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Two-dimensional miscible-immiscible supersolid and droplet crystal state in a homonuclear
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The recent realization of a binary dipolar Bose-Einstein condensate [A. Trautmann et al., Phys. Rev. Lett. 121,
213601 (2018)] presents new exciting aspects for studying quantum droplets and supersolids in a binary mixture.
Motivated by this experiment, we study the ground-state phases and dynamics of a Dy-Dy mixture. The dipolar
bosonic mixture exhibits qualitatively novel and rich physics. Relying on the three-dimensional numerical
simulations in the extended Gross-Pitaevskii framework, we unravel the ground-state phase diagrams and
characterize their different possible phases. The emergent phases include single-droplet (SD), multiple-droplets
(MD), doubly supersolid (SS), and superfluid (SF) states in both miscible and immiscible phases. Intriguing
mixed ground states are observed for an imbalanced binary mixture, including a combination of SS-SF, SS-MD,
and SS-SS phases. We also explore the dynamics across the phase boundaries by linear quenches of interspecies
and intraspecies scattering lengths. During these dynamical processes, we observe an abrupt change in phase
which initially results in some instability in the system and forms some metastable states in the intermediate
timescale. However, the state produced in long-time evolution is similar to our predicted ground state. Although
we demonstrate the possible results for a Dy-Dy mixture and for a specific parameter range of intraspecies and
interspecies scattering lengths, our results are in general valid for other dipolar mixtures and may become an
important benchmark for future experimental scenarios.
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I. INTRODUCTION

Quantum droplets are dilute liquidlike clusters of atoms
produced in a quantum fluid where the dominant attractive
mean-field-driven collapse is arrested by the quantum fluctu-
ations [1,2]. The supersolid state is also an intriguing state
of matter in which the crystalline order of quantum droplets
and a global phase coherence [3,4] coexist as a result of back-
ground superfluid. Both of these states were initially predicted
and searched for in liquid helium [5–8]. The ability to tune
the interaction strength between the particles of an ultracold
atomic gas through the Feshbach resonance [9] offers an
excellent platform for studying a plethora of rich physical
phenomena. In recent years the quest for quantum droplets
and supersolid states in ultracold gases has attracted signifi-
cant attention. Most theoretical and experimental studies over
the past few years reveal the formation of droplets, mainly
in two different types of ultracold bosonic systems discussed
below.

Quantum droplets in ultracold atomic gases were first
observed in single-component dipolar bosonic gases with
sufficiently large magnetic dipole moments such as dyspro-
sium [10–12] and erbium [13–15]. In this case, when the
dipole-dipole interaction (DDI) dominates over the contact
interaction in that regime, the anisotropic and long-range char-
acters of the DDI lead to the formation of self-bound quantum
droplets [16–22] and supersolid states [23–34]. These droplets
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with highly anisotropic properties have filamentlike narrow
transverse widths and are elongated in the direction of the
external magnetic field.

Quantum droplets also have been realized in nondipolar
binary homonuclear [35–39] and heteronuclear [40,41] Bose
mixtures. Binary mixtures with an attractive interspecies inter-
action lead to the formation of miscible droplets. Unlike the
droplets formed in a single-component dipolar Bose-Einstein
condensate (DBEC) due to the anisotropic and partial attrac-
tive nature of DDI, these droplets in a binary system originate
solely due to the contact interaction and therefore are spherical
(isotropic) in nature.

These phases have been widely explored in various ul-
tracold systems and different experimental setups, including
rotating dipolar condensates [42–45], DBECs under the in-
fluence of a rotating magnetic field [46–49], optical lattice
trapped dipolar condensates [50], lattice trapped atomic
mixtures [51–53], Rydberg systems [54,55], spin-orbit-
coupled systems [56,57], molecular Bose-Einstein conden-
sates (BECs) [58], and a binary mixture of dipolar-nondipolar
condensates [59,60].

Recent experimental realization of binary dipolar con-
densates for the first time [61] and the ability to con-
trol their intraspecies and interspecies interaction strengths
through the Feshbach resonance [62,63] present new ex-
citing aspects for the study of quantum droplets in a
mixture of binary dipolar condensates. Most of the re-
cent theoretical works focus mainly on the formation of a
self-bound droplet state in a binary dipolar mixture with-
out any trapping confinement. In contrast to nondipolar
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mixtures, new class of self-bound miscible droplets, and
immiscible quantum droplets, forms due to the anisotropic
DDI [64–69].

In this article we investigate theoretically the possibility
of forming different ground-state phases of a binary DBEC
(Dy-Dy mixture) confined in a quasi-two-dimensional har-
monic trap. For a balanced system, we observe four different
ground-state phases, i.e., doubly superfluid (SF), supersolid
(SS), single-droplet (SD), and multiple-droplet (MD) states,
that exist in both miscible and immiscible phases. Both com-
ponents form identical shapes in the miscible phase domain,
whereas in the immiscible regime we observe axially im-
miscible multidomain SD and MD states and asymmetric
immiscible doubly SS and SF states. The energetically favored
ground state depends on the number of atoms, intra- and
intercomponent interactions, and the trap geometry. We depict
the phase diagrams and demarcate all these phases. For an
imbalanced mixture, more intriguing states, such as a mixture
of SS-SF, SS-MD, SF-MD, and SS-SS states, form. We also
show that in an immiscible impurity regime, where one of the
components consists of a very small number of atoms (minor
component), the major component with a larger number of
atoms can bind the impurity component in the axial direction
and form a self-bound droplet state for a small intraspecies
scattering length. However, for comparatively large intra- and
interspecies scattering lengths the major component cannot
hold the minor component along the axial position. Rather it is
pushed in the radially outward direction in the presence of the
harmonic trapping potential and forms a radially immiscible
mixed state. Using the time-dependent, coupled, extended
Gross-Pitaevskii equation (EGPE), we also study the dynam-
ics of a balanced binary system across the above-mentioned
phase boundaries.

This paper is structured as follows. Section II describes
the theory and formalism, including the coupled EGPE
and the overlap integral, to distinguish the miscible and
immiscible phases. In Sec. III we extract the phase dia-
grams of the quasi-two-dimensional dipolar binary BEC.
Section IV characterizes different possible ground states for
an imbalanced binary mixture. In Sec. V we explore the
real-time dynamics and the formation of two-dimensional
(2D) miscible-immiscible droplet and supersolid states by
using the time-dependent EGPE. A summary of our find-
ings, together with prospects for future work, is provided
in Sec. VI. Appendix A describes the components of our
numerical simulations. Appendix B is devoted to the varia-
tional solution within the same shape approximation (SSA)
framework. Appendix C delineates the contrast phase dia-
grams to differentiate the superfluid, supersolid, and droplet
phases. In Appendix D we describe the effective potential
experienced by one condensate due to the presence of the
other condensate. Finally, in Appendix E we show the time
evolution of density profiles and the overlap integral following
an interaction quench of a miscible SF state across the relevant
phase boundaries.

II. THEORY

We consider a mixture of two species of dipolar bosonic
atoms with a large magnetic dipole moment μm

i (i = 1, 2) po-
larized in the z direction by an external magnetic field and con-
fined in a circular symmetric harmonic trapping potential. In
the ultracold regime, the atoms of species i are characterized
by the macroscopic wave function ψi, whose temporal evolu-
tion is described by the coupled EGPE

ih̄
∂ψi(r, t )

∂t
=

[
− h̄2

2mi
∇2 + Vt (r) +

2∑
j=1

(
gi j |ψ j (r, t )|2 +

∫
dr′V dd

i j (r − r′)|ψ j (r′, t )|2
)

+ �μi

]
ψi(r, t ). (1)

Here Vt (r) = 1
2 miω

2(x2 + y2 + λ2z2) is the harmonic trap-
ping potential with angular frequencies ωx = ωy = ω,ωz; mi

is the atomic mass of the ith species; and λ = ωz/ω is the
trap aspect ratio. The short-range intra- and intercompo-
nent interaction strengths are given by gii = 4π h̄2aii/mi and
gi j = 2π h̄2ai j/mi j , respectively. Here aii and ai j are the
intra- and intercomponent scattering length of atoms and
mi j = mimj/(mi + mj ) is the reduced mass. Apart from the
contact interaction, there exists a long-range DDI between the
atoms, which takes the form

V dd
i j (r) = 3gdd

i j

4π

(
1 − 3 cos2 θ

r3

)
, (2)

where gdd
i j = 2π h̄2add

i j /mi j is the DDI strength between the
atoms of the ith and jth species, with the DDI length
add

i j = μ0μ
m
i μm

j mi j/6π h̄2, and θ is the angle between the axis
linking the two particles and the dipole polarization direction
(z axis). The last term appearing in Eq. (1) represents the
correction to the chemical potential resulting from the effect

of quantum fluctuation given by [64,65,68]

�μi = m3/2
i

3
√

2π2h̄3

∑
±

∫ 1

0
du ReIi±, (3)

where

I1± =
(

Ũ11 ± δ1Ũ11 + 2Ũ 2
12n2√

δ2
1 + 4Ũ 2

12n1n2

)(
n1Ũ11 + n2Ũ22

±
√

δ2
1 + 4Ũ 2

12n1n2
)3/2

, (4)

with δ1 = n1Ũ11 − n2Ũ22 and Ũi j (u) = gi j[1 + εdd
i j (3u2 − 1)],

being the Fourier transform of the total interaction potential
and the dimensionless parameter εdd

i j = add
i j /ai j , quantifying

the strength of the DDI relative to the contact interaction
between the atoms in species i and j. A similar expression
for �μ2 can be easily obtained with δ2 = −δ1. The order
parameters of each of the condensates are normalized to the
total number of atoms in that species Ni = ∫

dr|ψi(r)|2.
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Overlap integral

A binary DBEC can exhibit a miscible or immiscible
phase. A well-known measure to characterize these two
phases is the overlap integral, defined as

� =
[ ∫

dr n1(r)n2(r)
]2[ ∫

dr n2
1(r)

][ ∫
drn2

2(r)
] , (5)

where ni(r) = |ψi(r)|2 are the densities of the species i. Here
� = 1 implies maximal spatial overlap between the con-
densates, i.e., the system is in a completely miscible state,
whereas a complete phase separation (immiscible phase) cor-
responds to � = 0.

III. GROUND-STATE PHASES OF A BALANCED MIXTURE

Let us first consider a simplified model of a balanced bi-
nary mixture [64,68] consisting of Dy atoms in different spin
states,1 with equal intraspecies interactions2 (a11 = a22 and
add

11 = add
22) and an equal number of particles in each species

(N1 = N2 = N). Using this model, we explore different pos-
sible ground-state phases of a binary DBEC. Ground-state
phases of a binary mixture depend on the intra- and inter-
species scattering lengths (aii and a12), the trap aspect ratio
λ, and the number of atoms in each species (N). Instead of
choosing some arbitrary values of these parameters (aii, a12,
N , and λ), we first evaluate the ground-state phases of the bal-
anced binary dipolar mixture for a broad range of parameters
aii, a12, and N , keeping the trap aspect ratio fixed at λ = 2.95.
Subsequently, we also investigate the effect of trap geometry
on the ground-state phases by varying the trap aspect ratio λ

with the intraspecies scattering length for a fixed number of
particles and interspecies scattering length.

A binary mixture can be in either a miscible or an im-
miscible phase. We differentiate the miscible and immiscible
phases by numerically evaluating the overlap integral �

[Eq. (5)]. In the large-N limit, the effect of quantum pressure
is negligible compared to the nonlinear interactions, and the
condensate can be well approximated by the Thomas-Fermi
(TF) approximation. Thus immiscibility is completely deter-
mined by the intra- and intercomponent scattering lengths
for a balanced system [where we can apply the SSA (see
Appendix B)] and the transition occurs when a12 = √

a11a22.
However, when both condensates consist of a small number of
particles, quantum pressure makes a significant contribution
to the condition of immiscibility transition. Quantum pressure
of individual species is Pi = h̄2

2mi
√

ni
∇2√ni, where ni is the den-

sity of species i. This pressure describes the attractive force
due to spatial variation of density, which becomes maximum
at the interface when the two condensates are in an immiscible

1We consider both species to have mass equal to m = 164 u. This
approximation of equal mass is also valid for any mixture of Dy and
Er isotopes. It is important to note that all the bosonic isotopes 162Dy,
164Dy, 166Er, 168Er, and 170Er [61] have a relative mass difference less
than 5%.

2We take the dipole moment for both components to be
μm

i = 9.93μB, which corresponds to a dipolar length add
ii = 131aB

(i = 1, 2).

phase. As a consequence, to minimize the quantum pressure
energy for a small number of particles, the miscible to immis-
cible transition boundary deviates from a12 = √

a11a22 and
the binary system favors the miscible state, as can be seen in
Figs. 1(a) and 1(b).

Due to the anisotropic DDI, the SF, SS, and droplet
(SD and MD) phases emerge in a DBEC. These phases
are best characterized by the density contrast C = (nmax −
nmin)/(nmax + nmin) [60], where nmax and nmin are the neigh-
boring maximum and minimum densities as one moves on the
x-y plane (a plane perpendicular to the polarization direction).
This allows us to depict different phase domains in the phase
diagrams, where we take C = 0 to be a superfluid phase and
consider 0 < C < 0.96 to be a supersolid and C > 0.96 to be
droplet state [60]. For a detailed discussion on the density
contrast see Appendix C.

Phase diagrams of a binary dipolar condensate

1. Intraspecies scattering length aii vs population N

Here we construct a ground-state phase diagram with the
intraspecies scattering length aii (i = 1, 2) and the number of
particles N1 = N2 = N for a constant interspecies scattering
length a12 [see Fig. 1(a)]. To demonstrate the phase diagram,
we fix the interspecies scattering length at a12 = 90aB and
vary the intracomponent scattering length aii from 60aB to
120aB and the number of atoms N from 103 to 105 of each
species. The balanced binary mixture remains in a miscible
phase for a large value of aii (>a12). A miscible to immiscible
transition for a large number of particles, N > 4 × 104, oc-
curs at aii = 90aB (a12 = √

a11a22). However, as mentioned
above, for N < 4 × 104, this transition occurs at smaller aii

(<90aB). This transition is indicated by the white solid line
corresponding to � = 0.5 in Fig. 1(a). For sufficiently large
aii, due to the short-range contact-type interactions domi-
nating over the DDI, the binary dipolar mixture remains in
a miscible SF state. The mixture corresponds to a smooth
(nonmodulated) quasi-2D TF density distribution with a low
peak density [similar to Fig. 1(j)]. As we decrease aii to a
critical value, each component of the mixture undergoes an
abrupt phase transition to a 2D SS state (overlapping droplets)
for a sufficiently large number of particles (N > 2 × 104).
These droplets are coupled via a low-density superfluid. In this
regime, we get two coexisting miscible SS states [Fig. 1(i)]
due to aii > a12. In contrast, for a small number of particles
N < 2 × 104, no droplet nucleation is observed in this regime
and both components of the binary mixture remain in a misci-
ble SF state [see Fig. 1(j)]. When further decreasing aii below
90aB, two components become immiscible due to a compar-
atively large intercomponent scattering length (a12 > aii) and
the density overlap between the droplets vanishes rapidly. In
this sufficiently-low-aii regime, to minimize the DDI energy,
atoms of each species form multiple separate domains in the
axial direction and the binary mixture forms a multidomain
droplet state. Since we have taken a balanced mixture with
equal intra- and interspecies interaction strengths, the binary
mixture forms a symmetric immiscible droplet state. For a
small number of particles, we observe an immiscible SD state
[Fig. 1(c)]. In the case of a sufficiently large number of parti-
cles, we obtain an immiscible MD state [Fig. 1(d)].
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FIG. 1. Ground-state phase diagrams in an oblate harmonic trap of a balanced Dy-Dy mixture as a function of the number of particles and
(a) intracomponent and (b) intercomponent s-wave scattering length. The color bar corresponds to the value of the overlap integral �. The
white solid contour has been drawn at � = 0.5 and indicates the phase transition from a miscible to an immiscible ground state. The two other
white dashed and dash-dotted lines are drawn at � = 0.9 and 0.1, respectively. The black dashed lines separate the phase diagram in SF, SS,
and single and multiple insulating droplet states. Examples of immiscible 3D isosurfaces of (c) SD ( ), (d) MD ( ), (e) SS ( ), and (f) SF
( ) states are shown. Ground-state density profiles of a miscible (g) SD ( ), (h) MD ( ), and (i) SS ( ), and (j) SF ( ) states are shown.
All these states are highlighted by the corresponding marker in the ground-state phase diagrams [see (a) and (b)]. Here ni is the density of
species i, where i = 1, 2 (both the components have identical shapes). Results are for N1 = N2 = N and (a) a12 = 90aB and (b) aii = 90aB,
with add

ii = 131aB (μm
i = 9.93μB), where aB is the Bohr radius and (ωx, ωy, ωz ) = 2π × (45, 45, 133) Hz.

2. Interspecies scattering length a12 vs population N

Now, in the case of a fixed intracomponent scattering
length (aii = 90aB), we construct a ground-state phase dia-
gram [see Fig. 1(b)] by varying the interspecies scattering
length a12 and the number of atoms N in each species. For
a sufficiently large a12 (>80aB) and a small number of par-
ticles, the stationary state solution of the dipolar mixture is
a miscible SF state. The increase in the number of particles
N induces a transition to an immiscible SF regime. In this
case, since we have taken a balanced mixture, there is no
preference for which a particular component remains at the
center. So the ground state of the balanced binary mixture has
one domain of each species and is separated in the x-y plane,
producing an asymmetric immiscible SF state [see Fig. 1(f)].
As we further increase the number of particles (N > 4 × 104),
the smooth nonmodulated density profile of each domain
undergoes a phase transition and each species develops a pe-
riodic density modulated pattern on the x-y plane. The density
humps (droplets) are connected by lower-density regions (su-
perfluid). Both species exhibit SS properties. However, as we
discussed above, in this phase regime, due to large a12 (>aii),
the phase of the binary mixture is separated in the x-y plane
and we obtain an asymmetric immiscible SS state [Fig. 1(e)].
At a lower a12 (<aii), the density overlap between the droplets
in each species vanishes completely. Furthermore, depending
on the number of particles, the binary system displays a mis-
cible SD (small number of particles) and MD (large number
of particles) state as portrayed in Figs. 1(g) and 1(h).

3. Intraspecies scattering length vs trap aspect ratio λ

So far, we have discussed the effect of intra- and inter-
species contact interactions on the ground state of a binary
dipolar mixture for different numbers of atoms. However, the
trap aspect ratio λ = ωz/ω (trap geometry) is also one of
the key parameters to explore different possible ground-state

phases. Trap geometry influences the condensate shape as
well as the DDI energy. The average DDI energy changes
from negative to positive as the shape of the condensate
changes from prolate to oblate. To construct a phase diagram
with λ and intraspecies scattering length aii (i = 1, 2), we
fix the interspecies scattering length at a12 = 90aB and the
number of particles at N1 = N2 = 6 × 104. In Fig. 2 we plot
the peak density corresponding to the ground state of a binary
mixture as a function of λ and aii. The peak density results
emphasize a significant change in the density among the SF,
SS, and droplet (SD and MD) phases (the SS and droplet

FIG. 2. Ground-state phase diagram of a Dy-Dy mixture as a
function of intracomponent s-wave scattering length aii and trap as-
pect ratio λ. The shading represents the peak density of the combined
binary system. The black dashed lines indicate phase boundaries
between the superfluid state (SF) with a low-peak density and a
supersolid (SS) and a droplet state (SD and MD) with a high
peak density. The black circle with a red border marks the critical
point (CP) and the white solid line is drawn at � = 0.5, represent-
ing the immiscibility phase boundary. Results are for the case of
N1 = N2 = 6 × 104, 164Dy atoms with add

ii = 131aB (μm
i = 9.93μB),

where aB is the Bohr radius and μB the Bohr magneton.
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FIG. 3. Miscible and immiscible SD state in an imbalanced mix-
ture. (a) Integrated axial density of species 1 (violet) and species
2 (green) of (a i) a miscible and (a ii) an immiscible SD state.
(b) Corresponding chemical potential densities in the axial direc-
tion (z axis). Results are for the case of a11 = 70aB, a22 = 80aB,
N1 = 104, N2 = 5 × 103, and (a i) and (b i) a12 = 65aB (<

√
a11a22)

and (a ii) and (b ii) a12 = 75aB (>
√

a11a22). In both cases the
binary mixture is confined in an oblate shape harmonic trap with
(ωx, ωy, ωz ) = 2π × (45, 45, 133) Hz.

phases are approximately two orders of magnitude denser than
the SF phase). All these phase boundaries are shown by black
dashed lines. All these phase transition lines terminate at a
critical point. Beyond this critical point, there is no abrupt
phase transition. Rather a smooth evolution among the above-
mentioned phases is observed. A similar kind of behavior was
also observed for a single-component DBEC [17]. Here the
immiscibility boundary is close to a12 = √

a11a22 = 90aB (as
we discussed earlier for a large number of atoms), marked by
the white solid line drawn at � = 0.5 in Fig. 2. The regions
below (aii < a12) and above (aii > a12) the white solid line
correspond to the phase-separated (immiscible) and miscible
phase domains, respectively.

IV. SUPERSOLID AND DROPLET STATE IN AN
IMBALANCED MIXTURE

Now we consider an imbalanced binary mixture,3 where
the intraspecies interactions and the number of particles
among the components are not equal (a11 �= a22 and N1 �= N2).
In addition to all the possible ground states discussed so
far, some mixed states such as a mixture of SS-SF, SS-MD,
SF-MD, and SS-SS states are formed in this case. Here
we consider a Dy-Dy mixture with intraspecies scattering
lengths a11 = 70aB and a22 = 80aB, and the condensates con-
tain N1 = 104 and N2 = 5 × 103 atoms. With these chosen
values of parameters, the binary mixture undergoes a miscible

3This imbalanced mixture scenario can arise for any mixture of Dy
and Er isotopes or a Er-Dy mixture (suitable for experiments).

SD to immiscible SD phase transition beyond a12 ≈ 75aB.
To look into these miscible and immiscible SD states of the
imbalanced mixture, we depict the integrated density profiles
n1z and n2z of both species in the axial direction in Figs. 3(a i)
and 3(a ii), respectively. In the first scenario with a12 = 65aB

(<
√

a11a22), the density profiles of both species completely
overlap with each other and form a miscible SD state [see
Fig. 3(a i)]. However, as we increase a12 beyond the miscible
to immiscible transition value, species 1 (major component)
remains at the center, due to its larger population (atom
number) and smaller intraspecies scattering length. Species
2 (minor component) is pushed in the axial direction and
resides at each extreme end of the domain formed by the major
component [see Fig. 3(a ii)]. See Appendix D for a discussion
of the effective potential experienced by each species due to
the presence of the other component.

The reason behind these kinds of density distributions can
be clearly understood from the chemical potential densities in
the axial direction (μz) of each species, as shown in Fig. 3(b).
In the miscible SD state, the chemical potential densities of
each component are negative, indicating that both components
are self-bound. Despite having a different number of particles
and intraspecies scattering lengths, the large negative chemi-
cal potential of the major component sets the spatial widths of
both species equal to each other [see Fig. 3(b i)]. The chemical
potential of each species increases with a12. In the immiscible
SD and MD regimes, the chemical potential density of the
minor component becomes positive. However, due to the neg-
ative chemical potential density of the major component in the
axial direction, the minor component is bound at each end of
the domain formed by the major component [Fig. 3(b ii)].

We show the corresponding 3D isosurface density profile
of the immiscible SD state in Fig. 4(a i). In the absence of
the major component, the minor component cannot bind itself
in these axial positions. The total chemical potential of the
binary mixture in this state is still negative, which implies that
together they form a self-bound immiscible droplet state.

Mixed ground states can be formed when both condensates
of the binary mixture have comparatively large intraspecies
scattering lengths and form partially or completely phase-
separated (immiscible) ground states. Various ground states
of mixed phases such as SS-SF, SS-MD, and SS-SS states
form in a binary DBEC depending upon the number of atoms
and the intra- and interspecies scattering lengths. The 3D
isosurface density profiles of these mixed states are shown
in Fig. 4(a). In this regime, beyond a critical value of a11

and a22 (here we consider a11 < a22), both components have
a slightly positive chemical potential. The species 1 with a
smaller intraspecies interaction and a larger number of atoms
occupies the central position of the trap, similar to the pre-
vious case. However, due to the positive chemical potential,
it (the major component) cannot hold the second species at
each end along the axial direction. Rather, in the presence of a
harmonic trap, the minor component is pushed in the radially
outward direction, as illustrated in Figs. 4(a ii)–4(a iv) for the
scattering lengths a11 = 90aB, a22 = 95aB, and a12 = 95aB,
and species 1 contains N1 = 6 × 104 atoms. For different
numbers of atoms in the second species N2 = 103, 2 × 104,
and 5 × 104 we observe different mixed phases such as SS-
SF [Fig. 4(a ii)], SS-MD [Fig. 4(a iii)], and SS-SS phases
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FIG. 4. Three-dimensional isosurface density profiles of
[species-1 (red) and species-2 (violet)] immiscible ground
states in an imbalanced binary mixture, drawn at 10% of the
respective peak densities. (a i) Immiscible SD state in the
z direction, with the same parameters as in Fig. 3(a ii). The (a ii)
SS-SF, (a iii) SS-MD, and (a iv) SS-SS mixed ground states
are shown in the x-y plane. (b) Different pattern formation at
the interface of two species in an imbalanced mixture. Results
are for the case of a binary DBEC confined in a harmonic trap
with {ωx, ωy, ωz} = 2π × {45, 45, 133} Hz and (a) a11 = 90aB,
a22 = 95aB, a12 = 95aB, and N1 = 6 × 104 and (b) a11 = 90aB,
a22 = 100aB, and a12 = 100aB. The other parameters are (a ii)
N2 = 5 × 103, (a iii) N2 = 2 × 104, (a iv) N2 = 5 × 104, (b i)
N1 = 6 × 104 and N2 = 103, (b ii) N1 = 6 × 104 and N2 = 5 × 103,
(b iii) N1 = 8 × 104 and N2 = 1.5 × 104, and (b iv) N1 = 105 and
N2 = 3 × 104.

[Fig. 4(a iv)], respectively. The effective potential experienced
by each species due to the presence of the other species plays
a crucial role in determining the position of the condensates
in the trap. In Figs. 5(a) and 5(b) we show the effective
potential experienced by each species in the x-y plane for
a SS-SF mixed state corresponding to the density profile as
shown in Fig. 4(b iv). The corresponding chemical potential
densities along the x axis (μx) are also shown in Fig. 5(c). As
we explained earlier, both condensates have positive chemical
potential densities along the x axis [see Fig. 5(c)]. Moreover,
the first species experiences a minimum effective potential
at the trap center, while the second species finds the same
at the periphery of the first condensate and forms a radially
immiscible mixture.

Interestingly enough, in a SS-SF mixed state, various
polygonal shape patterns form at the interface of the two
species depending on the number of droplets in the SS state,
as shown in Fig. 4(b). The number of droplets can be varied
by changing either the number of atoms or the intraspecies
scattering lengths. For the visualization of these polygonal
patterns, we choose the intra- and interspecies scattering
lengths to be a11 = 90aB, a22 = 100aB, and a12 = 100aB

and the number of atoms (N1, N2) to be (6 × 104, 103),
(6 × 104, 5 × 103), (8 × 104, 1.5 × 104), and (105, 3 × 104),
which correspond to the triangular [Fig. 4(b i)], rectan-
gular [Fig. 4(b ii)], pentagonal [Fig. 4(b iii)], and hexag-
onal [Fig. 4(b iv)] shape patterns, respectively, at the
interface.

FIG. 5. (a) and (b) Effective potential experienced by the
species 1 and specis 2 due to the presence of the other component
of a SS-SF mixed state in the x − y plane. The color bar represents
the effective potential in units of h̄ωx . (c) Corresponding chemical
potential densities of species 1 (red) and species 2 (light green)
along the x axis. The results are for the case of a11 = 90aB, a22 =
100aB, a12 = 100aB, N1 = 105, and N2 = 3 × 104 and the imbal-
anced binary mixture is confined in a harmonic trap potential with
(ωx, ωy, ωz ) = 2π × (45, 45, 133) Hz.

V. QUENCH DYNAMICS

So far, we have discussed the phase diagrams of a bal-
anced binary mixture and different possible ground states in
an imbalanced binary mixture. Now we explore the effect
of quenching intra- and interspecies scattering lengths of a
balanced binary mixture in real-time dynamics.

A. Quenching interspecies scattering length

Consider the first case where we initially prepare the
DBEC in a miscible MD regime, with aii = 90aB, a12 = 70aB,
and N1 = N2 = 6 × 104. We then perform two different slow
linear ramps to increase the value of a12, one from 70aB to
95aB and the other from 70aB to 100aB, over a ramp time
ton = 100 ms. After that, the interspecies scattering length a12

is kept constant to check the stability of the evolved system
[see Fig. 6(a)]. We find that both evolutions produce dynami-
cally stable droplets and these results are also consistent with
the formation of a self-bound droplet state in a trapless system
[65,68]. In Figs. 6(b)–6(f) we show the time evolution of the
overlap integral � and the density profile of each species in
the x-z plane [ni(x, z, y = 0)], respectively. Initially, while
a12 < aii, the mixture forms a miscible MD state. During the
quenching of the interspecies scattering length, when a12 >
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FIG. 6. Tuning the interspecies scattering lengths a12 for the fixed values of aii = 90aB. (a) Linear ramp with ramp time ton = 100 ms.
From an initial value of a12 = 70aB, the interspecies scattering lengths are tuned to the final values a12 = 95aB and 100aB, respectively,
through this ramp. (b) Corresponding variation of the overlap integral with time. Snapshots of the density profile of (c i)–(f i) species 1
n1(x, z, y = 0), (c ii)–(f ii) species 2 n2(x, z, y = 0), and (c iii)–(f iii) the total system n(x, z, y = 0) are shown, following a quench from a
miscible MD state with a12 = 70aB to an immiscible MD state with a12 = 100aB. Both condensates consist of N = 6 × 104 atoms and the
balanced binary mixture is confined in a harmonic trap with (ωx, ωy, ωz ) = 2π × (45, 45, 133) Hz. The color bar denotes the density in units
of µm−2.

aii, the system rapidly undergoes a miscible to immiscible
phase transition. Near the transition time, the value of
the overlap integral � abruptly changes from 1 to 0 [see
Fig. 6(b)]. Due to this sudden change in �, the system ini-
tially undergoes some instability and forms some metastable
states at the intermediate timescale. During this time each
component forms multiple periodic segregated domains in
the axial direction and forms a completely phase-separated
density profile. These extra domains appear as defects due to
the discontinuous phase transition. The number of periodic
domains decreases with time and the final state produced in
long-time evolution is similar to our predicted ground state. In
this immiscible state, the density profile of each component is
complementary to the other and together they form an axially
symmetric immiscible MD state.

B. Quenching intraspecies scattering length

We also explore the dynamical evaluation across the phase
boundary by quenching the intraspecies scattering lengths.
Here we simulate a procedure to prepare a doubly SS state,
starting from a miscible SF state with comparatively large
aii. In this case, the dynamics is triggered by reducing the
intraspecies scattering lengths into a miscible and an immis-
cible SS regime. For a fixed interspecies scattering length
at a12 = 90aB, we perform two interaction quenches by lin-
early reducing the intraspecies scattering lengths aii, one from
120aB to 95aB and the other from 120aB to 85aB, over a
time period ton = 100 ms, after which aii is held constant

[see Fig. 12(a) in Appendix E], and we observe the time
evolution of the binary system. In both quenching processes,
as aii is reduced, the system undergoes a roton instability at
aii ≈ 100aB. In Fig. 7 we show the time evolution of momen-
tum space density ñ(kx ), following the quench aii = 120aB to
85aB. Initially, up to t = 55.7 ms, the binary mixture forms
a miscible SF state which corresponds to a single density
peak at (kx, ky) = (0, 0) μm−1 [see Fig. 8(a)]. Later follow-
ing the roton4 instability at the phase boundary, a ring of
radius 3.05 μm−1 is readily visible in the kx-ky plane and
for ky = 0 the density profile n(kx, ky = 0) corresponds to the
appearance of two additional side peaks in the momentum
space (similar to a cigar-shaped trap geometry) [see Fig. 8(b)].
The symmetric side peaks in the momentum space essentially
indicate a periodic density modulation in the real space. The
binary dipolar mixture forms a miscible SS state in the time
interval from t = 55.7 ms (aii = 100.5aB) to t = 85.7 ms
(aii = 90aB). As aii is reduced further the system enters a
MD phase domain, and when aii < a12 the overlap integral �

changes from 1 to 0 rapidly [see Fig. 12(b)] and the system
forms an immiscible MD state. The characteristic density
snapshots, while performing the quench of aii from 120aB to
95aB, in the x − y plane are presented in Figs. 12(c)–12(e) in
Appendix E.

4The roton modes are characterized by the quantum number m
[70–72]. In the kx − ky plane, the roton population is spread over a
ring which corresponds to a radial roton mode with m = 0.
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FIG. 7. Time evolution of the momentum space density of
(a) species 1 ñ1(kx ), (b) species 2 ñ2(kx ), and (c) the total system
ñ(kx ), following a linear quench with ramp time ton = 100 ms from
a miscible SF state with aii = 120aB to a immiscible MD state
with aii = 85aB. Both condensates consist of N = 6 × 104 atoms,
with a12 = 90aB, and the balanced binary mixture is confined in a
harmonic trap with (ωx, ωy, ωz ) = 2π × (45, 45, 133) Hz. The color
bar denotes the density in the kx space, in units of 103 μm.

FIG. 8. Snapshots of the density profile of the composite binary
system in momentum space following a linear quench with ramp
time ton = 100 ms from a miscible SF state with aii = 120aB to
an immiscible MD state with aii = 85aB, keeping the interspecies
scattering length a12 fixed at 90aB. (a) Initially at t = 0 ms, a single
peak corresponds to the SF state at kx = 0 µm−1. (b) At t = 55.7 ms,
two symmetric rotons peak at kx = ±3.05 µm−1. The insets show
the corresponding density distribution ñ(kx, ky, kz=0) in the kx − ky

plane. The parameters are the same as in Fig. 7.

VI. CONCLUSION AND OUTLOOK

In this work we have investigated theoretically the scope
of formation of two-dimensional supersolid and droplet lattice
states in a binary DBEC. We performed an in-depth investiga-
tion and demonstrated that a binary dipolar mixture confined
in a circular symmetric trap could exhibit a large variety of
ground-state phases with rich properties inaccessible for a
nondipolar binary mixture and in a single-component DBEC.
The emergent phases include SF, SS, SD, and MD states in
both miscible and immiscible phase domains. The interplay
between intra- and interspecies contact interactions and the
anisotropic dipole-dipole interaction leads to the formation
of all these phases. Numerically solving the coupled EGPE,
we obtained all these results. Besides the 3D numerical sim-
ulation, we also employed a variational approach in the SSA
framework to validate our results. Although in this work we
have demonstrated the results for a Dy-Dy mixture and a
specific range of atom-atom interaction strengths, our analysis
can be considered as one step forward in the direction of
the formation of more exciting new phases in binary dipolar
BECs.

We have examined different ground-state phases in a bal-
anced binary DBEC and depicted the phase diagrams as
a function of the number of particles and intra- and in-
terspecies scattering lengths. We also monitored the effect
of trap geometry in terms of the trap aspect ratio on the
ground-state phases. More intriguing mixed phases appear
for an imbalanced mixture. In the miscible phase domain,
both condensates possess exactly identical shapes, whereas
in the immiscible phase domain, we observed two types of
immiscible phases: (i) the axially immiscible phase and (ii) the
radially immiscible phase. The axially immiscible phase for
a self-bound droplet state without any trapping confinement
has been predicted in some of the recent theoretical works.
However, investigations of the radially immiscible phases are
lacking.

In the self-bound immiscible droplet regime, due to the
dominant anisotropic dipole-dipole interaction, the compo-
nent with a larger atom number and smaller intraspecies
scattering length takes the central position of the droplet and
forms two potential minima at its two outer edges in the
axial direction. The second component with a slightly positive
chemical potential energy is docked at the above-mentioned
position by the first component with a negative chemical
potential energy and forms an axially immiscible self-bound
droplet state. The chemical potential of each condensate in-
creases with the increase of intra- and interspecies scattering
lengths. Hence, in an immiscible regime for a comparatively
large value of intraspecies scattering length, the chemical po-
tential of both components becomes positive and the major
component can no longer hold the minor component at the
axial position. For an imbalanced mixture in the presence of
a circularly symmetric harmonic trap, the minor component
with a comparatively small number of atoms and large in-
traspecies scattering length is pushed in the radially outward
direction and forms a radially immiscible state. Depending
on the value of intraspecies scattering lengths, each species
can form a MD, SS, or SF state, whereas for a balanced
system, none of the condensates have such bias due to equal
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interaction strengths and hence forming an asymmetric im-
miscible state.

Utilizing our ground-state phase diagrams for a balanced
binary mixture as a reference, we explored the dynamics
across the phase boundaries by tuning the intra- and inter-
species interaction strengths. In both processes, we observed
an abrupt change in the phase near the transition time. As a
consequent of this, the dynamical transition across the phase
boundaries initially governed some instability in the system.
This led to the formation of some metastable states such as
multidomain axially immiscible droplet states and ringlike
density structures in the intermediate timescale during the
quench-induced dynamics of inter- and intraspecies scattering
lengths, respectively. However, as time evolved, the number of
extra domains decreased and the ringlike structure broke into
multiple density humps (droplets). Thus the state produced
in long-time evolution is similar to our predicted ground
state.

Our observations pave the way for several future research
directions. In this work we restricted our study to a particular
Dy-Dy (homonuclear) mixture. However, it would be intrigu-
ing to explore the formation of different possible phases in
a heteronuclear binary dipolar mixture like the Er-Dy mix-
ture [61–63]. Furthermore, one straightforward option is to
investigate the lifetime of these phases by incorporating the
effect of three-body interaction loss [15,34]. Another intrigu-
ing direction would be to consider the impact of thermal
fluctuation and unravel the corresponding phases as well as
dynamical nucleation of the supersolid and droplet lattice
in the finite-temperature limit [73,74]. Moreover, the evapo-
ration cooling mechanism is an alternative approach to the
interaction quench and provides the prospect of forming a
long-lived 2D supersolid state in a binary dipolar mixture
[24]. Another vital prospect would be to investigate quantum
turbulence [75–77], pattern formation [29,78–80], and vari-
ous topological excitations such as the formation of vortex
clusters and solitary waves in a binary dipolar condensate.
Finally, the observation discussed in this work would be
equally fascinating beyond the Lee-Huang-Yang description
[81,82].
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APPENDIX A: NUMERICAL METHODS

Results in this work are based on three-dimensional nu-
merical simulations in the coupled EGPE (1) framework.
For the sake of convenience of numerical simulations and
better computational precision, we cast the coupled EGPE
into a dimensionless form. This is achieved by rescaling

the length scale and timescale in terms of the oscillator
length losc = √

h̄/mωx and trapping frequency ωx in the
x direction. Under this transformation, the wave function
of species i obeys ψi(r′) = √

l3
osc/Niψi(r), where Ni is the

number of particles in species i. After the transformation of
variables into dimensionless quantities, the coupled EGPE is
solved by split-step Crank-Nicolson scheme [83]. Since the
dipolar potential has a singularity at r = 0 [see Eq. (2)], it is
numerically evaluated in Fourier space and we obtain the real-
space contribution through the application of the convolution
theorem. The ground states of binary dipolar condensate are
obtained by propagating the relevant equations in imaginary
time until the relative deviations of the wave functions (cal-
culated at every grid point) and energy of each condensate
between successive time steps are less than 10−6 and 10−7,
respectively. Furthermore, we fix the normalization of each
species at every time instant of the imaginary-time propa-
gation. Using this ground-state solution as an initial state at
t = 0 and by changing the interaction strengths, we monitor
their evolution in real time. Our simulations are performed
within a 3D box grid containing 256 × 256 × 256 grid points,
with the spatial grid spacing �x = �y = �z = 0.1losc and the
time step �t = 10−4/ωx.

APPENDIX B: VARIATIONAL SOLUTION
WITHIN THE SAME SHAPE

APPROXIMATION FRAMEWORK

In addition to numerical 3D simulations of Eq. (1), we
employ a simple variational approach in the regime where
both components are miscible and take the exact same shape
(i.e., ψ1 = ψ2); this is only possible when both condensates
have an equal number of atoms and equal intraspecies inter-
action. In this regime, the Hamiltonian of the ith condensate
is reduced to an effective single-species Hamiltonian given by

Ĥi
SSA = − h̄2

2mi
∇2 + Vt (r) + GSSA|ψi(r)|2

+Gdd
SSA

∫
dr′U dd(r − r′)|ψi(r′)|2

+ γ
QF
SSA

(
εdd

ii

)|ψi(r)|3. (B1)

Here GSSA = gii + g12 and Gdd
SSA = gdd

ii + gdd
12 are the effective

strengths of the contact interaction and DDI, respectively. The
last term of Eq. (B1) denotes the contribution of quantum fluc-
tuation. We remark that within this SSA framework, quantum
fluctuations depend on the density n3/2

i , where ni = |ψi|2. The
coefficient of quantum fluctuations γ

QF
SSA is well approximated

by the known form of a single-species DBEC [84]

γ
QF
SSA

(
εdd

SSA

) = 32

3
GSSA

√
a3

SSA

π
Re

∫ 1

0
du

× [
1 + εdd

SSA(3u2 − 1)
]5/2

, (B2)

where aSSA = aii + a12 and the dimensionless parameter
εdd

SSA = Gdd
SSA/GSSA quantifies the effective relative strength

of the DDI to the contact interaction. Within this SSA
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FIG. 9. Variation of energy with the interspecies scattering
length a12 of a balanced binary mixture. The mixture is confined
in a harmonic trap with (ωx, ωy, ωz ) = 2π × (45, 45, 133) Hz and
the other parameters fixed at a11 = a22 = 90aB and N1 = N2 = 104

atoms. The results are obtained through a variational approach within
the SSA framework (dashed line) and the coupled EGPE solutions
(solid line) are in agreement.

framework, the total energy of the ith species

Ei =
∫ (

h̄2

2mi
|∇ψi|2 + Vt (r)|ψi(r)|2 + GSSA

2
|ψi(r)|4

+ Gdd
SSA

2

∫
dr′U dd(r − r′)|ψi(r′)|4

+ 2

5
γ

QF
SSA|ψi(r)|5

)
dr. (B3)

A qualitative and to some extent quantitative insight into the
droplet and supersolid physics in the miscible SSA regime
may be gained from a simplified Gaussian ansatz

ψi(r) =
√

8Ni

π3/2σ 2
ρ σz

∏
η=ρ,z

exp

(
− 2η2

σ 2
η

)
, (B4)

where the variational parameters are the condensate widths
ση in the η = ρ, z direction. We insert the ansatz (B4) into
Eq. (B3) and obtain

Ei

Nih̄ωz
=

(
2l2

z

σ 2
ρ

+ l2
z

σ 2
z

)
+

(
1

8λ2

σ 2
ρ

l2
z

+ σ 2
z

16l2
z

)

+
4Ni

[
GSSA − Gdd

SSA f
( σρ

σz

)]
(2π )3/2σ 2

ρ σz h̄ωz

+ 128N3/2
i γ

QF
SSA

25
√

5π9/4σ 3
ρ σ

3/2
z h̄ωz

, (B5)

where

f (k) = 1 + 2k2

1 − k2
− 3k2 tanh−1

√
1 − k2

(1 − k2)3/2
(B6)

and lz = √
h̄/miωz. We find the stationary solutions by nu-

merically locating the values of σρ and σz that minimize
the variational energy (B5). The energy of a miscible binary

FIG. 10. Ground-state phase diagrams in an oblate harmonic trap
of a Dy-Dy mixture as a function of the number of particles in each
condensate and (a) intraspecies and (b) interspecies scattering length.
The color domains on the phase plots correspond to the different
contrast regimes as labeled above the phase diagrams. The other
parameters are the same as in Fig. 1.

mixture obtained through the SSA approach and EGPE solu-
tions are in agreement (see Fig. 9). However, the ansatz (B4)
is inappropriate for immiscible and imbalanced droplets and
supersolid states (see [64] for an alternative ansatz).

APPENDIX C: DENSITY CONTRAST

The ground-state phase diagrams for a balanced binary
mixture are depicted in Fig. 1. The binary mixture can be in
one of the three phases: a SF state, a SS state with periodic
density modulation, and a 2D array of isolated droplets. These
distinct phases are best characterized by the density contrast,
defined as [60]

C = nmax − nmin

nmax + nmin
. (C1)

Here nmax and nmin are the neighboring maxima and minima
as one moves on the x − y plane. A SF state corresponds to a
smooth density distribution with nmax = nmin, which implies
C = 0. In an insulating droplet state when there is no overlap
between the droplets (nmin ≈ 0), Eq. (C1) gives C ≈ 1. How-
ever in a SS state, the droplets are connected by a low-density
superfluid (nmin �= 0) and the density contrast C attains an
intermediate value between 0 and 1. In this work we consider

FIG. 11. Effective potential due to the presence of the other
component of an immiscible SD state in the x − z plane. The color
bar represents the effective potential in units of h̄ωx . The other
parameters are the same as in Fig. 3(a i).
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FIG. 12. Quenching intraspecies scattering lengths for a fixed values of a12 = 90aB. (a) Linear ramp with ramp time ton =
100 ms. From an initial value of aii = 120aB, the intraspecies scattering lengths are quenched to final values aii = 85aB and 95aB, respectively,
through this ramp. (b) Corresponding variation of the overlap integral with time. Snapshots of the density profile of (c i)–(e i) species 1
n1(x, y, z = 0), (c ii)–(e ii) species 2 n2(x, y, z = 0), and (c iii)–(e iii) the total system n(x, y, z = 0) are shown, following a quench from a
miscible SF state (aii = 120aB) to a miscible SS state (aii = 95aB). Both condensates consist of N = 6 × 104 atoms and the balanced binary
mixture is confined in a harmonic trap with (ωx, ωy, ωz ) = 2π × (45, 45, 133) Hz. The color bar denotes the density in units of µm−2.

[24] C = 0 to be a superfluid phase, 0 < C < 0.96 to be a
supersolid, and C > 0.96 to be a droplet state. In Fig. 10
we plot the different contrast (C) regimes as a function of
intra- and interspecies scattering lengths and the number of
particles.

APPENDIX D: EFFECTIVE POTENTIAL

Each condensate experiences an effective potential due to
the presence of the other component. The effective potential
experienced by species i due to the presence of species j is
given by

V i j
eff(r) =gi j |ψ j (r)|2 +

∫
dr′V dd

i j (r − r′)|ψ j (r′)|2. (D1)

In the main text, we showed the density profiles of an
axially immiscible SD state in an imbalanced binary mixture
[see Fig. 3(a ii)]. We observed that the major5 component
with smaller aii and a larger population acquires the central
position and the minor component with larger aii and a smaller
number of atoms is bound at each end in the axial direction. In
Fig. 11 we show the corresponding effective potentials expe-
rienced by each species due to the presence of other species.
Species 1 encounters a minimum potential at the trap center
[which is elongated in the axial direction (along the z axis)],

5In an imbalanced binary mixture, the species with a larger number
of atoms is referred to as the major component and the other species
as the minor component.

whereas the second species experiences a maximum effective
potential there but a minimum effective potential at each
end of the minimum effective potential domain formed by
condensate 1.

APPENDIX E: QUENCH DYNAMICS

To track the emergent features of the intraspecies interac-
tion quench as we discussed in the main text, here we show

FIG. 13. Characteristic phase profiles of the composite binary
mixture in the x − y plane at a specific time instant following a
linear quench with ramp time 100 ms from a miscible SF state with
aii = 120aB to an immiscible MD state with aii = 85aB, keeping the
interspecies scattering length a12 fixed at 90aB. The black dashed
circles delineate the edges of the dipolar binary mixture. The phase
profiles correspond to (a) the miscible SF state, (b) the miscible SS
state, and (c) the immiscible MD state. The parameters are the same
as in Fig. 7.
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the time evolution of the density profiles and the phase of the
binary mixture. In Fig. 12(a) we show two different interac-
tion quenches of aii, one from 120aB to 95aB and the other
from 120aB to 85aB. Following these interaction quenches,
the corresponding time evolution of the overlap integral � is
shown in Fig. 12(b). Initially, at t = 0 ms the mixture forms
a miscible SF state with a smooth 2D TF distribution [see
Fig. 12(c)] which corresponds to a global phase coherence,
as can be seen from Fig. 13(a). However, since the quench
is performed across the phase boundary, it excites the ro-
ton instability in the binary system, leading to ring-shaped
density structures, as can be seen in Fig. 12(d). The appear-
ance of the roton mode is readily visible in the momentum
space. Due to the circular symmetry of the trap geometry
(ωx = ωy = ω), the roton population is spread over a ring in
the kx-ky plane and for ky = 0 it corresponds to the appearance

of two prominent side peaks, as discussed in the main text [see
Fig. 8(b)].

As we decrease the intraspecies scattering lengths more,
the ring-shaped density structure breaks into several overlap-
ping density humps (droplets) and the binary mixture forms
a miscible SS state [Fig. 12(e)]. This SS state corresponds to
an almost perfect global phase coherence with a very small
fluctuation in the phase observed due to the interaction quench
performed across the phase boundary [see Fig. 13(b)]. Instead
of an interaction quench by the evaporative cooling mecha-
nism directly into the SS state, one could produce a SS state
with robust global phase coherence as demonstrated in [24].
Further decreasing aii, the phase coherence between these
droplets is completely lost [see Fig. 13(c)] and the binary
mixture forms a 2D array of immiscible MD crystals (not
shown here).
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