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Streaking single-electron ionization in open-shell molecules driven by x-ray pulses
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We obtain continuum molecular wavefunctions for open-shell molecules in the Hartree-Fock framework. We
do so while accounting for the singlet or triplet total spin symmetry of the molecular ion, that is, of the open-shell
orbital and the initial orbital where the electron ionizes from. Using these continuum wavefunctions, we obtain
the dipole matrix elements for a core electron that ionizes due to single-photon absorption by a linearly polarized
x-ray pulse. After ionization from the x-ray pulse, we control or streak the electron dynamics using a circularly
polarized infrared (IR) pulse. For a high-intensity IR pulse and photon energies of the x-ray pulse close to the
ionization threshold of the 1σ or 2σ orbitals, we achieve control of the angle of escape of the ionizing electron
by varying the phase delay between the x-ray and IR pulses. For a low-intensity IR pulse, we obtain final electron
momenta distributions on the plane of the circularly polarized IR pulse and we find that many features of these
distributions correspond to the angular patterns of electron escape solely due to the x-ray pulse.
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I. INTRODUCTION

The development of subfemtosecond extreme ultraviolet
(XUV) and x-ray pulses has revolutionized our ability to study
electron dynamics in the time domain. For example, using
attosecond spectroscopy with co-timed XUV and infrared
(IR) pulses it is possible to time-resolve the photoemission
process in atomic [1], molecular [2], and solid-state targets
[3,4] using the technique known as attosecond streaking [5].
These streaking experiments are typically performed in the
low-IR-intensity limit; that is, the ponderomotive energy is
lower than the kinetic energy of the electron. However, it has
been demonstrated that at higher IR intensities, the properties
of the IR field dominate the final momentum distribution
and the IR field controls the electron motion [6]. Recently,
there has been substantial effort to extend the streaking
methodology to x-ray free electron laser (XFEL) sources,
which provide a source of high-intensity x-ray pulses, for
the purpose of characterizing the temporal structure of the
x-ray pulse [7–10]. This includes the development of angular
streaking, which employs a circularly polarized IR laser field
[11–14]. Similar to studies using table-top sources, XFEL
streaking has been extended to study the time-dependent
emission pattern of core-excited and core-ionized systems
undergoing the Auger-Meitner decay process [14,15],
providing insight into electron coherence and entanglement.
In this work, we demonstrate the extension of the angular
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streaking technique [11,14,16,17] to study the time-dependent
photoemission in open-shell molecular systems. Most studies
of imaging or controlling single-electron ionization instigated
by free electron laser (FEL) pulses involve closed-shell
molecules [18–21], as they are easier to study compared
to open-shell molecules. Indeed, following ionization, for
closed-shell molecules, the final molecular ion is in a doublet
spin state. For open-shell molecules, the final molecular ion
is in a singlet or triplet spin state; that is, the total spin of the
open-shell orbital and the orbital where the electron ionizes
from is zero or one [22]. In this work, we study single-electron
ionization due to single-photon absorption from the
open-shell molecule NO when driven by a linearly polarized
x-ray pulse. In addition, we streak the electron dynamics
with a circularly polarized IR pulse. While previous studies
have considered streaking ionization from valence orbitals
of NO [23], here we address streaking of single-electron
ionization from the core orbitals 1σ and 2σ . To achieve this,
first, in Sec. II A we obtain the dipole matrix element for an
electron to ionize following single-photon absorption by an
x-ray laser pulse. To compute the dipole matrix element, we
describe in Sec. II C how to compute the continuum molecular
wavefunctions for open-shell molecules in the Hartree-Fock
(HF) framework. We do so while fully accounting for
the singlet or triplet symmetry of the final molecular ion. In
Sec. II B, we employ the strong-field approximation [24,25] to
account for the effect of an IR laser pulse on the dynamics of
an electron transitioning from a bound molecular state to the
continuum due to an x-ray pulse. Employing the techniques
we have developed in Sec. II, using a high-intensity IR pulse
we demonstrate control of electron ionization triggered by
an x-ray pulse in Sec. III D. That is, we show that there is
a one-to-one mapping of the angle of electron escape to the
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phase delay between the x-ray and IR pulses. We note that a
high-intensity (low-intensity) IR pulse refers to an IR pulse
with ponderomotive energy that is larger (smaller) than the
electron energy following ionization from just the x-ray pulse.
Finally, in Sec. III E, we use a low-intensity IR pulse to streak
electron ionization by an x-ray pulse. To do so, we obtain
doubly differential final electron momenta distributions. We
find that several features of these distributions arise from an-
gular patterns of electron ionization solely due to the presence
of the x-ray pulse. Such final electron momenta distributions
are relevant to the computation of time delays [26,27].

II. METHOD

A. Dipole matrix element of an ionizing electron
due to single-photon absorption

In the laboratory frame, the dipole matrix element of an
electron ionizing due to single-photon absorption is expressed
in the length gauge as follows:

DM (�k′) =
∑

l1,m1,m2,m

eiσl1 (−i)l1Dl1
m2,m1

(R̂)D1∗
M,m(R̂)

× Yl1,m2 (k̂′)Dl1,m1,m, (1)

where

Dl1,m1,m =
∫

d�rψ∗
l1,m1

(�r; k)

√
4π

3
rY1,m(r̂)ψi(�r). (2)

Details on deriving the dipole matrix element are provided
in Ref. [6]. In Eqs. (1) and (2), l1 is the angular momentum
quantum number, while m1 and m2 are the magnetic quantum
numbers. The polarization of the photon in the laboratory
and molecular frames are denoted by M and m, respectively.
Moreover, the vector �k′ = (k, θ, φ) is the momentum in the
laboratory frame of the electron escaping to the continuum
due to single-photon absorption; �r is the position of this elec-
tron in the molecular frame. The energy of the ionizing elec-
tron is denoted by ε, with ε = k2

2 = (k′ )2

2 . The basis functions
ψl1m1 (�r; k) are the continuum energy molecular eigenstates
of a molecule normalized in energy ε. Also, ψi(�r) are the
wavefunctions of the bound orbital i of the molecule under
consideration. We express the continuum and bound-state
wavefunctions using a single center expansion (SCE) [18,28]

ψ (�r) =
∑
lm

Plm(r)Ylm(θ, φ)

r
, (3)

where Ylm is a spherical harmonic and Plm is the radial part
of the wavefunction. To obtain the continuum wavefunction,
we solve a system of HF equations [6,18]. Note that we fully
account for the Coulomb potential. The Coulomb phase shift
σl1 (k) is given by arg �(l1 + 1 − iZ

k ), with Z the net charge
of the molecular ion resulting after an electron ionizes. In
this work we use atomic units unless otherwise stated. In
addition, in Eqs. (1) and (2), the matrices D denote Wigner
D functions [29,30], which transform functions from one
coordinate system to another. Here, we use the Wigner D
functions to rotate from the molecular frame to the laboratory
frame. The z axis of the molecular frame is along the principal
axis of the molecule. The z axis of the laboratory frame is

the same as the polarization direction of the x-ray pulse.
In Eq. (1), the Wigner D function Dl1

m2,m1
(R̂) transforms

the spherical harmonic of the momentum eigenstate, and
D1∗

M,m(R̂) transforms the spherical harmonic related to the
dipole operator. The Euler angles R̂ = (α, β, γ ) define the
transition from the molecular frame to the laboratory frame.
For the Euler angles, we use the convention adapted by
Rose [29]. Namely, to transition from the molecular to the
laboratory frame, we perform a rotation through an angle α

about the z axis, then a rotation through an angle β about the
new y axis (the y axis after the first rotation), and finally a
rotation through an angle γ about the new z axis (the z axis
after the second rotation). Wigner D functions are the matrix
elements of the rotation operator R = e−iαJz e−iβJy e−iγ Jz , i.e.,

Dl
m′,m(R̂) = Dl

m′,m(α, β, γ )

= 〈lm′|R(α, β, γ )|lm〉
= e−im′αdl

m′,m(β )e−imγ , (4)

where

dl
m′,m(β ) = [(l + m′)!(l − m′)!(l + m)!(l − m)!]

1
2

×
min(l+m,l−m′ )∑
s=max(0,m−m′ )

[
(−1)m′−m+s

(
cos β

2

)2l+m−m′−2s

(l + m − s)!s!

×
(
sin β

2

)m′−m+2s

(m′ − m + s)!(l − m′ − s)!

]
. (5)

Details concerning the efficient computation of the function
dl

m′,m are given in Ref. [31], which we also adopt in this work.
For diatomic molecules, the magnetic quantum number is
a good number and one can show that Eq. (1) simplifies as
follows:

DM (�k′) =
∑

l1,m2,m

eiσl1 (−i)l1Dl1
m2,m+mi

(R̂)D1∗
M,m(R̂)

× Yl1,m2 (k̂′)Dl1,m+mi,m, (6)

where mi is the magnetic quantum number of the bound
molecular orbital i. The Euler angles are expressed in terms
of the polar and azimuthal angles of the symmetry axis of the
diatomic molecule as R̂ = (φmol, θmol, 0). The total photoion-
ization cross section for a diatomic molecule is given by

σi→ε = 4

3
απ2ωNi

∑
M=−1,0,1

∑
l1

Dl1,M+mi,MD∗
l1,M+mi,M , (7)

where α is the fine structure constant, Ni is the occupation
number of the initial molecular orbital i, and ω is the photon
energy.

B. Transition amplitude of an electron from a bound
to a continuum state due to combined x-ray and IR pulses

An electron is released into the continuum with momentum
�k′ at time tion by an x-ray pulse. Then, neglecting the Coulomb
potential, the ionizing electron is accelerated by a circular IR
laser pulse polarized on the x−z plane. Hence, the conserved
canonical momentum due to the motion of the electron in the
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IR laser field is given by

�k′(tion) − �AIR(tion) = �k′(t ) − �AIR(t ) = �p f , (8)

where �p f is the final electron momentum at the end of the IR
laser field. The vector potential of the IR pulse, �AIR, is given
by

�AIR(t ) = − E IR
0

ωIR
exp

[
−2 log

(
t

τIR

)2
]

× {sin[ωIRt + φ]x̂ + cos[ωIRt + φ]ẑ}, (9)

where φ is the phase delay between the x-ray and IR pulses,
and E IR

0 is the amplitude and ωIR the frequency of the electric
field of the IR pulse, with τIR being the full width at half
maximum (FWHM) in intensity. The envelope of the electric
field of the x-ray pulse that ionizes a single electron is given
by

�EX(t ) = EX
0 exp

[
−2 log

(
t

τX

)2
]

ẑ, (10)

where EX
0 is the amplitude and τX is the FWHM in intensity of

the x-ray pulse. According to the strong-field approximation
(SFA) [24,25], the amplitude for an electron to transition from
a bound state ψi to a final state with momentum �p f in the
presence of the x-ray and IR laser fields is given by

a( �p f ) =
∫ t f

ti

dtionEX(tion)DM ( �p f + �AIR(tion))

× e−iS(tion,t f , �p f ). (11)

The times ti and t f denote the start and end, respectively, of
the IR laser field. The classical action S accumulated during
the time interval from tion until t f is given by

S(tion, t f , �p f ) = − Iption +
∫ t f

tion

dt ′ [ �p f + �AIR(t ′)]2

2

= p2
f

2
(t f − tion) − Iption

+
∫ t f

tion

dt
�AIR(t ) · [ �AIR(t ) + 2 �p f ]

2
. (12)

For details on the computation of a( �p f ), see Ref. [6]. We
compute a( �p f ) classically using the quantum expression we
obtain for DM . We obtain the total amplitude A( �p f ) for a
certain final electron momentum �p f by adding coherently the
amplitudes ai for all trajectories i with the same �p f as follows:

|A( �p f )|2 =
∣∣∣∣∣∑

i

ai( �p f )

∣∣∣∣∣
2

. (13)

To compute A( �p f ), we first create a two-dimensional grid of
the angles of ejection of the electron due to the x-ray pulse in
the laboratory frame, θX and φX. The polar angle θX ranges
from 0◦ to 180◦ in steps of 1◦, while the azimuthal angle φX

ranges from 0◦ to 360◦ in steps of 10◦. For each θX and φX,
we produce 2 × 107 ionization times tion using importance
sampling [32] in the time interval [−2.5τX, 2.5τX]. For the
probability distribution in the importance sampling, we use

the amplitude of the x-ray pulse at time tion, i.e., EX
0 (tion). For

each classical trajectory i, we propagate the electron in the
IR laser field from time tion to time t f . Then, we create two
final grids. One such grid is in cylindrical coordinates, that is,
(pf r, pf y, θ ), and is relevant to our computations in Sec. III D.
The momenta components pf y and pf r vary from −5 to 5 a.u.
and 0 to 5 a.u., respectively, in steps of 0.01 a.u., while the
angle θ varies from 0◦ to 360◦ in steps of 1◦. The second grid
is in Cartesian coordinates, (pf x, pf y, pf z ), and is relevant to
our computations in Sec. III E. All three components of this
latter grid vary from −5 to 5 a.u. in steps of 0.01 a.u.

C. Continuum wavefunction for an open-shell molecule

As mentioned above, we obtain the continuum wavefunc-
tion by solving a system of HF equations [6,18,33] given by

−1

2
∇2ψε (�r1)︸ ︷︷ ︸

Kinetic energy

−
nuc∑
n

Zn

|�r1 − �Rn|
ψε (�r1)

︸ ︷︷ ︸
Electron-nuclei

+
orb∑

i

ai

∫
d�r2

ψ∗
i (�r2)ψi(�r2)

r12
ψε (�r1)

︸ ︷︷ ︸
Direct interaction

−
orb∑

i

bi

∫
d�r2

ψ∗
i (�r2)ψε (�r2)

r12
ψi(�r1)

︸ ︷︷ ︸
Exchange interaction

= εψε (�r1), (14)

where r12 = |�r1 − �r2|, ψε is the continuum wavefunction with
energy ε corresponding to a channel l1, m1, and ψi is the
bound wavefunction for orbital i. The electron-electron in-
teraction involves the direct- and exchange-interaction terms
in Eq. (14). Multiplying the terms in Eq. (14) by ψ∗

ε (�r1) and
integrating over �r1, we obtain in Dirac notation the following
equation:

orb∑
i

aiJiε −
orb∑

i

biKiε = εee〈ψε |ψε〉, (15)

where εee is the contribution of the electron-electron interac-
tion terms to the total energy ε and

Jiε = 〈ψiψε | 1

r12
|ψiψε〉,

(16)

Kiε = 〈ψiψε | 1

r12
|ψεψi〉,

are the direct and exchange terms, respectively. Applying the
variational principle [33,34], we obtain

orb∑
i

aiJi|ψε〉 −
orb∑

i

biKi|ψε〉 = εee|ψε〉, (17)

where

Ji|ψε〉 = 〈ψi| 1

r12
|ψi〉|ψε〉,

Ki|ψε〉 = 〈ψi| 1

r12
|ψε〉|ψi〉. (18)

063111-3



M. E. MOUNTNEY et al. PHYSICAL REVIEW A 107, 063111 (2023)

The coefficient ai is the occupation of each bound orbital i,
with ai = 0, 1, 2 for each molecular orbital. In what follows,
we describe how to obtain the coefficients bi.

For closed-shell molecules in the ground state, after an
electron ionizes, the resulting molecular ion is left in a doublet
state. In the HF framework, the wavefunction of the bound
electrons and the ionizing electron can be expressed as a sin-
gle Slater determinant. However, for open-shell molecules in
the ground state, after an electron ionizes from a bound orbital
i, the resulting molecular ion can be in a singlet or triplet spin
state between the open-shell orbital in the ground molecular
state and the orbital i. Hence, in the HF framework, in order
to account for the different spin states of the molecular ion
the wavefunction must be written as a linear combination
of Slater determinants. Here, we consider the NO open-shell
molecule, with electronic configuration (1σ 2, 2σ 2, 3σ 2, 4σ 2,
1π2

x , 1π2
y , 5σ 2, 2π1). This partially filled 2π orbital is what

leads to singlet and triplet states of the molecular ion after
ionization. For a singlet state of the molecular ion between
the i and 2π orbitals, the wavefunction of the molecular ion
and the continuum electron is given by the following linear
combination of Slater determinants [22]:

�(�r1, �r2, . . . , �rN ) = 1√
2

[|{ψ j} j 
=i,2πψ
↑
i ψ

↓
2πψ↑

ε |

− |{ψ j} j 
=i,2πψ
↓
i ψ

↑
2πψ↑

ε |], (19)

where �r1, �r2, . . . , �rN are the positions of the electrons and
{ψ j} j 
=i,2π are the 12 spin orbital wavefunctions of the elec-
trons, not including the orbitals i and 2π . Orbitals with spin 1

2
are denoted by an up arrow and orbitals with spin − 1

2 are de-
noted by a down arrow. Next, we verify that the wavefunction
in Eq. (19) indeed corresponds to a singlet state by applying
the spin projection operator Ŝz and the total spin operator Ŝ2.
As shown in Ref. [35], application of the Ŝz operator to a Slater
determinant � results in

Ŝz� = MS�,
(20)

MS = 1
2 (nα − nβ ),

where nα and nβ are the number of columns with spin up
and spin down, respectively. Moreover, as shown in Ref. [35],
applying the operator Ŝ2 on � results in

Ŝ2� =
{ ∑

P

P̂αβ + 1

4
[(nα − nβ )2 + 2nα + 2nβ]

}
�, (21)

where P̂αβ is an operator interchanging opposite α and β spins
in �. One can show using the properties of determinants that
applying these spin operators to the states {ψ j} j 
=i,2π equates
to zero, meaning it is sufficient to apply the operators only
to the three-particle system between the orbitals i, 2π , and ε.
Hence, the eigenvalue for the Ŝz on the state � is given by

Ŝz� = 1√
2

(Ŝz|ψ↑
i ψ

↓
2πψ↑

ε | − Ŝz|ψ↓
i ψ

↑
2πψ↑

ε |)

= 1√
2

(
1

2
(2 − 1)|ψ↑

i ψ
↓
2πψ↑

ε | − 1

2
(2 − 1)|ψ↓

i ψ
↑
2πψ↑

ε |
)

= 1

2
�. (22)

This is consistent with the spin of the 2π and i orbitals being
zero and the spin of the continuum electron being + 1

2 . Next,
the eigenvalue of the Ŝ2 operator when applied to the � singlet
state is given by

Ŝ2� = 1√
2

(Ŝ2|ψ↑
i ψ

↓
2πψ↑

ε | − Ŝ2|ψ↓
i ψ

↑
2πψ↑

ε |)

= 1√
2

[
|ψ↓

i ψ
↑
2πψ↑

ε | + |ψ↑
i ψ

↑
2πψ↓

ε |

+ 1

4
((2 − 1)2 + 4 + 2)|ψ↑

i ψ
↓
2πψ↑

ε |
]

− 1√
2

[
|ψ↑

i ψ
↓
2πψ↑

ε | + |ψ↑
i ψ

↑
2πψ↓

ε |

+ 1

4
((2 − 1)2 + 4 + 2)|ψ↓

i ψ
↑
2πψ↑

ε |
]

= 3

4
�. (23)

This is consistent with the i and 2π orbitals having spin equal
to zero and the continuum electron having total spin + 1

2 .
Using the wavefunction �, one can show that obtaining the
bi coefficients is equivalent to obtaining the bi coefficients
from two limiting cases. The first case involves the electrons
in bound orbitals i and 2π and the continuum electron ε, while
the other case involves the two electrons in closed orbitals j
and the continuum electron. For the first case, we consider the
three-electron wavefunction

�(�r1, �r2, �r3) = 1√
2

⎛
⎜⎜⎜⎝ 1√

3!

∣∣∣∣∣∣∣∣∣
ψ

↑
i (�r1) ψ

↓
2π (�r1) ψ↑

ε (�r1)

ψ
↑
i (�r2) ψ

↓
2π (�r2) ψ↑

ε (�r2)

ψ
↑
i (�r3) ψ

↓
2π (�r3) ψ↑

ε (�r3)

∣∣∣∣∣∣∣∣∣

− 1√
3!

∣∣∣∣∣∣∣∣∣
ψ

↓
i (�r1) ψ

↑
2π (�r1) ψ↑

ε (�r1)

ψ
↓
i (�r2) ψ

↑
2π (�r2) ψ↑

ε (�r2)

ψ
↓
i (�r3) ψ

↑
2π (�r3) ψ↑

ε (�r3)

∣∣∣∣∣∣∣∣∣

⎞
⎟⎟⎟⎠.

(24)

To obtain the electron-electron interaction terms in Eqs. (14)
and (15), we compute

〈�| 1

r12
+ 1

r13
+ 1

r23
|�〉, (25)

which we find to be equal to

〈�| 1

r12
+ 1

r13
+ 1

r23
|�〉 = 1

2
(2Ji,2π + 2Ji,ε + 2J2π,ε − Ki,ε

− K2π,ε + 2Ki,2π ). (26)

Using the variational principle with respect to ψε , we obtain(
Ji − 1

2 Ki + J2π − 1
2 K2π

)
ψε = εeeψε. (27)

Comparing Eq. (17) with Eq. (27), we find ai = 1, a2π = 1,
bi = 1

2 , and b2π = 1
2 . The other limiting case involves two

electrons in a closed shell j and a continuum electron. In this
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TABLE I. Ionization energies of the 1σ , 2σ , and 4σ orbitals for
NO.

Orbital This work (eV) Experiment (eV)

1σ 1� 543.5 543.8 [4]
1σ 3� 543.1 543.3 [4]
2σ 1� 411.6 411.8 [4]
2σ 3� 410.2 410.3 [4]
4σ 1� 23.0 21.8 [40]
4σ 3� 21.2 21.7 [40]

case, the three-electron wavefunction is given by

�(�r1, �r2, �r3) = 1√
3!

∣∣∣∣∣∣∣∣
ψ

↑
j (�r1) ψ

↓
j (�r1) ψ↑

ε (�r1)

ψ
↑
j (�r2) ψ

↓
j (�r2) ψ↑

ε (�r2)

ψ
↑
j (�r3) ψ

↓
j (�r3) ψ↑

ε (�r3)

∣∣∣∣∣∣∣∣. (28)

Using the same method as above, we find a j = 2 and b j = 1.
Finally, one can show that for the triplet state of the molecular
ion between orbitals i and 2π , the wavefunction is given by

� = 1√
6

[2|{ψ j} j 
=i,2πψ
↑
i ψ

↑
2πψ↓

ε | − |{ψ j} j 
=i,2πψ
↓
i ψ

↑
2πψ↑

ε |

− |{ψ j} j 
=i,2πψ
↑
i ψ

↓
2πψ↑

ε |]. (29)

Following the same method as above, we find that ai = 1, bi

= − 1
2 , a2π = 1, b2π = − 1

2 , a j = 2, and b j = 1.

III. RESULTS

A. Computation of the bound and continuum orbitals

First, we compute the ionization energies of the 1σ , 2σ ,
and 4σ orbitals. We do so using the complete active space
self-consistent field (CASSCF) method [36] in the framework
of the quantum chemistry package MOLPRO [37]. In MOLPRO,
we employ the augmented Dunning correlation consistent
quadruple valence basis set (aug-cc-pVQZ) [38]. We find the
equilibrium distance of the ground state of NO to be equal to
1.1508 Å, in agreement with Ref. [39]. In Table I, we compare
the ionization energies we obtain with experimental results
[4,40]. Table I shows that our results agree very well with
experimental ones, particularly for the 1σ and 2σ orbitals. We
consider single-photon absorption due to the x-ray pulse from
the core orbitals 1σ and 2σ , which are localized on the oxygen
and nitrogen sides, respectively. We also obtain the single-
photon ionization cross section for the valence orbital 4σ . For
the calculation of the photoionization cross section from the
4σ orbital, we use the bound orbitals of the ground state of
NO. However, for ionization from the 1σ and 2σ orbitals, we
use the bound orbitals of the excited state of NO+ with a core
hole in the 1σ or 2σ orbital. The reason is that for ionization
from the 1σ or 2σ orbital the hole state is highly localized.
This causes the electron density of the remaining electrons to
adjust to this new potential. For ionization from the 4σ orbital,
the hole is delocalized, so the effect of orbital relaxation is
less noticeable (see Refs. [4,41,42]). We compute the bound
states using the HF method with the aug-cc-pVQZ basis set.
Moreover, we find that in the single center expansion [see
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FIG. 1. Photoionization cross sections for NO (a) from the 2σ

orbital and (b) from the 4σ orbital. In (a), we compare the results
we obtain for the singlet state of NO+ (solid dark grey line) and for
the triplet state of NO+ (solid black line) with the theoretical results
of Lin and Lucchese [41] for the singlet (dashed dark grey line) and
triplet (dashed black line) of NO+, as well as with the experimental
results of Hosaka et al. [43] (dark grey diamonds and black squares).
The total cross section we obtain for the singlet plus the triplet state
of NO+ (solid light grey line) is compared with the theoretical results
of Wallace et al. [45] (dashed light grey line). In (b), we compare the
results we obtain for the triplet state of NO+ (solid black line) with
the theoretical results of Wallace et al. [45] (dashed black line), as
well as with the experimental results of Brion and Tan [44] (black
squares). We also show the results we obtain for the singlet state of
NO+ (solid dark grey line).

Eq. (3)] it suffices to truncate the expansion over the l quan-
tum numbers up to lmax = 30 for the bound wavefunctions
and lmax = 19 for the continuum wavefunctions. This trunca-
tion ensures convergence of the single-photon ionization cross
sections. Also, we note that in the computation of the dipole
matrix element in Eq. (6) for the 1σ , 2σ , and 4σ states, we
use mi = 0.

B. Photoionization cross sections

In Fig. 1, we compare the total photoionization cross sec-
tions from the 2σ and 4σ orbitals obtained in this work using
Eq. (7) with the experimental results of Refs. [43,44], as well
as with the theoretical results of Refs. [41,45]. For ionization
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from the 2σ orbital, the cross sections we obtain for the singlet
and triplet states [Fig. 1(a)] exhibit a shape resonance [46]
at roughly 417 and 418 eV, respectively, which are a few eV
higher than the resonances obtained in the theoretical work of
Lin and Lucchese [41]. We find that besides this offset in the
location of the shape resonance, the overall shape of the cross
section for the singlet state with respect to the photon energy is
in very good agreement with the cross section obtained by Lin
and Lucchese [41]. However, the maximum cross section we
obtain for the triplet state is roughly two times higher than
the one obtained by Lin and Lucchese [41]. For large photon
energies, the results we obtain for the singlet and triplet states
agree with Lin and Lucchese [41] as well as with the experi-
mental results [43]. The total cross section of the singlet plus
the triplet states of NO+ obtained in this work is found to be
in close agreement with the theoretical result of Wallace et al.
[45]. We note that the theoretical technique we use to obtain
the cross sections is more accurate than the method employed
by Wallace et al. [45] but less accurate than the one used
by Lin and Lucchese [41]. Specifically, the work of Wallace
et al. [45] employs the multiple scattering method (MSM),
where the cross section of the singlet and triplet states differs
only by the spin-statistical ratio of 1:3. Lin and Lucchese
[41] compute the continuum wavefunctions separately for the
singlet and triplet states using the multichannel Schwinger
configuration interaction (MCSCI) method. In our work, we
compute the continuum wavefunctions in the Hartree-Fock
framework using different coefficients bi for the singlet and
triplet states, as discussed in Sec. II C. Finally, we multiply by
the spin-statistical ratio 1:3 the cross sections of the singlet
and triplet states of NO+. In Fig. 1(b), we compare our results
for the photoionization cross section from the 4σ orbital for
the triplet state of NO+ with the theoretical result of Wallace
et al. [45] and with the experimental result of Brion and
Tan [44]. We find that all results exhibit a shape resonance
at roughly 31 eV and have similar values for high photon
energies. However, the cross section we obtain for the triplet
state of NO+ has a better agreement with the experiment [44]
compared to the cross section obtained by Wallace et al. [45].

C. Photoionization by the x-ray pulse

In what follows, we obtain the differential cross section for
an electron to ionize by single-photon absorption from the O
side, 1σ orbital, or the N side, 2σ orbital, only due to the
x-ray laser field. In Fig. 2, we plot the absolute value square
of DM (�k′) in Eq. (6), which is proportional to the differential
cross section. Since we consider a linearly polarized x-ray
pulse, the polarization of the photon in the laboratory frame M
is equal to zero. We do so for two different photon energies:
one close to threshold, i.e., 546 eV for the 1σ and 413 eV for
the 2σ orbital, and for a photon energy significantly higher
than the ionization threshold, i.e., 623 eV for the 1σ and
490 eV for the 2σ orbital. As expected, we find that for
the high photon energies the electron has significantly higher
probability to ionize towards the side where the electron orig-
inally ionizes from. That is, for ionization from the 1σ orbital
the electron mostly escapes towards the O side for a photon
energy of 623 eV. For ionization from the 2σ orbital, the
electron mostly ionizes along the N side for a photon energy

N O N O

FIG. 2. Differential cross section for an electron to ionize at a
certain angle θX from [(a), (b)] the 1σ orbital and [(c), (d)] the 2σ

orbital for the triplet state of NO+.

of 490 eV. However, for lower photon energies the electron
has significant probability to ionize towards the other side as
well [see Figs. 2(a) and 2(c)].

D. Control of electron ionization triggered by an x-ray pulse

Coherent control is an important tool with wide applica-
tions in quantum optics and metrology [47–49], attosecond
metrology [50,51], optoelectronics [52], and laser cooling
[53,54]. Recent studies [55–58] succeeded in steering the
direction of electron current by controlling the quantum in-
terference of excitation or ionization pathways resulting from
a mid-IR ω pulse and its second harmonic 2ω [55]. Control
of the interference between the two-photon (ω) and single-
photon (2ω) pathways and finally of the direction of electron
motion was achieved using as a tool the phase delay of the
two pulses [55]. In this optical technique, the dimensions
over which the electron current is generated are limited to
roughly one wavelength of the infrared light that is used to
accelerate the electrons [59], i.e., to a few micrometers. Using
coherent control of one- and two-photon processes to reduce
to the nanometer scale the dimensions over which current
is produced requires optically generating ω and 2ω vacuum
ultraviolet (VUV) light beams. This is currently impractical.
In what follows, we theoretically demonstrate that control of
electron currents generated at roughly a few nanometers is
possible. We demonstrate control by varying the phase de-
lay between a linearly polarized x-ray pulse and a circularly
polarized IR pulse, while keeping the orientation of the NO
molecule fixed and parallel to the linear polarization of the
x-ray pulse. Specifically, for high intensities of the IR pulse
we find a one-to-one correspondence between the final angle
of electron escape and the phase delay between the x-ray and
IR pulses. This was shown in Ref. [6] in the context of N2.

We obtain the probability for an electron to escape to the
continuum on the x−z plane of the IR pulse with an angle
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FIG. 3. For the triplet state of NO+, we waterfall plot the probability g(θ ) as a function of the angle θ of electron escape for different phase
delays φ between the x-ray and IR pulses. The electron ionizes from the 1σ orbital of NO and the intensity of the circularly polarized IR pulse
is 5 × 1013 W/cm2. The photon energy of the x-ray pulse is (a) 544 eV and (b) 546 eV.

θ . This angle is measured with respect to the z axis in the
laboratory frame. In this section, the NO molecule lies along
the z axis. To obtain the probability for an electron to ionize on
the x−z plane with momentum (pf r, θ ), we integrate |A( �p f )|2
from Eq. (13) over the p f y component,

|A(pf r, θ )|2 =
∫

d pf y|A( �p f )|2. (30)

Then, integrating |A(pf r, θ )|2 in Eq. (30) over pf r , we find
that g(θ ), the probability for an electron to ionize with angle
θ on the x−z plane, is given as follows:

g(θ ) =
∫

d p fr p fr |A(pf r, θ )|2. (31)

In Figs. 3 and 4, we plot the probability g(θ ) for a high
intensity of the circularly polarized IR pulse, equal to 5 × 1013

W/cm2. Here, the molecular axis of the NO molecule is

parallel to the x-ray pulse. We consider a photon energy
of the IR pulse ωIR equal to 2300 nm, while the FWHM
is τIR = 100 fs. We take the amplitude and duration of the
electric field of the x-ray pulse to be such that the intensity of
the x-ray pulse is 1013 W/cm2 and τX = 0.5 fs. We consider
ionization from the 1σ (O side) and 2σ (N side) orbitals for
the triplet state of NO+. In our results, we fully account for the
energy range of the x-ray pulse. That is, the Fourier transform
of the x-ray pulse, since the full width at half maximum is
equal to 0.5 fs, extends over energies roughly ±4 eV from
the central photon energy. In Figs. 3(a) and 4(a), for photon
energies of the x-ray pulse close to the ionization threshold,
such as 544 eV (0.9 eV excess energy) for the 1σ orbital
and 411 eV (0.8 eV excess energy) for the 2σ orbital, we
show that we achieve control of the final angle of electron
escape. That is, we achieve control when the electron due
to the x-ray pulse is released at tion in the IR pulse with
very small momentum k′(tion) = √

2(h̄ω − Ip) compared to

FIG. 4. Same as Fig. 3, but for an electron ionizing from the 2σ orbital of NO. The x-ray photon energy is (a) 411 eV and (b) 413 eV.

063111-7



M. E. MOUNTNEY et al. PHYSICAL REVIEW A 107, 063111 (2023)

0 90 180 270
-40

-20

0

20

40
546 eV

544 eV

0 90 180 270

413 eV

411 eV

FIG. 5. The most probable angle of ejection, θmax (black dots),
as a function of the delay φ between the x-ray and IR pulses, for an
electron ionizing from the 1σ and 2σ orbitals. The intensity of the IR
pulse is 5 × 1013 W/cm2. The vertical grey bars denote the standard
deviation of the probability distribution g(θ ).

the momentum the electron gains from the IR pulse (0.6 a.u.).
For the 544 eV and 411 eV photon energies considered here
the excess momentum of the ionized electron is 0.26 a.u and
0.24 a.u., respectively. Indeed, Figs. 3(a) and 4(a) show that
for each φ the distribution g(θ ) is narrow and centered around
the angle θmax of θ that corresponds to the maximum g(θ ), that
is, θmax = φ. This means that there is a one-to-one mapping
between the phase delay φ and the most probable angle of
electron escape, θmax. However, as we increase the photon
energy of the x-ray pulse and hence the excess energy of the
electron released due to the x-ray pulse at tion in the IR pulse,
Figs. 3(b) (2.9 eV excess energy) and 4(b) (2.8 eV excess
energy) show that the distributions of g(θ ) become more wide.
Hence, for higher photon energies, we do not control the
final angle of electron escape as well as for smaller photon
energies. Quite interestingly, for high photon energies the
distributions of g(θ ) preserve features of the angular patterns
of ionization in the presence of just the x-ray pulse. This is
clearly seen for φ = 90◦, 270◦ for a transition from the 1σ

orbital when the x-ray energy is 543 eV [Fig. 3(b)] as well as
for a transition from the 2σ orbital when the photon energy
is 413 eV [Fig. 4(b)]. Indeed, in Fig. 3(b), for φ = 90◦, 270◦,
we find that g(θ ) has a double-peak structure. The momentum
gain of the ionizing electron from the IR pulse points along
the +x axis for φ = 90◦, while it points along the −x axis for
φ = 270◦. Hence, the higher probability of an electron to be
ejected along the O side just in the presence of the x-ray pulse
[see Fig. 2(a)] gives rise to the higher-valued peak at θ < 90◦
for φ = 90◦ and at θ > 90◦ for φ = 270◦. For the transition
from the 2σ orbital in Fig. 4(b), we observe a reversed pattern
of the higher-value peak of g(θ ). This is due to an electron
having a higher probability to be ejected along the N side
just in the presence of the x-ray pulse [see Fig. 2(c)]. In
addition, we better illustrate in Fig. 5 the one-to-one mapping
between θmax and the phase delay φ between the x-ray and
IR pulses by plotting θmax − φ as a function of φ. We do so
for the transitions from the 1σ and 2σ orbitals for the same
photon energies of the x-ray pulses as the ones considered in
Figs. 3 and 4. For smaller photon energies of the x-ray pulse,
we find that for each φ the values of θmax − φ are close to
zero; i.e., they lie close to the black horizontal line at zero
in Fig. 5. Furthermore, for each φ, the standard deviation of

θ with respect to the probability distribution g(θ ) is smaller
for the lower photon energies. This is seen by the shorter
(smaller range in degrees) error bars for the smaller photon
energies (grey bars) compared to the longer error bars for
the larger photon energies (black bars). The difference be-
tween smaller and larger photon energies is especially evident
for the transition from the 2σ orbital, since a 2-eV increase
in the photon energy of the x-ray pulse is relatively larger
for the 2σ orbital that has a lower threshold energy. The small
spread of the angles θ around θmax, for each φ, means we
achieve excellent control of electron motion. On a final note,
in the framework of the strong-field approximation considered
in this work after the electron is released in the IR pulse
due to the x-ray pulse, it is evident that the electron motion
is completely determined by the IR pulse if the electron is
released in the IR pulse with zero excess energy. In this case
the final momentum of the electron is completely determined
by the vector potential at the time of ionization which forms
an angle φ with the z axis and thus the final angle of electron
ejection, θ , is equal to φ. In this section we have demonstrated
that we achieve control of electron motion with the IR pulse
for a range of photon energies of the x-ray pulse above the
threshold energy for a given transition.

E. Streaking of electron ionization by an IR pulse

In the following, we obtain doubly differential final elec-
tron momenta distributions for low intensities of the circularly
polarized IR pulse. We show that many of the features of these
doubly differential electron distributions correspond to angu-
lar patterns of electron ionization just in the presence of the
x-ray pulse. We plot the final electron momenta distributions
on the x−z plane of the IR pulse for an electron ionizing from
the 1σ (Fig. 6) and the 2σ (Fig. 7) orbitals for the triplet state
of NO+. To obtain the probability for an electron to escape
with final momentum components pf x and pf z regardless of
the component pf y, we perform the following integration:

|A(pf x, pf z )|2 =
∫

d pf y|A( �p f )|2. (32)

In Figs. 6 and 7, we plot |A(pf x, pf z )|2, which is the
doubly differential probability for an electron to ionize on the
x−z plane with final momenta (pf x, pf z ), for a low intensity
of the circularly polarized IR pulse equal to 5 × 1012 W/cm2.
The photon energy and FWHM of the IR pulse are ωIR =
2300 nm and τIR = 100 fs. The amplitude and duration of
the electric field of the x-ray pulse are such that the intensity
of the x-ray pulse is equal to 1013 W/cm2 and τX = 0.5 fs.
Here, unlike in Sec. III D, there is no phase delay between
the x-ray and IR pulse; i.e., φ = 0. We obtain these momenta
distributions when the NO molecule is on the x−z plane for
various orientations θmol with respect to the z axis. The angle
θmol corresponds to the angle β in Euler angle notation (see
Sec. II A). We vary the angle θmol from 0 to π in steps of π

4 .
We take the photon energies of the x-ray pulse to be equal

to 561 eV for the 1σ orbital (Fig. 6) and 428 eV for the 2σ

orbital (Fig. 7), which is roughly 18 eV above their respective
ionization thresholds. Hence, at the time tion, the electron
ionizes due to the x-ray pulse with momentum roughly equal
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FIG. 6. For the triplet state of NO+ for ionization from the 1σ

orbital and a photon energy of the x-ray pulse equal to 561 eV, on
the left column, we polar plot |D0( �k′)|2 and project on the x−z plane,
i.e., we integrate over all angles φX . On the right column, we plot
the doubly differential probability |A(pf x, pf z )|2 for an electron to
escape on the plane of the circularly polarized IR pulse, which is the
x−z plane. The color plots are divided by their respective maximum
differential probability to give the same relative scale for all color
plots. The intensity of the circularly polarized IR pulse is equal to
5 × 1012 W/cm2. The phase delay between the x-ray and IR pulses,
φ, is equal to 0◦. The right and left column plots are obtained for the
NO molecule being on the x−z plane with an angle θmol, measured
with respect to the z axis, ranging from 0 to π in steps of π

4 .

to 1.15 a.u. Since the x-ray pulse is taken to have a short
duration, the times of ionization that we sample are close to
the center of the IR pulse. Hence, from Eq. (9), the momentum
gain of the ionizing electron from the IR pulse is equal to

−AIR(tion) = −AIR(≈ 0) = E IR
0

ωIR
= 0.60 a.u. From Eq. (8), we

thus find that the maximum and minimum final momenta of
the electron are 1.75 and −0.55 a.u., respectively. Indeed,
these maximum and minimum values of the momentum are
seen in the right-hand columns of Figs. 6 and 7 for p fx ≈ 0.

Next, we show that the momenta distributions obtained
from the x-ray + IR pulses in the right-hand columns of
Figs. 6 and 7 exhibit features consistent with the angular
pattern of ionization solely due to the x-ray pulse. We show
this by pairing each color plot of |A(pf x, pf z )|2 (right-hand

FIG. 7. Same as Fig. 6, but for ionization from the 2σ orbital
with a photon energy of the x-ray pulse equal to 428 eV.

column of Figs. 6 and 7) with the respective polar plot of
|D0( �k′)|2 (left-hand column of Figs. 6 and 7). We note that in
the polar plots, we plot the projection of |D0( �k′)|2 on the x−z
plane, i.e., we integrate over the angle φX , in order to better
compare with the color plots of |A(pf x, pf z )|2. Starting with
the molecular orientation θmol = 0, we observe that the high-
probability lobe towards the O side in Fig. 6(b1) corresponds
to the high-probability lobe in Fig. 6(a1). The smaller lobes in
Fig. 6(a1) that are located at angles different than 0◦ and 180◦
are shifted compared to Fig. 6(b1) due to the momentum gain
along the z axis from the IR pulse. This is true for all angles
θmol considered in Figs. 6 and 7. For the molecular orientations
θmol = 0, π

4 , 3π
4 , π , we see that a significant probability in the

color plots of Figs. 6 and 7 corresponds to a large probability
for the electron to ionize along the O side for ionization from
the 1σ orbital and along the N side for ionization from the 2σ

orbital (see the corresponding large lobes in the polar plots).
However, this is not the case for θmol = π

2 . In Figs. 6(b3)
and 7(b3), we see that when the molecule is perpendicu-
lar to the x-ray pulse the electron does not escape along
the molecular axis. In this latter case, the electron escapes
with larger probability at angles roughly equal to 120◦ with
respect to the O (N) side for ionization from the 1σ (2σ )
orbital. These smaller probability lobes are present for all
angles θmol.
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Overall, comparing the doubly differential plots of
|A(pf x, pf z )|2 with the polar plots of |D0( �k′)|2 we find that,
for small intensities of the IR pulse, most features in the
former plots correspond to angular patterns of ionization in
the presence of just the x-ray pulse. This is the reason why
doubly differential plots of an electron to ionize with mo-
menta (pf x, pf z ) are used to extract photoionization time
delays [26].

Finally, we note again that the Coulomb potential is fully
accounted for the interaction of the NO molecule with the
x-ray pulse. We neglect the Coulomb potential only during
the propagation inside the IR pulse of the electron released
at time tion. We expect that this approximation will not af-
fect our findings concerning control and streaking of the
electron motion. Fully accounting for the Coulomb potential
at all stages will most probably result in broader distri-
butions g(θ ), for the high-intensity IR case, and doubly
differential probability |A(pf x, pf z )|2 for the low-intensity
IR case.

IV. CONCLUSION

In conclusion, we have shown how to obtain continuum
molecular wavefunctions for open-shell molecules in the
Hartree-Fock framework. We have obtained these wavefunc-
tions when the total spin symmetry of the open-shell orbital
and the orbital where the electron ionizes from is singlet or
triplet. Using these continuum wavefunctions, we have ob-
tained dipole matrix elements for ionization of an electron due
to a linearly polarized x-ray pulse.

Following ionization from the x-ray pulse, we have investi-
gated the effects on final electron escape when we streak with
a circularly polarized infrared pulse. These effects depend
on the intensity of the streaking infrared pulse. For a high
intensity, we have shown that we control the angle of an elec-
tron escaping to the continuum. This control is achieved by
varying the phase delay between the ionizing x-ray pulse and
the infrared pulse. When the photon energy of the x-ray pulse
is very close to the ionization threshold, a one-to-one map-
ping between the phase delay and the final angle of electron
escape is achieved. For a low intensity, we have shown that
the momentum distributions on the plane of the infrared pulse
roughly image the angular electron escape patterns resulting
by the x-ray pulse. The information obtained from the latter
momentum distributions is of use in computing photoioniza-
tion time delays.
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