary units) in the presence of a (a) near-threshold open-channel
bound state, (b) virtual state, or (c) decaying and capturing states. The energy is extracted from the pole of Eq. (33) of Ref. [39], where we
use the Mittag-Leffler series presented in Eq. (36), for different values of the resonance momentum kn. The insets in all figures show the pole
locations in the complex momentum plane.

interact with the Feshbach state and alter its magnetic-field
variation. As indicated in Figs. 5(a) and 5(b), the presence of
a near-threshold open-channel bound or virtual state is only
observable in a relatively small magnetic-field regime and
its effect on experimental observables is hence limited. This
is caused by the naturally narrow character of the p-wave
interactions which is caused by the presence of the centrifugal
barrier. On the other hand, the effect of the decaying and the
capturing state in Fig. 5(c) has a relatively large effect com-
pared with the bound and virtual states. These poles contain
a real- as well as an imaginary-energy part and consequently
add a width to the resonance. The apparent wide character of
the resulting Feshbach state is clearly visible in Fig. 5(c) and
is qualitatively consistent with the observed coupled-channels
structure as presented in Fig. 1.

IV. RESONANCE-FACILITATED SCATTERING

Whereas the two-channel model presented in Sec. III B 1
qualitatively captures the physics observed in Fig. 1, its fea-
tures do not match the coupled-channels data quantitatively
and one obtains nonphysical values of the differential mag-
netic moment. In this section we investigate a three-channels
model and study how its reduction to a resonance-facilitated
form improves on the quantitative correspondence with the
CC data.

A. Full three-channel model

We consider a three-channel system with two-atom states
|bb〉 and |ac〉 coupled to a ramping Feshbach state |c〉 that
consists of a (magnetic-field dependent) combination of hy-
perfine states. Whereas the entrance channel |bb〉 is always
energetically open, the channel |ac〉, which has a threshold
energy of Eth/h ≈ 2.4 − 0.014(B − 198) MHz in the relevant
magnetic-field regime, can be either open (E > Eth) or closed
(E < Eth).

The three-channel model satisfies the following
Schrödinger equation:

E

⎛
⎝ψbb

ψc

ψac

⎞
⎠ =

⎛
⎝ Ĥbb V̂bb,c V̂bb,ac

V̂c,bb Ĥc V̂c,ac

V̂ac,bb V̂ac,c Ĥac

⎞
⎠
⎛
⎝ψbb

ψc

ψac

⎞
⎠, (14)

where Va,b represent potential operators that couple the hy-
perfine states and where Ha is defined as Ha = Ĥ0

a + V̂a, with
kinetic-energy operator Ĥ0

a and two-body interaction potential

V̂a. We can now proceed in two ways. First of all, we can use
the operator formalism presented in Appendix A in order to
derive an effective potential interaction Veff that solves the
Schrödinger equation (E − Heff )|ψ+

bb〉 = 0. Alternatively,
we can follow the steps presented in Appendix B and analyze
the Lippmann-Schwinger equation for the entrance channel
wave function |ψ+

bb〉. Both the former as well as the latter
method result in the following definition of the effective po-
tential:

Veff =Vbb,bb + Vbb,cAVc,bb + Vbb,cAVc,acG0
acVac,bb

+ Vbb,acG0
acVac,cAVc,bb + Vbb,acG0

acVac,bb

+ Vbb,acG0
acVac,cAVc,acG0

acVac,bb, (15)

with propagators G0
a = (E − Ha)−1 and with the parameter A

defined as

A = |φc〉〈φc|
E − εc

[
1 − 〈φc|V̂c,ac(E − Ĥac)−1V̂ac,c|φc〉

E − εc

]−1

,

(16)

where we have introduced the complex energy shift

Aac(E ) = 〈φc|V̂c,ac(E − Ĥac)−1V̂ac,c|φc〉, (17)

and where we have used the single resonance approximation
to express the propagator G0

c in the Feshbach channel |c〉 as

G0
c,c = |φc〉〈φc|

E − εc
. (18)

Physically, the parameter A indicates how the Feshbach state
can either propagate freely in the |c〉 channel or couple to
the |ac〉 channel where it propagates before coupling back to
the |c〉 channel. Since Veff |ψ+

bb〉 = Tbb,bb|k〉 [54], the knowl-
edge of the effective potential allows for the computation
of the entrance channel transition matrix element Tbb,bb and
hence the scattering-matrix element Sbb,bb.4

B. Resonance-facilitated three-channel model

As previously stated in the Introduction, the near-threshold
behavior of the B = 198.8 G (ML = 0) and B = 198.3 G

4The T matrix is directly related to the energy-normalized S matrix
as S = 1 − 2π iT .
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(ML = ±1) resonances is expected to be well-described in
terms of a resonance-facilitated model where we neglect
the direct coupling between the |bb〉 and the |ac〉 channels
(Vbb,ac = Vac,bb = 0).

This approximation simplifies the three-channel model sig-
nificantly as only the first two terms in the effective potential
defined in Eq. (15) remain. We recognize that all the infor-
mation regarding the coupling between the Feshbach state |c〉
and the |ac〉 channel is now contained in the single parameter

A. To completely isolate the effect of the |ac〉 channel on the
model, we introduce the dressing factor D as

D = A

( |φc〉〈φc|
E − εc

)−1

. (19)

In the two-channel limit (Vac,c = Vc,ac = 0), we find that D =1
and Eq. (15) reduces to the well-known two-channel effective
potential. Conveniently, the resonance dressing factor allows
us to recast the scattering matrix element Sbb,bb into the form

Sbb,bb = SP

(
1 − 2π i|〈φc|V̂c,bb|φ+

bb〉|2
E−δμ(B−Bn )

D − 〈φc|V̂c,bb(E − Ĥbb)−1V̂bb,c|φc〉

)
, (20)

where δμ(B − Bn) = εc, with bare magnetic resonance po-
sition Bn. The combination of the complex energy shift
Abb(E ) = 〈φc|V̂c,bb(E − Ĥbb)−1V̂bb,c|φc〉 and the resonance
dressing factor in the denominator of Eq. (20) shift the res-
onance location to its dressed magnetic-field value B0 and add
a width to the resonance. The analysis of this shift and width
is presented in Sec. IV C. Equation (20) implies that the two-
channel S matrix can be used and updated to the three-channel
resonance-facilitated model by a simple implementation of
the resonance dressing factor. Physically, this factor describes
how the free propagation in the Feshbach state is dressed by
the |ac〉 channel. The details of this dressing and the physics
of the dressing factor will be discussed in more detail in
Sec. IV C.

C. Gamow expansion for |bb〉 and |ac〉
Equation (20) depends on the propagators G0

bb = (E −
Ĥbb)−1 and G0

ac = (E − Ĥac)−1 through the complex en-
ergy shifts Aac(E ) and Abb(E ), respectively. As discussed in
Sec. II A, both the |bb〉 as well as the |ac〉 channel has a
near-threshold shape resonance. Considering that there are no
other near-threshold poles in these channels, the shape reso-
nances are the dominant contributions to the Mittag-Leffler
expansion, or the Gamow expansion as presented in Eq. (12),
such that we can approximate the propagators G0

bb and G0
ac as

G0
bb =

(
|
bb〉

〈

D

bb

∣∣
2kbb(k − kbb)

−
∣∣
D

bb

〉〈
bb|
2k∗

bb(k + k∗
bb)

)
, (21)

G0
ac =

(
|
ac〉

〈

D

ac

∣∣
2kac((ksh − kac)

−
∣∣
D

ac

〉〈
ac|
2k∗

ac(ksh + k∗
ac)

)
, (22)

where we have introduced the Gamow states |
bb〉 and |
ac〉
as well as their dual states |
D

bb〉 ≡ |
bb〉∗ and |
D
ac〉 ≡ |
ac〉∗.

In addition, the shifted momentum ksh in Eq. (22) is defined
as ksh = √

E − Eth and accounts for the energy threshold dif-
ference between the |bb〉 and |ac〉 channels as discussed in
Sec. II A.

Substituting Eqs. (21) and (22) into Eqs. (20) and (16), we
find that [39]

Abb(E ) ≈ 〈φc|Hc,bb|
bb〉
〈

D

bb

∣∣Hbb,c|φc〉
2kbb(k − kbb)

− 〈φc|Hc,bb

∣∣
D
bb

〉〈
bb|Hbb,c|φc〉
2k∗

bb(k + k∗
bb)

, (23)

and

Aac(E ) ≈ 〈φc|Hc,ac|
ac〉
〈

D

ac

∣∣Hbb,c|φc〉
2kac(ksh − kac)

− 〈φc|Hc,ac

∣∣
D
ac

〉〈
ac|Hac,c|φc〉
2k∗

ac(ksh + k∗
ac)

. (24)

Using the Wigner threshold scaling of the Gamow states
as outlined in Ref. [39] and using the definition A(E ) =
�res(E ) − i

2�(E ) with energy shift �res(E ) and energy width
�(E ), we can obtain

�res,bb(E ) ≈ gbb,cRe

{
E3/2

bb

E − Ebb

}
, (25)

�bb(E ) ≈ −2gbb,c
E3/2

|E − Ebb|2
Im{Ebb}, (26)

with momentum-independent coupling strength gbb,c.
Whereas the |bb〉 channel is always energetically open,
the |ac〉 channel can be either open (E � Eth) or closed
(E < Eth). Carefully distinguishing between these two
regimes we find that

�res,ac(E ) ≈

⎧⎪⎨
⎪⎩

gac,cRe
{

E3/2
ac

(E−Eth )−Eac

}
for E � Eth

gac,c

(
Re

{
E3/2

ac
(E−Eth )−Eac

}
+ i (E−Eth )3/2

|(E−Eth )−Eac|2 Im{Eac}
)

for E < Eth,

(27)

and

�ac(E ) ≈
{

−2gac,c
(E−Eth )3/2

|(E−Eth )−Eac|2 Im{Eac} for E � Eth

0 for E < Eth,
(28)
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with momentum-independent coupling strength gac,c. Using the definitions of Abb(E ) and Aac(E ), we can rewrite the dressing
factor D as

D = E − δμ(B − Bn)

E − δμ(B − Bn) − �res,ac(E ) + i
2�ac(E )

, (29)

and we can express the S-matrix component Sbb,bb presented in Eq. (20) as

Sbb,bb = SP

(
1 − i�bb(E )

E − δμ(B − Bn) − [�res,bb(E ) + �res,ac(E )] + i
2 [�bb(E ) + �ac(E )]

)
. (30)

The insightful form of Eq. (30) reveals how the complex en-
ergy shifts set by the coupling of the Feshbach state to the |bb〉
and |ac〉 channels emerge on equal footing in the denominator
of Eq. (29). As indicated by Eq. (28), the |ac〉 channel only
contributes a finite width factor i

2�ac(E ) once the channel
becomes energetically open. Physically, this term in the de-
nominator captures the resonance-facilitated loss of the |bb〉
state to the |ac〉 state. Therefore, contrary to the well-known
two-channel Feshbach formalism, the presented three-channel
model is capable of including inelastic loss processes, such
that Sbb,bb becomes nonunitary (|Sbb,bb| < 1) for E � Eth.

V. FIELD DEPENDENCE OF RESONANCE
SCATTERING PARAMETERS

Having factored out the dipole-dipole contribution, the
low-energy scaling of the scattering phase shift δ(k) follows
the typical ERA for p-wave interactions, where

cot δ(k) = −(V k3)−1 − (Rk)−1 + O{k}, (31)

with scattering volume V and effective range R. Using the
multiplicative nature of the total S matrix as outlined in
Sec. III, the ERA can be applied to the direct part of the
scattering matrix SP and the Feshbach part SFB separately.
Analyzing each of these contributions in the following two
sections, the combined scattering volume and effective range
can be computed from the two partial contributions as

V = V1 + V2, (32)

and

R−1 = V 2
1

V 2R1
+ V 2

2

V 2R2
. (33)

The separate analysis of the contributions to the ERA will
be particularly useful in the resonance width classification as
presented in Sec. VI B.

A. Direct scattering parameters

Applying the parametrization of the |bb〉 channel shape res-
onance as presented in Sec. IV C, the Ning-Hu representation
of the direct part of the scattering matrix SP is equivalent to
the form presented in Ref. [39], such that [39,53]

SP = e−2ikrc
(k − k∗

bb)(k + kbb)

(k − kbb)(k + k∗
bb)

. (34)

Setting rc to equal 2Im{k−1
bb }, we ensure that SP follows the

correct low-energy p-wave Wigner scaling. The k → 0 limit

of SP then yields the following expression for the scattering
volume [39]

VP = −rc|kbb|−2(1 − |rckbb|2/3), (35)

and the effective range

RP = rc(1 − |rckbb|2/3)2

1 − |rckbb|2 + |rckbb|4/5
. (36)

B. Feshbach scattering parameters

The Feshbach contribution to the scattering volume and
effective range can be directly obtained from the low-energy
expansion of the Feshbach part of Eq. (30). An important
subtlety in this analysis is the presence of the threshold en-
ergy shift Eth in the energy width �res,ac(E ) and energy shift
�res,ac(E ). In the absence of Eth we find that

�res(E ) ≈
k→0

−gkR − g
kR

k2
R + k2

I

k2 + O(k4)

= �0
res + �1

resk
2 + O(k4), (37)

and

�(E ) ≈
k→0

− 4gkI kR(
k2

I + k2
R

)2 k3 + O(k5) (38)

= �0k3 + �1k5 + O(k7), (39)

with kn = kR + ikI . Using the previous expressions and isolat-
ing the effect of Eth on the |ac〉 channel parameters, we can use
Eq. (30) in order to find the following form of the Feshbach
part of the scattering volume

VFB(B) = − �0
bb/2

δμ(B − Bn) + �0
res,bb + �0

res,acχ
, (40)

where all dependence on Eth is contained in the parameter
χ (Eth ), defined as

χ = k2
I,ac + k2

R,ac − 2kI,ackth

k2
I,ac + k2

R,ac + k2
th − 2kI,ackth

. (41)

In the limit of a vanishing asymptotic energy difference be-
tween the channels |ac〉 and |bb〉, the shift parameter reduces
to χ (kth ) → 1 and the energy shift �0

res,ac has to be treated on
equal footing with the direct entrance channel shift �0

res,bb. In
the opposite limit where the energy shift becomes large, we
find χ (kth ) → 0, such that the scattering volume is insensitive
to the energetically far removed channel |ac〉.

063304-8



RESONANCE-FACILITATED THREE-CHANNEL P-WAVE … PHYSICAL REVIEW A 107, 063304 (2023)

TABLE I. Shape resonance parametrization. The best-fit com-
plex energies for the shape resonances in the |bb〉 and |ac〉 channel
in terms of EvdW. The scattering volume VP and effective range RP

appearing introduced in Sec. V A are also given in van der Waals
units. The bare magnetic resonance position Bn = 168.0 G is set by
comparison with the CC data.

|bb〉-channel shape resonance

Re Ebb 0.222Ē
Im Ebb/2 −0.114 Ē
VP −3.02 r3

vdW

RP 1.81 rvdW

|ac〉-channel shape resonance

Re Eac 0.179 Ē
Im Eac/2 −0.061 Ē

Proceeding with the analysis of the Feshbach part of the
effective range RFB, we find

RFB =
(
�0

bb

)2

2

{
�0

bb

(
1 − �1

res,bb − ξ�1
res,ac

)
+�1

bb

[
δμ(B − Bn) + �0

res,bb + χ�0
res,ac

]}−1
, (42)

with

ξ =
(
k2

I,ac + k2
R,ac

)(
k2

I,ac + k2
R,ac − kI,ackth

)
(
k2

I,ac + k2
R,ac + k2

th − 2kI,ackth
)2 . (43)

Similar to the shift parameter χ (Eth ), the shift parameter
ξ (Eth ) reduces to a value of ξ (Eth ) → 1 in the limit of a van-
ishing asymptotic energy shift and a value of ξ (Eth ) → 0 in
the opposite limit of large energy shifts. The values of the shift
parameters in the 40K analysis will be presented in Sec. VI A.

VI. RESULTS

We proceed our analysis by fitting the resonance-facilitated
form of the open channel S matrix component Sbb,bb as
presented in Eq. (30) to CC data in the low-energy limit.
In our model, only the coupling parameters gbb,c and gac,c

are magnetic-field dependent [39]. Hence we fit the shape
resonance momenta kbb and kac at a single magnetic-field
value B = 200 G and keep the best-fit values as presented in
Table I fixed for all subsequent fitting routines. By choosing
a B field close to the resonance value, we ensure that the S
matrix exhibits rapid variations at low energies, allowing for a
well-determined fitting routine. To ensure physically realistic
values for the fitting parameters below resonance where the S
matrix varies minimally, we force the pole of Sbb,bb to be lo-
cated at the B-field-dependent value of the binding energy Eb

as extracted from the CC code. This procedure directly fixes
one of the free parameters gbb,c or gac,c. As presented in Fig. 6,
the outlined fitting routine is able to correctly reproduce the
CC phase shift in the low-energy regime.

Whereas the two-channel fit as introduced in Ref. [39] and
presented in Fig. 6 similarly captures the CC data, this model
relies on the use of an artificial fitting parameter and is hence
less physical. Both models start to deviate from the CC data
at higher scattering energies. This is a consequence of the

FIG. 6. Scattering phase for ML = 0 at 200 G. The phase shift δ

from CC calculations is plotted as the real part of k3 cot δ (blue line)
versus collisional energy E/h. Both the artificial two-channel (blue
squares) and the realistic resonance-facilitated three-channel model
(red crosses) match CC data at low energies. The black dashed curve
represents the effective range expansion up to O(k4).

low-energy approximations used in the Gamow expansion
and the Ning-Hu expansion of the S matrix. The high-energy
deviations are also visible in the atom loss 1 − |Sbb,bb|2 pre-
sented in Fig. 7. However, notably, the resonance-facilitated
model does correctly capture the avoided crossing structure
of the bound-state (and quasi-bound state) around reso-
nance. Adding the two-channel results previously presented
in Fig. 1 to Fig. 7(b), we emphasize the success of the
resonance-facilitated model without artificial parameters over
the two-channel model. Consistent with the CC data, the
loss magnitude 1 − |Sbb,bb|2 extracted from the resonance-
facilitated model approaches unity once the |ac〉 channel
opens and reflects the strong B-field-dependent nature of the
loss rate resulting from the large magnetic moment difference
between the Feshbach channel on the one hand and the |bb〉
and |ac〉 channels on the other hand.

A. Resonance-facilitated contributions
and scattering parameters

As indicated by the denominator of Eq. (30), the dressing
effects of both the |bb〉 and the |ac〉 channel on the Feshbach
state arise equivalently. Both channels contribute an energy
shift and, once the channels are energetically open, add a
width �(E ). As can be seen in Fig. 8, the value of these con-
tributions depends on the scattering energy.5 Predictably, the
magnitude of the energy shift is largest when the scattering en-
ergy approaches the (real part of the) energy of the shape res-
onance.6 In addition, the asymmetric and broad nature of the
resonance widths can be contributed to the shape resonances
being located above the centrifugal barrier, as indicated by
the large value of the imaginary parts of the shape resonance

5The parameters also depend on the B field, but the overall observed
trend holds for all B fields considered.

6For the |ac〉 channel, the threshold energy has to be added since
the energy is measured with respect to the |bb〉 threshold. Hence, the
shift is the largest for Re(Ebb) + Eth.
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FIG. 7. Above threshold loss 1 − |Sbb,bb|2 and binding energy
of the |bb〉 channel computed from the CC code (a) and from the
three-channel model (b). The purple dashed line corresponds to the
energy extracted from the pole of the three-channel S matrix. In
the low-energy limit, this energy approaches the quasi-bound-state
energy [39]. The curve has been added to both figures to ease the
comparison. The green dashed line in the bottom figure corresponds
to the two-channel data presented in Fig. 1 and visualizes the im-
provement of the three-channel results over the two-channel results.

energies. The comparable magnitude of the complex energy
shift in the |bb〉 and |ac〉 channels implies the importance

FIG. 8. The energy shift and width of the |bb〉 channel (blue
lines) and the |ac〉 channel (red lines) as a function of the energy
E/h at a magnetic field B = 200 G.

FIG. 9. Resonance shift parameters. The values of the shift pa-
rameters χ (Eth ) (blue) and ξ (Eth ) as a function of magnetic field.

of the |ac〉 channel added in the resonance-facilitated model.
Considering the effective range expansion of the phase shift
δ(k), it is furthermore possible to quantify the effect of the |ac〉
channel on the low-energy scattering parameters. Following
the approach presented in Sec. IV B, we begin this analysis by
computing the shift parameters χ (Eth ) and ξ (Eth ) and obtain
the results as presented in Fig. 9. Consistent with the analysis
of the full complex energy shift, the non-negligible values of
the shift parameters ξ (Eth ) and particularly χ (Eth ) indicate
the importance of the |ac〉 channel on the low-energy scatter-
ing. Whereas the values remain non-negligible over the entire
probed B-field regime, the magnitudes decrease for larger B
fields. This trend is consistent with the growing threshold
energy difference between the |bb〉 and |ac〉 channels for
increasing B fields, where, for larger energy differences, the
effects of the |ac〉 channel on the scattering states in the |bb〉
channel gradually becomes less important.

The contribution of the |ac〉 channel shift parameters
χ (Eth ) and ξ (Eth ) on the |bb〉 channel scattering states is read-
ily observed in Figs. 10 and 11. Here, the computed scattering
volume and the effective range are compared with the artificial
two-channel model results of Ref. [39], both in the presence of
the shift parameters and in the absence of the shift parameters.
As can be seen in Fig. 10, the factor χ�0

res,ac has a significant
impact on the computation of the scattering volume. With-
out this shift factor induced by the |ac〉 channel, the model
is completely incapable of reproducing the CC resonance.
The large impact of this factor precisely indicates why the
true two-channel Feshbach model is unable to match the CC
calculations and explains why in Ref. [39] the Breit-Wigner
structure of this model was replaced by the artificial form
presented in Eq. (1). This artificial model effectively allows
for the decoupling of the fitting of the resonance widths and
shifts, thereby correctly describing the large resonance shift
but consequently failing to partially attribute this shift to the
|ac〉 channel and instead resulting in physically unrealistic
values of δμ. The resonance-facilitated model rectifies this
physical inconsistency.
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FIG. 10. Scattering volume. Artificial two-channel (blue) and
three-channel (red diamond) scattering volume for ML = 0 as a
function of the magnetic field. The scattering volume diverges at
B0 = 198.803 G. The square data points are obtained by setting
χ = 0 in Eq. (40) and reveal the importance of the |ac〉 contribution
to the scattering volume.

B. Resonance-width classification

Whereas recent studies have revealed the universal be-
havior of low-energy p-wave scattering parameters, [15–19],
the multichannel nature of Feshbach resonances affects these
scaling laws. The degree to which the universal behavior is
distorted by multichannel effects is quantified by the reso-
nance width. In this classification scheme, the magnitude of
the energy-dependent contributions of the Feshbach part to

FIG. 11. Effective range. Artificial two-channel (blue) and three-
channel (red diamonds) effective range for ML = 0 as a function of
the magnetic field. The black dashed line represents the effective
range computed using Eq. (44) for a resonance width parameter
value ζ = −1.9. The square, triangular and circular data points are
obtained by setting the various shift parameters to a value of zero.

the S matrix are compared with the universal single-channel
contributions.

Since the resonance-facilitated S matrix retains the typical
two-channel p-wave Breit-Wigner form, much of the reso-
nance width analysis presented in Ref. [39] can be directly
applied to our current model. As such, we define the dimen-
sionless resonance width parameter ζ as

R−1 = −Rmax(B)−1

ζ

(
1 − Vbg

V (B)

)2

+ R−1
vdW(B). (44)

Here, V (B) represents the universal Feshbach form of the
scattering volume set by

V (B) = Vbg

(
1 − �

B − B0

)
, (45)

where the background scattering volume Vbg and resonance
width � are set by the values presented in Table II of Ref. [39].
The direct single-channel contribution to the effective range in
Eq. (44) is set by the van der Waals effective range RvdW given
by

RvdW = Rmax

(
1 + 2

V̄

V (B)
+ 2

V̄ 2

V (B)2

)
, (46)

with Rmax ≈ 76a0 and V̄ ≈ (63.464a0)3 for two 40K atoms.
For broad resonances, where |ζ | � 1, the effective range is
fully determined by the van der Waals contribution RvdW. On
the other hand, for narrow resonances where |ζ |  1, the
effective range is determined by the Feshbach term, such that

R ≈ RFB,0

(
1 − Vbg

V (B)

)2

, (47)

with RFB,0 the Feshbach part of the effective range on reso-
nance.

It is important to note that RvdW is not identical to RP.
Whereas RvdW is a real single-channel effective range, the
direct part of the effective range set by RP follows from
CC calculations, where the boundary conditions on the |bb〉
channel are affected by the presence of coupled-channels.7

Ensuring Eq. (44) to accurately represent the effective range
of the resonance-facilitated model and comparing Eqs. (33)
and (47) implies that ζ = −Rmax/RFB,0. Here, the resonant
value of Eq. (33) is fully determined by the resonant value
of Eq. (42), which we name R0. This differs from RFB,0 by the
resonant contribution of RvdW, set by Rmax. As such, we find
that R−1

FB,0 = (R0 − Rmax)−1 and we can directly compute the
resonance parameter ζ as

ζ = �0
bb

�0
bb − 2Rmax

(
1 − �1

res,bb − ξ�res,ac
)
∣∣∣∣∣
B=B0

. (48)

In agreement with Ref. [39], we find ζ = {−1.90,−1.85} for
ML = 0 and ML = |1| respectively. Whereas the resonance
width is unaltered with respect to the two-channel model,
it is important to point out that, contrary to the analysis of

7It is generally not true that RP can be computed by uncoupling
the channels in the CC code. The presence of other channels can
significantly alter the open-channel potential structure.
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Ref. [39], the classification presented here does not rely of the
fitting of ζ and instead follows directly from the three-channel
model. As presented in Fig. 11, Eq. (44) correctly represents
the CC effective range around resonance and requires the
inclusion of both �1

res,bb and ξ�1
res,ac to the computation of the

effective range. This is in contrast with typical systems with
nonresonant background interactions, where the resonance
shift is well-represented by its lowest energy contribution
�0

res [58].

VII. CONCLUSION

In this work, we upgrade the standard two-channel Fes-
hbach formalism to a resonance-facilitated three-channel
version. Here, the direct interaction between the open-channel
and the added (third) channel is neglected and the model
retains the typical Breit-Wigner form of the S matrix. This
allows for the intuitive interpretation of the results and enables
the definition of the Feshbach resonance width analogous to
the two-channel classification [59].

For the analyzed p-wave resonances in 40K, the resonance-
facilitated structure is motivated by the CC data, where
a large magnetic-field dependence in the inelastic above-
threshold (E � 0) loss can be observed. The small magnetic
moment difference between the open-channel and the third
channel cannot account for this large dependence. As such,
the CC data implies the dominant scattering processes arise
through coupling to the Feshbach resonance. The formulated
resonance-facilitated model successfully captures the “bend-
ing” of the dimer binding energy as a function of magnetic
field for the considered 40K resonances. Contrary to the two
nonphysical parameters that we identified as a major short-
coming of the two-channel treatment in Ref. [39], the correct
fitting of the resonance-facilitated model to the CC data does
not require the use of nonphysical input parameters. Instead,
the three-channel model presented here allows for the use of
physically realistic input values. We attribute the success of
the resonance-facilitated model over a two-channel version to
the explicit inclusion of a shape resonance in the added (third)
channel. Similarly to the open-channel shape resonance, the
interplay of this feature with the Feshbach resonance alters the
low-energy scattering physics and needs to be incorporated
into the model explicitly.

The general framework of the resonance-facilitated three-
channel model can be readily adapted to the study of other
resonances [60] and systems with arbitrary partial wave in-
teractions by the reconsideration of the low-energy scaling
of the Gamow functions. Particularly systems where resonant
features exist in coupled channels with similar spin-structure
(singlet vs triplet) are expected to be suitably treated by the
presented model, since the coupling strength of the direct
spin-exchange interaction between these channels is expected
to be small compared with channels with different spin-
structure.

Apart from considering interactions with different partial
waves, interesting routes for further analyses include the con-
sideration of more terms in the Ning-Hu expansion or the
inclusion of higher-order ks terms in the Gamow series in
order to improve the correctness and validity range of the
model.

Notably, the need for analytical three-channel models also
extends to the three-body sector. For example, 7Li bosons
have been observed to have a |bb〉 + Feshbach + |ac〉 s-wave
structure analogous to that of the 40K p-waves developed
here, and Ref. [60] shows how three-channel two-body inter-
actions modify the three-body recombination of 7Li atoms.
Overlapping resonances offer another example of an intrin-
sic three-channel system where two different ramping closed
channels produce two resonance in a single open channel.
Reference [61] successfully treated such cases with an ana-
lytic multichannel quantum-defect model. It is known that a
three-channel model (with one open and two closed channels)
of overlapping resonances in the two-body sector is needed
in order to represent correctly the experimental three-body
Efimov features for three Cs atoms near a magnetic field of
B = 550 G, where a numerically implemented three-channel
model predicted features that agree with experiment while
a conventional two-channel resonance model failed to agree
[62]. Since overlapping resonances are common in many
alkali and mixed-alkali systems, multichannel resonance mod-
els that go beyond the usual two-channel isolated Feshbach
picture represent a promising area for future research
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APPENDIX A: THREE-CHANNEL MODEL
USING THE OPERATOR FORMALISM

We now aim to obtain the effective potential Veff as pre-
sented in Eq. (15) using the operator formalism. Our starting
point is the relation between the Green’s function G and the
transition operator T, which reads

T = V + VGV. (A1)

Considering the open-channel component Tbb,bb, the above
matrix equation reduces to

Tbb,bb = Vbb,bb + Vbb,bbGbb,bbVbb,bb + Vbb,bbGbb,cVc,bb

+ Vbb,cGc,bbVbb,bb + Vbb,cGc,cVc,bb. (A2)

To get rid of the Green’s functions Gbb,c, Gc,bb, and Gc,c we use
the definition of the Green’s function G(E − H ) ≡ 1, finding
the following set of useful relations:

Gbb,bb = G0
bb − Gbb,cHc,bbG0

bb, (A3)

Gbb,c = −GbbHbb,cG0
c − Gbb,acHac,cG0

c , (A4)

Gbb,ac = −Gbb,cHc,acG0
ac, (A5)

Gc,c = G0
c − Gc,acHac,cG0

c − Gc,bbHbb,cG0
c , (A6)

Gc,ac = −Gc,cHc,acG0
ac, (A7)
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where we have introduced the single-channel Green’s func-
tions G0

p,q defined as

G0
p,q = (E − Hp,q )−1. (A8)

Substituting Eq. (A5) into Eq. (A4), we find that we can
express Gbb,c as

Gbb,c = −Gbb,bbHbb,cG0
c

[
1 − Hc,acG0

acHac,cG0
c

]−1
. (A9)

For notational convenience, we introduce the following pa-
rameter

Wbb,bb = Hbb,cG0
c Hc,bb

[
1 − Hc,acG0

acHac,cG0
c

]−1
. (A10)

Since Gbb,cVc,bb = Vbb,cGc,bb, with Hp,q = −Vp,q for all
p �= q, we can then obtain

Gbb,cVc,bb = Vbb,cGc,bb = Gbb,bbWbb,bb. (A11)

If we wish to also get rid of Gc,c and Gc,ac, we can substitute
Eq. (A7) into Eq. (A6), such that

Gc,c = G0
c + Gc,cHc,acG0

acHac,cG0
c − Gc,bbHbb,cG0

c , (A12)

which can be rewritten into a form from which we can extract
Gc,c, such that

Gc,c = G0
c − Gc,bbHbb,cG0

c

1 − Hc,acG0
acHac,cG0

c

. (A13)

Using Eqs. (A13) and (A3), we can now rewrite the transition
operator element Tbb,bb as defined in Eq. (A2) into the follow-
ing form:

Tbb = Vbb,bb + Vbb,bbGbb,bbVbb,bb

+ Vbb,bbGbb,bbWbb,bb + Gbb,bbWbb,bbVbb,bb

+ Vbb,cG0
c

[
1 − Hc,acG0

acHac,cG0
c

]−1

× Vc,bb − Vbb,cGbb,bbWbb,bb. (A14)

We can now get rid of Gbb,bb by substituting Eq. (A11) into
Eq. (A3), such that we can obtain the T matrix as presented in
Eq. (B11) of Ref. [63] with Wbb,bb = W2ch

bb,bb · D.

APPENDIX B: DETAILS OF THE FULL
THREE-CHANNEL MODEL

In this Appendix, we derive the full three-channel version
of the transition matrix, indicating its comparative complexity
to the resonance-facilitated version. For the full three-channel
model, we have the following set of Lippmann-Schwinger

equations:

|ψ+
bb〉 = |φ+

bb〉 + G0
bb[Vbb,c|ψc〉 + V̂bb,ac|ψac〉], (B1)

where

|φ+
bb〉 = |χ〉 + 1

E − Ĥbb
V̂bb,bb|k〉, (B2)

with unscattered wave function |χ〉 and

|ψc〉 = G0
c [V̂c,bb|ψ+

bb〉 + V̂c,ac|ψac〉], (B3)

|ψac〉 = G0
ac[V̂ac,c|ψc〉 + V̂ac,bb|ψbb〉]. (B4)

We aim to eliminate the wave functions |ψc〉 and |ψac〉 from
the previous set of expressions. Starting with the substitution
of Eq. (B4) into Eqs. (B1) and (B3) we find

|ψ+
bb〉 = |φ+

bb〉 + G0
bb

[
V̂bb,c|ψc〉 + V̂bb,acG0

ac

× (V̂ac,c|ψc〉 + V̂ac,bb|ψbb〉)
]
, (B5)

|ψc〉 = G0
c

[
V̂c,bb|ψ+

bb〉 + V̂c,acG0
ac(V̂ac,c|ψc〉 + V̂ac,bb|ψbb〉)

]
.

(B6)

Next, we rewrite Eq. (B6) in order to find the following ex-
pression for |ψc〉:

|ψc〉 = A
[
V̂c,bb|ψ+

bb〉 + V̂c,acG0
acV̂ac,bb|ψ+

bb〉
]
, (B7)

where A is defined as presented in Eq. (16) of the main text.
Substituting the previous expression into Eq. (B5), we then
obtain

|ψ+
bb〉 = |φ+

bb〉 + G0
bb

{
V̂bb,cA

(
V̂c,bb|ψ+

bb〉 + V̂c,acG0
acV̂ac,bb|ψ+

bb〉
)

+ V̂bb,acG0
ac

[
V̂ac,cA

(
V̂c,bb|ψ+

bb〉
+ V̂c,acG0

acV̂ac,bb|ψ+
bb〉

) + V̂ac,bb|ψbb〉
]}

. (B8)

Equation (B8) inspires us to introduce the following effective
potential interaction Veff :

Veff =Vbb,bb + Vbb,cAVc,bb + Vbb,cAVc,acG0
acVac,bb

+ Vbb,acG0
acVac,cAVc,bb

+ Vbb,acG0
acVac,cAVc,acG0

acVac,bb + Vbb,acG0
acVac,bb,

(B9)

which is identical to Eq. (15) of the main text. Proceed-
ing analogous to Sec. IV B, we compute 〈χ |Tbb,bb|χ〉 from
〈χ |Veff |ψ+

bb〉, such that

Tbb,bb = Tunc
bb,bb + SP

(
D

E − εrr

[〈φ+
bb|Vbb,rr |φrr〉〈φrr |Vrr,bb|ψbb〉 + 〈φ+

bb|Vbb,rr |φrr〉〈φrr |Vrr,acG0
acVac,bb|ψbb〉 + 〈φ+

bb|Vbb,acG0
acVac,rr

× |φrr〉〈φrr |Vrr,bb|ψbb〉 + 〈φ+
bb|Vbb,acG0

acVac,rr |φrr〉〈φrr |Vrr,acG0
acVac,bb|ψbb〉

] + 〈φ+
bb|Vbb,acG0

acVac,bb|ψbb〉
)

. (B10)

The previous expression can be further analyzed through the application of the Gamow expansions as presented in Eqs. (21) and
(22). Here we should consider that 〈
ac|Vac,bb|ψbb〉 and 〈
D

ac|Vac,bb|ψbb〉 are not independent. In fact,

〈
ac|Vac,bb|ψbb〉 = k3/2,∗
ac 〈
̃ac|Vac,bb|ψbb〉, (B11)〈


D
ac

∣∣Vac,bb|ψbb〉 = k3/2
ac 〈
̃ac|Vac,bb|ψbb〉. (B12)
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This means we can get rid of the factors 〈
D
ac|Vac,bb|ψbb〉, 〈
ac|Vac,bb|ψbb〉, and 〈φc|Vc,bb|ψbb〉 in Eq. (B10) by first multiplying

Eq. (B8) with 〈φc|Vc,bb and then with 〈
ac|Vac,bb. Starting with the multiplication with 〈φc|Vc,bb we find

〈φc|Vc,bb|ψ+
bb〉 = 〈φc|Vc,bb|φ+

bb〉 + D

E − εc

(〈φc|Vc,bbG0
bbVbb,c|φc〉 + 〈φc|Vc,bbG0

bbVbb,acG0
acVac,c|φc〉

)〈φc|Vc,bb|ψbb〉

+
[

D

E − εc

(〈φc|Vc,bbG0
bbVbb,c|φc〉κac〈φc|Vc,ac|
ac〉 + 〈φc|Vc,bbG0

bbVbb,acG0
acVac,c|φc〉κac〈φc|Vc,ac|
ac〉

)

+ κac〈φcc|Vc,bbG0
bbVbb,ac|
ac〉

]
〈
D

ac|Vac,bb|ψbb〉 +
[

D

E − εc

(−〈φc|Vc,bbG0
bbVbb,c|φc〉κ•

ac〈φc|Vc,ac

∣∣
D
ac

〉

−〈φc|Vc,bbG0
bbVbb,acG0

acVac,c|φc〉κ∗
ac〈φc|Vc,ac

∣∣
D
ac

〉) − κ•
ac〈φc|Vc,bbG0

bbVbb,ac

∣∣
D
ac

〉]〈
ac|Vac,bb|ψbb〉, (B13)

where we have introduced κac = {2kac[(k2 − kth )1/2 − kac]}−1 and κ•
ac = {2k∗

ac[(k2 − kth )1/2 + k∗
ac]}−1. Inspired by the previous

equation, we define the following factors A1 through A3:

A1 = 1 − D

E − εc

(〈φc|Vc,bbG0
bbVbb,c|φc〉 + 〈φc|Vc,bbG0

bbVbb,acG0
acVac,c|φc〉

)
, (B14)

A2 = −
[

Dκac

E − εc

(〈φc|Vc,bbG0
bbVbb,c|φc〉〈φc|Vc,ac|
ac〉

+ 〈φc|Vc,bbG0
bbVbb,acG0

acVac,c|φc〉〈φc|Vc,ac|
ac〉
) + κac〈φc|Vc,bbG0

bbVbb,ac|
ac〉
]
, (B15)

A3 = Dκ∗
ac

E − εc

(〈φc|Vc,bbG0
bbVbb,c|φc〉〈φc|Vc,ac

∣∣
D
ac

〉
+ 〈φc|Vc,bbG0

bbVbb,acG0
acVac,c|φc〉〈φc|Vc,ac

∣∣
D
ac

〉) + κ•
ac〈φc|Vc,bbG0

bbVbb,ac

∣∣
D
ac

〉
, (B16)

such that

A1〈φc|Vc,bb|ψ+
bb〉 + A2

〈

D

ac

∣∣Vac,bb|ψbb〉 + A3〈
ac|Vac,bb|ψbb〉 = 〈φc|Vc,bb|φ+
bb〉. (B17)

Similarly, by multiplying Eq. (B8) with 〈
ac|Vac,bb we obtain

〈
ac|Vac,bb|ψ+
bb〉 = 〈
ac|Vac,bb|φ+

bb〉 + D

E − εc

(〈
ac|Vac,bbG0
bbVbb,c|φc〉 + 〈
ac|Vac,bbG0

bbVbb,acG0
acVac,c|φc〉

)
× 〈φc|Vc,bb|ψbb〉 +

[
D

E − εc

(〈
ac|Vac,bbG0
bbVbb,c|φc〉κac〈φc|Vc,ac|
ac〉

+ 〈
ac|Vac,bbG0
bbVbb,acG0

acVac,c|φc〉κac〈φc|Vc,ac|
ac〉
) + κac〈
ac|Vac,bbG0

bbVbb,ac|
ac〉
]

× 〈

D

ac

∣∣Vac,bb|ψbb〉 +
[

D

E − εc

(−〈
ac|Vac,bbG0
bbVbb,c|φc〉κ•

ac〈φc|Vc,ac

∣∣
D
ac

〉

− 〈
ac|Vac,bbG0
bbVbb,acG0

acVac,c|φc〉κ∗
ac〈φc|Vc,ac

∣∣
D
ac

〉) − κ•
ac〈
ac|Vac,bbG0

bbVbb,ac

∣∣
D
ac

〉]〈
ac|Vac,bb|ψbb〉.
(B18)

The previous equation expression inspires us to define the following set of parameters C1 through C3:

C1 = − D

E − εc

(〈
ac|Vac,bbG0
bbVbb,c|φc〉 + 〈
ac|Vac,bbG0

bbVbb,acG0
acVac,c|φc〉

)
, (B19)

C2 = −
[

Dκac

E − εc

(〈
ac|Vac,bbG0
bbVbb,c|φc〉〈φc|Vc,ac|
ac〉

+〈
ac|Vac,bbG0
bbVbb,acG0

acVac,c|φc〉〈φc|Vc,ac|
ac〉
) + κac〈
ac|Vac,bbG0

bbVbb,ac|
ac〉
]
, (B20)

C3 = 1 + Dκ•
ac

E − εc

(〈
ac|Vac,bbG0
bbVbb,c|φc〉〈φc|Vc,ac

∣∣
D
ac

〉
+ 〈
ac|Vac,bbG0

bbVbb,acG0
acVac,c|φc〉〈φc|Vc,ac

∣∣
D
ac

〉) + κ•
ac〈
ac|Vac,bbG0

bbVbb,ac

∣∣
D
ac

〉
, (B21)
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such that

C1〈φc|Vc,bb|ψ+
bb〉 + C2

〈

D

ac

∣∣Vac,bb|ψbb〉 + C3〈
ac|Vac,bb|ψbb〉 = 〈
ac|Vac,bb|φ+
bb〉. (B22)

Applying Eqs. (B17) and (B22) we can find then find

〈φc|Vc,bb|ψbb〉 =
(
A2k3/2

ac + A3k3/2,∗
ac

)〈
ac|Vac,bb|φbb〉 − (
C2k3/2

ac + C3k3/2,∗
ac

)〈φc|Vc,bb|φbb〉
(A2C1 − A1C2)k3/2

ac + (A3C1 − A1C3)k3/2,∗
ac

, (B23)

〈
̃ac|Vc,bb|ψbb〉 = C1〈φc|Vc,bb|φbb〉 − A1〈
ac|Vac,bb|φbb〉
(A2C1 − A1C2)k3/2

ac + (A3C1 − A1C3)k3/2,∗
ac

, (B24)

with 〈
ac|Vc,bb|ψbb〉 = k3/2,∗
ac 〈
̃ac|Vc,bb|ψbb〉 and 〈
D

ac|Vc,bb|ψbb〉 = k3/2
ac 〈
̃ac|Vc,bb|ψbb〉. The previous two expressions can be

directly substituted into Eq. (B10) in order to obtain the full three-channel T matrix in terms of the direct-scattering wave
functions φ+

bb and the bound-state wave function φc.
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