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Enhancing strontium clock atom interferometry using quantum optimal control
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Strontium clock atom interferometry is a promising new technology, with multiple experiments under de-
velopment around the world to explore its potential for dark matter and gravitational wave detection. In these
detectors, large momentum transfer using sequences of many laser pulses is necessary, and thus high-fidelity
pulses are important since small errors become magnified. Quantum optimal control (QOC) is a framework for
developing control pulse waveforms that achieve high fidelity and are robust against experimental imperfections.
Resonant single-photon transitions using the narrow clock transition of strontium involve significantly different
quantum dynamics than more established atom interferometry methods based on far-detuned two-photon Raman
or Bragg transitions, which leads to new opportunities and challenges when applying QOC. Here, we study in
simulation QOC pulses for strontium clock interferometry and demonstrate their advantage over basic square
pulses (primitive pulses) and composite pulses in terms of robustness against multiple noise channels. This
could improve the scale of large momentum transfer in Sr clock interferometers, paving the way to achieving
these scientific goals.

DOI: 10.1103/PhysRevA.107.063302

I. INTRODUCTION

Light-pulse atom interferometry is a technology that uses
laser pulses to split, manipulate, and recombine the motional
states of atoms so that precise measurements can be made
from their interference. It has proven itself a powerful tool for
precision metrology and sensing, with applications including
tests of quantum mechanics and the equivalence principle
[1–16], terrestrial and spaceborne gravitational wave detec-
tion [17–26], precision measurements of the fine-structure
constant [27–29] and gravity [30,31], searches for dark mat-
ter [32–34] and dark energy [35], and mobile surveying
[36,37]. The most sensitive interferometers employ large
momentum-transfer (LMT) techniques, which increase the
enclosed space-time area with additional laser pulses. Typical
LMT atom optics utilize far-detuned, multiphoton transitions
[38–48], where two ground states are coupled via a short-lived
excited state. The scaling of such pulse sequences is limited
by spontaneous emission, which can only be mitigated so
long as additional laser power is available. STIRAP has been
used in atom interferometry but does not currently match the
performance of other state-of-the-art atom optics, limited by
other detuned excited states [49].

In contrast, alkaline-earth-metal atoms such as Sr pos-
sess long-lived excited states, which have been leveraged
to achieve state-of-the-art atomic clocks [50,51]. In 87Sr,
the 1S0 → 3P0 clock transition has a lifetime over 100 s,
allowing resonant, single-photon atom optics with greatly re-
duced spontaneous emission losses. This affords an enormous
increase in available pulse area, potentially scalable to thou-
sands of pulses before significant spontaneous emission losses
[26,52].

A clock interferometer is a specific type of atom inter-
ferometer using such resonant, single-photon transitions. It
offers improved laser phase noise rejection in differential

measurement configurations comparing multiple interferom-
eters over a long baseline [19] [53], which is essential
for dark matter and gravitational wave detection. Moreover,
the clock transitions in alkaline-earth-metal atoms are or-
ders of magnitude less susceptible to magnetic fields than
in the alkali-metal atoms [54]. This new generation of re-
cently demonstrated single-photon clock atom interferometers
[52,55–57] is poised to study hitherto elusive phenomena
such as ultralight, wavelike dark matter [23–26,32–34], tests
of atom charge neutrality [58], midband gravitational wave
detection [23–26], and tests of quantum mechanics at unprece-
dented delocalization scales [26].

In practice, the performance of atom interferometers is also
limited by the noise in the driving field and inhomogeneities
across the atom cloud. Atom losses and phase errors caused by
these effects accumulate with repeated pulses and thus limit
the scaling of LMT systems. Simple robust control pulses
for two-level quantum systems under detuning and amplitude
errors were developed for nuclear magnetic resonance (NMR)
spectroscopy [59–61] and have more recently found popu-
larity in quantum computation [62,63]. More sophisticated
pulse shaping algorithms, such as gradient ascent pulse en-
gineering (GRAPE) [64] and chopped random basis (CRAB)
optimization [65,66], minimize a cost function that quantifies
the infidelity of the operation. As this may be an arbitrary
function of hundreds of parameters, highly modulated control
pulses can now be tailor made for driving particular quantum
dynamics with an appropriate cost metric. For instance, quan-
tum optimal control (QOC) is a powerful tool for realizing
high-fidelity gates in quantum computing [67–71] and levi-
tated nanoparticle control [72,73].

In the field of atom interferometry, quantum control
schemes including composite pulses [74–76], shaped pulses
[77], adiabatic rapid passage [46,78], and numerical opti-
mal control [79–83] have been applied to Raman and Bragg
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FIG. 1. (a) Substructure of the 1S0 and 3P0 manifolds, with tran-
sition strengths indicated. Parasitic σ+ and σ− polarizations couple
to states outside the desired mF = 9/2 → m′

F = 9/2 two-level sys-
tem. (b) Optimization procedure. Randomly sampled noise values
for multiple noise channels define a batch of noise trajectories. The
unitary evolution of the system is calculated under each, yielding
a batch of infidelities which are averaged to give the final cost
function. The scope of robustness is tuned by modifying the sampling
distributions. (c) The optimized pulse starts and ends with a smooth
switching (shown in the insets). The phase and amplitude modulation
are smoothed with a Gaussian-weighted moving average filter. The
frequency components higher than 4 × 104 Hz are filtered out. The
frequency spectrum is within the modulation bandwidth of acousto-
optic modulators (AOMs) and the switching on and off process is
within the rise time achievable by AOMs. The smoothed pulse is
used for all simulations.

transitions with alkali-metal atoms, and Floquet pulse engi-
neering has been applied to single-photon atom optics on the
1S0 → 3P1 transition of 88Sr [57]. In this paper, we report
simulation studies of the application of numerical optimal
control to 1S0 → 3P0 clock interferometry with 87Sr. Using
the gradient-based optimization tools in Q-CTRL’s BOULDER

OPAL package [84], we design optimized analogs of π pulses
which are robust to as many as five simultaneous noise chan-
nels. Sequences of many of these pulses can be used to achieve
enhanced LMT [18]. Under an experimentally relevant range
of noise, we find that the optimized pulses have fidelity im-
proved beyond that of basic square (primitive) pulses by an
order of magnitude or more. Successful implementation of
these pulses may allow atom interferometers to overcome
unavoidable limitations and realize their full potential.

A challenge in clock interferometry is that imperfections
during laser beam delivery or local changes to the quantiza-
tion axis from stray magnetic fields can introduce undesired
polarization components, which couple transitions to addi-
tional magnetic sublevels [Fig. 1(a)]. Larger bias fields can
suppress errors in the quantization axis, but are unfavorable
due to quadratic Zeeman shifts [26] and cannot mitigate errors
already present in the beam. It is therefore a valuable appli-
cation of quantum optimal control to design pulses that are

insensitive to polarization defects, reducing the atom loss and
phase errors arising from the population of other sublevels.

II. OPTIMIZATION PROTOCOL

In the interferometry scheme studied here, a cloud of 87Sr
atoms is initialized in the |1S0; mF = 9/2〉 state and driven
to the |3P0; mF = 9/2〉 state on the 698 nm clock transition,
which has a natural linewidth of 1 mHz [26]. For optimiza-
tion, we split a pulse of fixed duration uniformly into N
time segments, whose amplitude and phase become the 2N
independent variables—hereafter referred to as c—which are
modified during optimization. The pulse duration and the
number of segments are chosen before optimization, as is
the learning rate (step size in the gradient-based search). We
vary these parameters between optimization runs to determine
what gives the best results [Fig. 1(b)]. We choose maximum
Rabi frequencies of several kHz [26] and find pulse lengths of
2 ms or longer best for optimizing against all noise channels.
With the many-second interferometer duration in tall atomic
fountains [26] or spaceborne detectors [17,22,23], sequences
of thousands of pulses may be performed, further increased
by future upgrades to laser power [85,86]. In the optimized
pulse, the segment time is approximately 17 µs, which is
significantly longer than the response time of an acousto-optic
modulator (AOM).

To achieve robust control, we use a cost function based
on random samplings of noise trajectories (one trajectory is
the Hamiltonian with a particular set of noise parameters)
[87]. We include five channels of static noise: σ+ and σ−
polarization components, which couple sublevels outside the
desired two-level system; amplitude noise on the drive; detun-
ing errors from Doppler shifts in the atom cloud; and variation
in the bias field, which changes the Zeeman splitting of the
sublevels. Each noise channel is associated with a Hamilto-
nian term (see the Appendix). For each of these operators,
we randomly sample NB sets of noise amplitudes—denoted
as β(i) = (ε (i)

+ , ε
(i)
− , β

(i)
A , β (i)

v , β
(i)
B ) for the ith noise trajectory

in the batch—from Gaussian distributions whose predefined
width determines the scope of desired robustness.

For each of these Hamiltonians Ĥ (i)(c, t ), we calculate
the unitary evolution, from which we determine an infidelity
I (i)(c). The infidelity is defined as

I (i)(c) = 1 −
∣∣∣∣∣
Tr(U †

target U (i)(c))

Tr(U †
target Utarget )

∣∣∣∣∣
2

, (1)

where Utarget is the target state evolution and U (i) is the evo-
lution due to the Hamiltonian under the ith noise trajectory
[84]. This metric is sensitive to both the population transfer
and the phase imprinted by the pulse, which is important
for atom interferometry. All 20 ground and excited sublevels
are included in our simulations. To construct the total cost
function, we average the infidelities from all trajectories:

C(c) = 1

NB

NB∑
i=1

I (i)(c), (2)

where we typically use a batch size NB of 200. We found that
increasing to a larger batch size did not provide significant
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FIG. 2. Comparison of the optimized pulse to primitive pulse and various composite pulses [59,79]. Single pulse infidelity with noise
parameters’ variation are compared among the optimized pulse, primitive pulse, and composite pulses. �B is the deviation of the bias magnetic
field from its nominal value B0 = 1 G, so that the total bias field is B = B0 + �B. βv is the detuning due to the Doppler shift in units of
100 Hz. The units of the horizontal axes for the polarization and amplitude plots correspond to fractional errors. In contrast to all other pulses,
the optimized pulse maintains a high degree of robustness against all noise channels and outperforms all other pulses in robustness against
polarization noise.

improvement. The gradient-based optimizer in BOULDER OPAL

determines the control variables c which minimize this cost
function. Thus the pulse waveforms [Fig. 1(c)] are determined
which retain low infidelity even in the presence of noise.

Alternative methods of optimizing composite pulses for
multilevel systems have also been previously investigated by
other groups. Caneva et al. [66] investigated the efficiency of
the chopped random basis (CRAB) technique in optimizing
different quantum processes. Genov and Vitanov [88] also
used composite pulses to achieve efficient population transfer
in multistate quantum systems. Compared to this study, our
QOC method, instead of analyzing the system’s mathematical
process in a Taylor expansion approximation to determine
the optimal pulses, numerically searches in a large parame-
ter space to find the most robust pulse shape. In the future
work, it will be interesting to compare the results of different
optimization methods applied to clock atom interferometers.

III. RESULTS AND COMPARISON

A. Single optimized pulse

To visualize the performance of various pulse schemes, we
scan the infidelity across values of one (Fig. 2) or two (Fig. 6)
noise channels. In Fig. 2, the optimized pulse performs up
to an order of magnitude (or more) better than the primitive
and composite pulses for the range of polarization errors
considered here while maintaining strong robustness against
amplitude and detuning errors. The range of noise values
in optimizations and these plots follow what is expected in

relevant experiments. In dark matter and gravitational wave
experiments, it is favorable for the atom cloud’s spatial ex-
tent to remain within the central region of the laser beam
to help mitigate systematic errors such as those due to laser
wavefront perturbations and residual ac Stark shifts from
far-detuned transitions [26]. Therefore, the laser amplitude
variation across the atom cloud is assumed to be within
several percent. We also assume detunings to be on the or-
der of 100 Hz, which is consistent with atom clouds lensed
to sub-nK effective temperatures [26,89,90] that are desir-
able for systematic error mitigation [26]. A 0.1 polarization
amplitude error gives a reasonable 1% of optical power in
unwanted components. In general, the amplitudes of the σ+
and σ− polarization components can be complex. While Fig. 2
plots values of these amplitudes over a real domain to ease
visualization, we note that using complex values for these
coefficients does not significantly affect the scale of the in-
fidelities. We also evaluate the impact of variations in the bias
magnetic field on the infidelity compared with other noise
channels.

In Fig. 3, we show the phase deviation induced by a single
optimized pulse as a function of different noise channels (i.e.,
the difference between the actual and ideal final-state phase
value). An atom interferometer with ∼1000 optimized pulses
would introduce a total ∼rad scale phase deviation, due to
the ∼mrad scale phase deviation of each pulse for the various
noise channels. Atomic dark matter and gravitational wave
detectors typically look for time varying signals in a particular
frequency band, such as 0.3–3 Hz [26]. If, for example, the
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FIG. 3. Phase deviation induced by single optimized pulse. In
the optimized pulse, time-dependent noises are included [the root
mean square (rms) of the noises is 0.5% in the amplitude and 1%
in the phase]. A set of 10 simulations are performed with random
time-dependent noises for different noise parameters. Panels (a), (c),
(e) are mean values and (b), (d), (f) are corresponding standard
deviations of the simulation set.

fractional fluctuation of the polarization errors are at the level
of 0.1%/

√
Hz in this frequency band, the corresponding inter-

ferometer phase noise would be at the level of ∼mrad/
√

Hz.
Such phase fluctuations may be further suppressed if both
arms of the interferometer, or both interferometers in a dif-
ferential gradiometer configuration [26], experience close to
the same errors.

Since time-dependent noise in the laser amplitude and
phase will also occur in the physical system, we studied its
impact on the infidelity of the optimized pulse. The added
white noise is constructed separately for amplitude and phase
by

f (t ) =
1000∑

i

Ai cos(ωit ) + Bi sin(ωit ), (3)

where Ai and Bi are randomly generated amplitudes and ωi

are random frequencies uniformly distributed from 50 Hz to
105 Hz. We normalize each f (t ) to the desired root-mean-
square (rms) value. The spectrum of the noise is chosen in
this range since lower or higher frequencies are tested to
have less impact on the robustness. A thousand frequency

FIG. 4. Time-dependent noise impact on infidelities. For the
same optimized pulse, adding noise in the control pulse will neg-
atively impact the robustness which is determined by measuring
the effective area (red) where the infidelity is under a certain value
[0.0007 for the polarization map (b), 0.0004 for the amplitude and
detuning (βv) map (d), and 0.0002 for the σ− polarization and field
deviation �B map (f)]. The robustness on the polarizations (a), the
amplitude and detuning (c), and polarization and magnetic field (e)
are worse if the rms of the noise increases. A value x of the rms
of noise on the horizontal axis of the plot corresponds to the rms
fractional amplitude noise of x and rms phase noise of x rad. We
note that the response to noise is not perfectly symmetric. We do
not necessarily expect the optimization to provide perfect symmetry
here as we might for a two-level system since the dynamics are
significantly more complex, with many different states that have
different coupling strengths and different detunings.

components are used to guarantee sufficient sampling density
in the targeted noise spectrum. Higher sampling numbers do
not change the result significantly. Due to the randomly gen-
erated noise for each simulation, the impact on the infidelity
undergoes fluctuations between different simulation runs. We
measure this impact by observing the trend of the area in the
contour plot whose infidelity is under a certain value (effective
area). By repeating the simulation, the impact fluctuations
are indicated by the standard deviation as error bars, and the
trend is shown in Figs. 4(a), 4(c), and 4(e). Overall, with
bigger noise both in amplitude and phase, the effective area
is smaller in the infidelity map for different noise channels
[Figs. 4(b), 4(d), and 4(f)]. For the noise rms of approximately
1% (defined in the Fig. 4 caption), which is an achievable level
in experiments [91], the effective area reduction is relatively
modest (a factor of approximately 2 or less), indicating that
the optimized pulses can remain effective in the presence
of noises. This is further verified by the full interferome-
ter simulation described below, which shows that good total
transfer efficiency (including the net effect of all pulses) and
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FIG. 5. (a) Schematic diagram of momentum change in both
arms of the interferometer. Primitive pulses are used in the high-
lighted parts to avoid unwanted off-resonant interaction with the
untransferred arm. The maximum momentum in our simulation setup
is 500 h̄k. (b) A schematic diagram of a differential measurement
between two interferometers spatially separated over a baseline.

well-controlled phase deviations can be maintained for exper-
imentally relevant combinations of static and time-dependent
noises, even for interferometers with thousands of total pulses.

B. Full interferometer

The optimized pulse has been tested in a full atom inter-
ferometer simulation [Fig. 5(a)] with total 2000 pulses (each
arm experiences 1000 resonant pulses and 1000 off-resonant
pulses) as a final feasibility test. In the simulation, we calcu-
late the finite time step unitary evolution of the states using

u( j) = e−iĤ (t j )�t j/h̄, (4)

� f = u(M ) . . . u(2)u(1)�i, (5)

where �i and � f are initial and final states. In the finite time
approximation, the Hamiltonian Ĥ (t j ) keeps the same from
t j to t j + �t j , so that the evolution operator for the finite
time �t j is u( j). We calculate the full evolution by applying
a chain of finite time operators [Eq. (5)]. The optimized pulse
is divided into M = 2500 segments (step time is 0.8 µs; further
time step decrease does not significantly influence the results).
Since the switching on and off are faster than pulse variations,
50 segments are specially assigned on each switching pro-
cess to assure their smoothness [see Fig. 1(c)]. In our LMT
scheme for clock interferometry [18] [Fig. 5(a)], we utilize 20
primitive pulses for initial momentum splitting, 480 optimized
pulses for continuing the atoms’ acceleration, 480 optimized
pulses for deceleration, and 20 primitive pulses for symmet-
rical deceleration. Then, the laser is tuned to be resonant
with the other arm, and the same process is repeated on the
other arm. During the LMT process, pulses are applied from

FIG. 6. Full interferometer simulation. The results from the op-
timized pulse are presented. The time-dependent noise level is the
same as in Fig. 3. (a),(d),(g) The transfer efficiencies (including the
net effect of all pulses) with static noise on polarizations, Doppler
detuning, magnetic-field deviation, and amplitude. (b),(e),(h) The
mean phase difference (rad) between two arms in the interferometer.
(c),(f),(i) The standard deviation of the phase difference (rad) with
random noise (half percent rms in the amplitude and one percent rms
in the phase).

alternating directions [18]. The arms are recombined at the
end, and we measure the total transfer efficiency and the phase
difference between the two arms. The reason for including
the primitive pulses is that, in creating the full interferometer,
the optimized pulses have unwanted off-resonant interaction
with the untransferred arm when the relative Doppler shift
between the two arms is small. This effect can be reduced
by using primitive pulses with appropriate Rabi frequency at
small momentum separation. As the relative velocity between
the arms increases, the increasing relative Doppler shift causes
the pulses to become further detuned from the other arm,
and the deleterious effect on the untransferred arm decreases.
At this point, we switch to the optimized pulse to boost the
momentum splitting to large values.

The time-dependent noise composed from Eq. (3) varies
in each pulse in one simulation run. We keep it the same for
different simulation runs within a single static noise channel
scan, in which we vary two static noise parameters while keep-
ing others the same (Fig. 6). We carry out repeated static noise
channel scans, each with randomly generated time-dependent
noise, to evaluate the phase difference between the interferom-
eter arms. Typical applications of clock interferometry involve
differential measurements between two atom interferometers
in a gradiometer configuration using a common laser [see
Fig. 5(b)] [18,32]. Therefore, in each scan, a differential phase
is calculated by subtracting out the phase of an interferom-
eter with zero static noise (i.e., set the center of the map
as zero). The mean value and the standard deviation of the
differential phase are computed for each static noise point.
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FIG. 7. Impact of different noise channels on interference contrast in a full interferometer. The time-dependent noise level is the same as
in Figs. 3 and 6. In each panel, the vertical axis is the interference contrast and the horizontal axis is the width w of the zero-centered Gaussian
probability distribution from which the corresponding noise parameter xi is sampled. An example of a simulated interference pattern is shown
(at the upper-right corner, below the legend) to illustrate the contrast calculation. In contrast to other pulses, the optimized pulse maintains a
high degree of robustness against all noise channels, and the optimized pulse outperforms all other pulses in robustness against polarization
noise.

If two interferometers in a gradiometer experience the same
static noise, the influence of the time-dependent noise on the
phase will completely cancel as a common mode [18]. By
comparing different static noise points, one can determine
the residual differential phase noise if the two interferometers
in the differential measurement are not matched perfectly in
terms of polarization, amplitude, detuning, and magnetic field.

To demonstrate the advantage of the optimized pulse,
following a similar approach to other papers studying the
application of quantum optimal control to atom interferometry
in different contexts [79,83], the contrast of the interference
pattern after the full interferometer (Fig. 7) is compared with
primitive and other composite pulses. The interference pattern
is a probability summation of the single-atom interference
patterns from an ensemble of atoms. Each atom in the ensem-
ble experienced different static noise according to a particular
distribution. For a certain noise channel, we use a Monte Carlo
method to construct the interference pattern F (	) by

fi(	) = 1

2
+ 1

2
T (xi ) cos[	 + �φ(xi )], (6)

F (	) = 1

N

N∑
i=1

fi(	), (7)

where 	 is in a range bigger than 2π to show the interference
pattern contrast. In a single-atom interference pattern fi(	),
we assign a Gaussian probability distribution whose width
is w and pick noise parameter xi randomly according to the
distribution. The transfer efficiency T (xi ) is the probability of
atoms being in the correct state to contribute to the contrast

[for example, Figs. 6(a), 6(d), and 6(g)]. The phase deviation
�φ(xi ) is a value sampled from a Gaussian distribution whose
mean value and standard deviation are determined by the noise
parameter xi [for example, Figs. 6(b), 6(e), and 6(h) for mean
value and 6(c), 6(f), and 6(i) for standard deviation]. The
sampling number N = 50000 is big enough to give small sta-
tistical fluctuation in determining the contrast. The normalized
interference pattern F (	) (an example is shown in Fig. 7) is
the probability summation of a large number of fi(	). The
contrast we measure is

C = Fmax − Fmin, (8)

where Fmax and Fmin are the maximum and the minimum
values of F (	). The contrast value C and its change with the
width w for every static noise channel are presented in Fig. 7.

IV. CONCLUSION

In summary, we composed an optimized pulse for 87Sr
clock interferometry to improve the robustness against mul-
tiple noise channels using the QOC method. This work
demonstrates the promise of quantum optimal control for
extending the scientific reach of strontium clock atom interfer-
ometers, potentially paving the way for these interferometers
to detect gravitational waves at currently unexplored frequen-
cies and wavelike dark matter. We will study the experimental
implementation of the optimized pulses in the future. To
achieve the best performance, it may prove valuable to tailor
the noise model used in the optimization algorithm to specific,
experimentally measured noise properties and spectra. The
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application of closed-loop quantum optimal control [92], in
which experimental measurements of pulse fidelities guide the
optimization process, to atom interferometry has the potential
to offer further improvements.
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APPENDIX: SYSTEM HAMILTONIAN

We break the Hamiltonian in a rotating frame into two
constant terms HB (Zeeman shifts) and HD (Doppler shifts)
corresponding to free evolution, and a time-dependent control
term Hc:

H (β) = HB(βB) + HD(βv ) + Hc(ε+, ε−, βA), (A1)

where βv changes the Doppler shift, βB is the fractional
change of the magnetic field, βA is a complex coefficient that
characterizes the deviation of the amplitude and the phase of
the actual control drive from those of the ideal control drive,
and ε± are fractional amplitudes of σ± polarization terms.

The Hamiltonian term denoted as HB can be mathe-
matically divided into two distinct components. The first
component is responsible for determining the energy splitting
of the 3P0 and 1S0 hyperfine levels, assuming that the laser
is resonant with the transition from |1S0; 9/2〉 to |3P0; 9/2〉.
This resonance condition ensures that the energies of these
two levels are equal in the rotating frame and are therefore set
to zero in the Hamiltonian. The energy ladder of the sublevels
can be expressed as follows:

〈mF ; 1S0|HB1|1S0; mF 〉 = −Bh̄μ0gS
(

9
2 − mF

)
, (A2)

〈mF ; 3P0|HB1|3P0; mF 〉 = −Bh̄μ0gP
(

9
2 − mF

)
, (A3)

where B = B0 + �B = (1 + βB)B0 is the total magnetic
field, mF is the magnetic quantum number, h̄ is the reduced
Planck constant, μ0 is the vacuum permeability, and gS , gP

are the Landé g factors for the 1S0 and 3P0 states, respectively.
To fully evaluate robustness against magnetic-field changes
�B, we consider the impact of such a magnetic-field change
for a fixed laser frequency. As a result of the associated
Zeeman shift, the magnetic-field change causes the laser to
become slightly off resonant by inducing additional energy
shifts of �BgSμ09/2 and �BgPμ09/2 for the |1S0; 9/2〉
and |3P0; 9/2〉 energy levels, respectively. Consequently, it
becomes necessary to introduce a second component in the
Hamiltonian to account for these energy shifts. To maintain
clarity, the energy shift is symmetrically divided between

the ground and excited states, as only the total energy
difference �E = �BgPμ09/2 − �BgSμ09/2 ≡ βBB0 h̄ωB

between the two levels affects the evolution results. Therefore,
the complete Hamiltonian term HB can be written as

〈mF ; 1S0|HB|1S0; mF 〉
= −βBB0

h̄ωB

2
− (1 + βB)B0 h̄μ0gS

(
9

2
− mF

)
,

(A4)

〈mF ; 3P0|HB|3P0; mF 〉

= βBB0
h̄ωB

2
− (1 + βB)B0 h̄μ0gP

(
9

2
− mF

)
, (A5)

where B0 = 1 G is the nominal bias field and ωB = 2π ×
491 Hz/G. In the second term μ0gS = 2π × 182 Hz/G and
μ0gP = 2π × 291 Hz/G [93]. This term gives the energy
ladder of all sublevels with a fractional field change of βB.

Similarly, the HD matrix elements are given by

〈mF ; 1S0|ĤD|1S0; mF 〉 = −βv h̄ωD/2, (A6)

〈mF ; 3P0|ĤD|3P0; mF 〉 = βv h̄ωD/2, (A7)

where ωD = 2π × 100 Hz is chosen as a factorization so that
βv is in units of 100 Hz in all the figures. This term accounts
for the energy shift due to the Doppler effect. The sign of
HD term will flip in the rotating frame when the laser pulse
direction switches.

For the laser control Hamiltonian term HC , the matrix ele-
ments are

〈mF ; 3P0|ĤC |1S0; mF 〉 = (1 + βA)
Cπ

mF

Cπ
9/2

h̄�(t )
√

1 − ε2

2
, (A8)

〈mF + 1; 3P0|ĤC |1S0; mF 〉 = (1 + βA)
C+

mF

Cπ
9/2

h̄�(t )ε+
2

, (A9)

〈mF − 1; 3P0|ĤC |1S0; mF 〉 = (1 + βA)
C−

mF

Cπ
9/2

h̄�(t )ε−
2

, (A10)

where ratios Cπ
mF

, C+
mF

, C−
mF

are Clebsch-Gordon coefficients
accounting for the different transition strengths which are
derived from the electric dipole matrix element between the
1S0 and 3P0 states. These elements arise from an admixture
between 1P1 and 3P0 states due to spin-orbit coupling and hy-
perfine interactions (the dipole matrix elements 〈3P0|ĤC |1S0〉
are proportional to 〈1P1|ĤC |1S0〉) [93]. The calculation of such
electric dipole moments is described, for example, in Metcalf
and Van der Straten’s book [94]. βA(t ) is composed of a
constant deviation βA0 and white noises on both amplitude
and phase [see Eq. (3)]. �(t ) is the Rabi frequency which
varies with the control pulse amplitude, and its peak value
is 2π × 3 × 103 Hz. ε2 = |ε−|2 + |ε+|2 conserves the total
amplitude. All other matrix elements not explicitly listed are
zero.
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Bentine, J. Bernabeu, A. Bertoldi, R. Bingham et al., EPJ
Quantum Technol. 7, 6 (2020).

[24] L. Badurina, E. Bentine, D. Blas, K. Bongs, D. Bortoletto,
T. Bowcock, K. Bridges, W. Bowden, O. Buchmueller,
C. Burrage, J. Coleman, G. Elertas, J. Ellis, C. Foot, V.
Gibson, M. Haehnelt, T. Harte, S. Hedges, R. Hobson, M.
Holynski, T. Jones, M. Langlois, S. Lellouch, M. Lewicki, R.
Maiolino, P. Majewski, S. Malik, J. March-Russell, C. McCabe,

D. Newbold, B. Sauer, U. Schneider, I. Shipsey, Y. Singh, M.
Uchida, T. Valenzuela, M. van der Grinten, V. Vaskonen, J.
Vossebeld, D. Weatherill, and I. Wilmut, J. Cosmol. Astropart.
Phys. 2020, 011 (2020).

[25] M.-S. Zhan, J. Wang, W.-T. Ni, D.-F. Gao, G. Wang, L.-X. He,
R.-B. Li, L. Zhou, X. Chen, J.-Q. Zhong, B. Tang, Z.-W. Yao,
L. Zhu, Z.-Y. Xiong, S.-B. Lu, G.-H. Yu, Q.-F. Cheng, M. Liu,
Y.-R. Liang, P. Xu, X.-D. He, M. Ke, Z. Tan, and J. Luo, Int. J.
Mod. Phys. D 29, 1940005 (2020).

[26] M. Abe, P. Adamson, M. Borcean, D. Bortoletto, K.
Bridges, S. P. Carman, S. Chattopadhyay, J. Coleman, N. M.
Curfman, K. DeRose et al., Quantum Sci. Technol. 6, 044003
(2021).

[27] R. Bouchendira, P. Cladé, S. Guellati-Khélifa, F. Nez, and F.
Biraben, Phys. Rev. Lett. 106, 080801 (2011).

[28] R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, Science
360, 191 (2018).

[29] L. Morel, Z. Yao, P. Cladé, and S. Guellati-Khélifa, Nature
(London) 588, 61 (2020).

[30] G. W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C.
Mahadeswaraswamy, and M. A. Kasevich, Phys. Rev. A 91,
033629 (2015).

[31] G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G.
Tino, Nature (London) 510, 518 (2014).

[32] A. Arvanitaki, P. W. Graham, J. M. Hogan, S. Rajendran, and
K. Van Tilburg, Phys. Rev. D 97, 075020 (2018).

[33] P. W. Graham, D. E. Kaplan, J. Mardon, S. Rajendran, and W. A.
Terrano, Phys. Rev. D 93, 075029 (2016).

[34] A. Banerjee, G. Perez, M. Safronova, I. Savoray, and A. Shalit,
arXiv:2211.05174.

[35] P. Hamilton, M. Jaffe, P. Haslinger, Q. Simmons, H. Müller, and
J. Khoury, Science 349, 849 (2015).

[36] X. Wu, Z. Pagel, B. S. Malek, T. H. Nguyen, F. Zi, D. S.
Scheirer, and H. Müller, Sci. Adv. 5, eaax0800 (2019).

[37] K. Bongs, M. Holynski, J. Vovrosh, P. Bouyer, G. Condon, E.
Rasel, C. Schubert, W. P. Schleich, and A. Roura, Nat. Rev.
Phys. 1, 731 (2019).

[38] J. M. McGuirk, M. J. Snadden, and M. A. Kasevich, Phys. Rev.
Lett. 85, 4498 (2000).

[39] H. Müller, S.-w. Chiow, Q. Long, S. Herrmann, and S. Chu,
Phys. Rev. Lett. 100, 180405 (2008).

[40] H. Müller, S.-w. Chiow, S. Herrmann, and S. Chu, Phys. Rev.
Lett. 102, 240403 (2009).

[41] P. Cladé, S. Guellati-Khélifa, F. Nez, and F. Biraben, Phys. Rev.
Lett. 102, 240402 (2009).

[42] M. Gebbe, J.-N. Siemß, M. Gersemann, H. Müntinga, S.
Herrmann, C. Lämmerzahl, H. Ahlers, N. Gaaloul, C. Schubert,
K. Hammerer et al., Nat. Commun. 12, 2544 (2021).

[43] S.-w. Chiow, T. Kovachy, H.-C. Chien, and M. A. Kasevich,
Phys. Rev. Lett. 107, 130403 (2011).

[44] G. D. McDonald, C. C. N. Kuhn, S. Bennetts, J. E. Debs, K. S.
Hardman, M. Johnsson, J. D. Close, and N. P. Robins, Phys.
Rev. A 88, 053620 (2013).

[45] T. Mazzoni, X. Zhang, R. Del Aguila, L. Salvi, N. Poli, and
G. M. Tino, Phys. Rev. A 92, 053619 (2015).

[46] K. Kotru, D. L. Butts, J. M. Kinast, and R. E. Stoner, Phys. Rev.
Lett. 115, 103001 (2015).

[47] B. Plotkin-Swing, D. Gochnauer, K. E. McAlpine, E. S. Cooper,
A. O. Jamison, and S. Gupta, Phys. Rev. Lett. 121, 133201
(2018).

063302-8

https://doi.org/10.1103/PhysRevLett.120.183604
https://doi.org/10.1103/PhysRevLett.118.183602
https://doi.org/10.1103/PhysRevLett.125.191101
https://doi.org/10.1038/nature16155
https://doi.org/10.1103/PhysRevLett.93.240404
https://doi.org/10.1103/PhysRevLett.112.203002
https://doi.org/10.1038/ncomms13786
https://doi.org/10.1088/1367-2630/16/7/073035
https://doi.org/10.1088/1367-2630/17/8/085010
https://doi.org/10.1103/PhysRevLett.113.023005
https://doi.org/10.1103/PhysRevA.88.043615
https://doi.org/10.1088/1367-2630/17/3/035011
https://doi.org/10.1088/1367-2630/18/2/025018
https://doi.org/10.1126/science.abl7152
https://doi.org/10.1103/PhysRevD.78.122002
https://doi.org/10.1103/PhysRevLett.110.171102
https://doi.org/10.1103/PhysRevD.94.104022
https://doi.org/10.1103/PhysRevD.93.021101
https://doi.org/10.1038/s41598-018-32165-z
https://doi.org/10.1007/s10714-011-1182-x
https://doi.org/10.1140/epjqt/s40507-020-0080-0
https://doi.org/10.1088/1475-7516/2020/05/011
https://doi.org/10.1142/S0218271819400054
https://doi.org/10.1088/2058-9565/abf719
https://doi.org/10.1103/PhysRevLett.106.080801
https://doi.org/10.1126/science.aap7706
https://doi.org/10.1038/s41586-020-2964-7
https://doi.org/10.1103/PhysRevA.91.033629
https://doi.org/10.1038/nature13433
https://doi.org/10.1103/PhysRevD.97.075020
https://doi.org/10.1103/PhysRevD.93.075029
http://arxiv.org/abs/arXiv:2211.05174
https://doi.org/10.1126/science.aaa8883
https://doi.org/10.1126/sciadv.aax0800
https://doi.org/10.1038/s42254-019-0117-4
https://doi.org/10.1103/PhysRevLett.85.4498
https://doi.org/10.1103/PhysRevLett.100.180405
https://doi.org/10.1103/PhysRevLett.102.240403
https://doi.org/10.1103/PhysRevLett.102.240402
https://doi.org/10.1038/s41467-021-22823-8
https://doi.org/10.1103/PhysRevLett.107.130403
https://doi.org/10.1103/PhysRevA.88.053620
https://doi.org/10.1103/PhysRevA.92.053619
https://doi.org/10.1103/PhysRevLett.115.103001
https://doi.org/10.1103/PhysRevLett.121.133201


ENHANCING STRONTIUM CLOCK ATOM INTERFEROMETRY … PHYSICAL REVIEW A 107, 063302 (2023)

[48] Z. Pagel, W. Zhong, R. H. Parker, C. T. Olund, N. Y. Yao, and
H. Müller, Phys. Rev. A 102, 053312 (2020).

[49] B. C. Young, Ph.D. thesis, Stanford University, 1997.
[50] N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D.

Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D.
Ludlow, Science 341, 1215 (2013).

[51] B. Bloom, T. Nicholson, J. Williams, S. Campbell, M. Bishof,
X. Zhang, W. Zhang, S. Bromley, and J. Ye, Nature (London)
506, 71 (2014).

[52] J. Rudolph, T. Wilkason, M. Nantel, H. Swan, C. M. Holland,
Y. Jiang, B. E. Garber, S. P. Carman, and J. M. Hogan, Phys.
Rev. Lett. 124, 083604 (2020).

[53] For atom interferometers based on two-photon atom optics,
multiple baselines can be used to achieve improved laser noise
suppression [21].

[54] A. V. Taichenachev, V. I. Yudin, C. W. Oates, C. W. Hoyt, Z. W.
Barber, and L. Hollberg, Phys. Rev. Lett. 96, 083001 (2006).

[55] L. Hu, N. Poli, L. Salvi, and G. M. Tino, Phys. Rev. Lett. 119,
263601 (2017).

[56] L. Hu, E. Wang, L. Salvi, J. N. Tinsley, G. M. Tino, and N. Poli,
Class. Quantum Grav. 37, 014001 (2020).

[57] T. Wilkason, M. Nantel, J. Rudolph, Y. Jiang, B. E. Garber, H.
Swan, S. P. Carman, M. Abe, and J. M. Hogan, Phys. Rev. Lett.
129, 183202 (2022).

[58] A. Arvanitaki, S. Dimopoulos, A. A. Geraci, J. Hogan, and M.
Kasevich, Phys. Rev. Lett. 100, 120407 (2008).

[59] M. H. Levitt, Prog. Nucl. Magn. Reson. Spectrosc. 18, 61
(1986).

[60] L. Emsley and G. Bodenhausen, J. Magn. Reson. 97, 135
(1992).

[61] L. M. K. Vandersypen and I. L. Chuang, Rev. Mod. Phys. 76,
1037 (2005).

[62] H. K. Cummins, G. Llewellyn, and J. A. Jones, Phys. Rev. A
67, 042308 (2003).

[63] E. Collin, G. Ithier, A. Aassime, P. Joyez, D. Vion, and D.
Esteve, Phys. Rev. Lett. 93, 157005 (2004).

[64] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and
S. J. Glaser, J. Magn. Reson. 172, 296 (2005).

[65] P. Doria, T. Calarco, and S. Montangero, Phys. Rev. Lett. 106,
190501 (2011).

[66] T. Caneva, T. Calarco, and S. Montangero, Phys. Rev. A 84,
022326 (2011).

[67] M. Mueller, R. S. Said, F. Jelezko, T. Calarco, and S.
Montangero, Rep. Prog. Phys. 85, 076001 (2022).

[68] M. Grace, C. Brif, H. Rabitz, I. A. Walmsley, R. L. Kosut, and
D. A. Lidar, J. Phys. B 40, S103 (2007).

[69] P. Rebentrost, I. Serban, T. Schulte-Herbrüggen, and F. K.
Wilhelm, Phys. Rev. Lett. 102, 090401 (2009).

[70] M. Abdelhafez, B. Baker, A. Gyenis, P. Mundada, A. A.
Houck, D. Schuster, and J. Koch, Phys. Rev. A 101, 022321
(2020).

[71] C. P. Koch, U. Boscain, T. Calarco, G. Dirr, S. Filipp, S. J.
Glaser, R. Kosloff, S. Montangero, T. Schulte-Herbrüggen, D.
Sugny et al., EPJ Quantum Technol. 9, 19 (2022).

[72] L. Magrini, P. Rosenzweig, C. Bach, A. Deutschmann-Olek,
S. G. Hofer, S. Hong, N. Kiesel, A. Kugi, and M. Aspelmeyer,
Nature (London) 595, 373 (2021).

[73] T. Weiss, M. Roda-Llordes, E. Torrontegui, M. Aspelmeyer, and
O. Romero-Isart, Phys. Rev. Lett. 127, 023601 (2021).

[74] D. L. Butts, K. Kotru, J. M. Kinast, A. M. Radojevic, B. P.
Timmons, and R. E. Stoner, J. Opt. Soc. Am. B 30, 922 (2013).

[75] A. Dunning, R. Gregory, J. Bateman, N. Cooper, M.
Himsworth, J. A. Jones, and T. Freegarde, Phys. Rev. A 90,
033608 (2014).

[76] P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W. P.
Schleich, F. A. Narducci, W. Ertmer, and E. M. Rasel, Phys.
Rev. Lett. 114, 063002 (2015).

[77] Y. Luo, S. Yan, Q. Hu, A. Jia, C. Wei, and J. Yang, Eur. Phys. J.
D 70, 262 (2016).

[78] T. Kovachy, S.-w. Chiow, and M. A. Kasevich, Phys. Rev. A 86,
011606(R) (2012).

[79] J. C. Saywell, I. Kuprov, D. Goodwin, M. Carey, and T.
Freegarde, Phys. Rev. A 98, 023625 (2018).

[80] J. Saywell, M. Carey, M. Belal, I. Kuprov, and T. Freegarde,
J. Phys. B 53, 085006 (2020).

[81] J. Saywell, M. Carey, I. Kuprov, and T. Freegarde, Phys. Rev.
A 101, 063625 (2020).

[82] M. H. Goerz, M. A. Kasevich, and V. S. Malinovsky, in Optical
and Quantum Sensing and Precision Metrology (SPIE, Belling-
ham, WA, 2021), Vol. 11700, p. 1170005.

[83] M. H. Goerz, M. A. Kasevich, and V. S. Malinovsky, Atoms 11,
36 (2023).

[84] H. Ball, M. J. Biercuk, A. R. Carvalho, J. Chen, M. Hush, L. A.
De Castro, L. Li, P. J. Liebermann, H. J. Slatyer, C. Edmunds
et al., Quantum Sci. Technol. 6, 044011 (2021).

[85] A. Bertoldi, C.-H. Feng, D. S. Naik, B. Canuel, P. Bouyer, and
M. Prevedelli, Phys. Rev. Lett. 127, 013202 (2021).

[86] R. Nourshargh, S. Lellouch, S. Hedges, M. Langlois, K. Bongs,
and M. Holynski, Comm. Phys. 4, 257 (2021).

[87] M. H. Goerz, E. J. Halperin, J. M. Aytac, C. P. Koch, and K. B.
Whaley, Phys. Rev. A 90, 032329 (2014).

[88] G. T. Genov and N. V. Vitanov, Phys. Rev. Lett. 110, 133002
(2013).

[89] C. Deppner, W. Herr, M. Cornelius, P. Stromberger, T. Sternke,
C. Grzeschik, A. Grote, J. Rudolph, S. Herrmann, M. Krutzik,
A. Wenzlawski, R. Corgier, E. Charron, D. Guéry-Odelin, N.
Gaaloul, C. Lämmerzahl, A. Peters, P. Windpassinger, and
E. M. Rasel, Phys. Rev. Lett. 127, 100401 (2021).

[90] T. Kovachy, J. M. Hogan, A. Sugarbaker, S. M. Dickerson,
C. A. Donnelly, C. Overstreet, and M. A. Kasevich, Phys. Rev.
Lett. 114, 143004 (2015).

[91] For instance, using commercially available laser systems from
Menlo Systems.

[92] G. Feng, F. H. Cho, H. Katiyar, J. Li, D. Lu, J. Baugh, and R.
Laflamme, Phys. Rev. A 98, 052341 (2018).

[93] M. Boyd, Ph.D. thesis, University of Colorado, 2007.
[94] H. J. Metcalf and P. Van der Straten, Laser Cooling and Trap-

ping (Springer Science & Business Media, New York, 1999).

063302-9

https://doi.org/10.1103/PhysRevA.102.053312
https://doi.org/10.1126/science.1240420
https://doi.org/10.1038/nature12941
https://doi.org/10.1103/PhysRevLett.124.083604
https://doi.org/10.1103/PhysRevLett.96.083001
https://doi.org/10.1103/PhysRevLett.119.263601
https://doi.org/10.1088/1361-6382/ab4d18
https://doi.org/10.1103/PhysRevLett.129.183202
https://doi.org/10.1103/PhysRevLett.100.120407
https://doi.org/10.1016/0079-6565(86)80005-X
https://doi.org/10.1016/0022-2364(92)90242-Y
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1103/PhysRevA.67.042308
https://doi.org/10.1103/PhysRevLett.93.157005
https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1103/PhysRevLett.106.190501
https://doi.org/10.1103/PhysRevA.84.022326
https://doi.org/10.1088/1361-6633/ac723c
https://doi.org/10.1088/0953-4075/40/9/S06
https://doi.org/10.1103/PhysRevLett.102.090401
https://doi.org/10.1103/PhysRevA.101.022321
https://doi.org/10.1140/epjqt/s40507-022-00138-x
https://doi.org/10.1038/s41586-021-03602-3
https://doi.org/10.1103/PhysRevLett.127.023601
https://doi.org/10.1364/JOSAB.30.000922
https://doi.org/10.1103/PhysRevA.90.033608
https://doi.org/10.1103/PhysRevLett.114.063002
https://doi.org/10.1140/epjd/e2016-70428-6
https://doi.org/10.1103/PhysRevA.86.011606
https://doi.org/10.1103/PhysRevA.98.023625
https://doi.org/10.1088/1361-6455/ab6df6
https://doi.org/10.1103/PhysRevA.101.063625
https://doi.org/10.3390/atoms11020036
https://doi.org/10.1088/2058-9565/abdca6
https://doi.org/10.1103/PhysRevLett.127.013202
https://doi.org/10.1038/s42005-021-00754-6
https://doi.org/10.1103/PhysRevA.90.032329
https://doi.org/10.1103/PhysRevLett.110.133002
https://doi.org/10.1103/PhysRevLett.127.100401
https://doi.org/10.1103/PhysRevLett.114.143004
https://doi.org/10.1103/PhysRevA.98.052341

