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The 1389-nm laser is used as a repumping laser in the 171Yb optical lattice clock, which corresponds to the
6s6p 3P0 → 5d6s 3D1 transitions. To our knowledge, there is no report on the absolute frequencies for this
repumping transition yet. We excite the hyperfine structure transitions with a 1389-nm scannable laser, which is
stabilized on an absolute frequency-stabilized optical frequency comb, and obtain the transition spectra. The min-
imum spectral linewidth is around 705 kHz, which is approximately 1.5 times greater than the natural linewidth
of 484 kHz. Based on evaluating the systematic frequency shifts precisely and referencing the frequency
measurement results on the secondary representation of the International System of Units second, we are the
first to report the direct measurement of the absolute frequencies for 6s6p 3P0 (F = 1/2) → 5d6s 3D1 (F = 1/2,
3/2) transitions are 215 875 746.15 ± (0.21)stat ± (0.06)sys MHz and 215 872 697.14 ± (0.11)stat ± (0.06)sys

MHz, respectively. In addition, the hyperfine splitting and magnetic dipole coefficient A of the 5d6s 3D1

state is determined as 3049.01(26) MHz and –2032.67(17) MHz, which is more accurate than the previous
measurements by an order of magnitude.

DOI: 10.1103/PhysRevA.107.063107

I. INTRODUCTION

Benefiting from the unprecedented measurement precision
and accuracy [1–5], optical atomic clocks are of fundamen-
tal importance to fields as varied as time and frequency
metrology [6–9], relativistic geodesy [10,11], and tests of
fundamental physics [12–16]. The optical atomic clocks are
realized by stabilizing a laser frequency to an atomic res-
onance based on measured transition probabilities [17]. In
consideration of the long lifetime of the excited state for the
selected clock transitions, it typically needs an additional laser
to repump the atoms back to the ground state. For example, in
the 171Yb atomic clock, one could use a 1389-nm repumping
laser to drive the population back to the ground state through
the 3P0 →3 D1 →3 P1 →1 S0 channel [18,19]. Therefore, ac-
curately determining the frequency of the repumping laser
will be helpful to improve the repumping efficiency. Thereby,
the excitation fraction of the obtained normalized clock tran-
sition spectra will reflect the true excitation rate of the clock
interrogation and is not restricted by the repumping process.

171Yb is a fermion with a nuclear spin of I = 1/2. The pres-
ence of additional structures to the states is shown in Fig. 1,
and each 2S+1LJ state will contain multiple levels denoted by
quantum number F, where F = |I ± J|. The frequency shift
due to the hyperfine structure can be computed according to
[20]

�ν = �EHFS/h = A

2
K, (1)
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where A is the magnetic dipole coefficient and
K = F (F + 1) – I (I + 1) – J (J + 1). The magnetic dipole
coefficient A for the 5d6s 3D1 state is shown in Table I, in
which the values derived by theory and experiment disagree
significantly. According to Eq. (1) and the theoretical value
of A from Ref. [21], the frequency shifts of the 5d6s 3D1

hyperfine structures are �ν (3D1 F = 1/2)= –A = 2349
MHz and �ν (3D1 F = 3/2) = A/2 = –1174.5 MHz, and
the corresponding hyperfine splitting is 3524 GHz. However,
some experimental measurements for the magnetic dipole
coefficient A showed different results. By using the measured
coefficient A, which is measured by hot atoms in Ref. [22], we
will get a different hyperfine splitting around 3060(3) MHz.
Moreover, a rough measurement of the hyperfine splitting
from the cold ytterbium atoms is 3070(70) MHz [23].

Here we present a framework for directly measuring the
absolute frequencies of the 6s6p 3P0 (F = 1/2) → 5d6s 3D1

(F = 1/2, 3/2) transitions based on a 171Yb lattice clock.
Thereby, we determine the hyperfine splitting of the 5d6s 3D1

state and extrapolate the corresponding magnetic dipole coef-
ficient A. Our measurement results of A improve the accuracy
by an order of magnitude compared to the previous results,
but disagree with the most accurate measurement result from
Ref. [22] by about four times combined uncertainty.

This work is structured as follows. Section II introduces the
experimental setup and the detection of the transition spectra.
Section III gives a detailed investigation of the systematic
frequency shifts and corresponding uncertainties for the 6s6p
3P0 (F = 1/2) → 5d6s 3D1 (F = 1/2, 3/2) transitions. In
Sec. IV, the absolute frequencies are measured, followed by
the determination of the hyperfine constant. We summarize
with concluding remarks in Sec. V.
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FIG. 1. The relevant energy levels of 171Yb.

II. EXPERIMENTAL SETUP AND TRANSITION SPECTRA

The schematic of the experimental setup is shown in
Fig. 2(a). The method for producing the cold atoms of 171Yb
has been described in our previous works [24,25]. A brief
description is given here. We first cool the hot ytterbium beam
with a Zeeman slower and three-dimensional magnetic optical
trap (MOT) on the 1S0−1P1 transition at 399 nm. The atoms
are further cooled with a three-dimensional MOT operating
on the 1S0−3P1 transition at 556 nm. After that, the atoms
are loaded into a one-dimensional optical lattice at the magic
wavelength for the 1S0−3P0 clock transition of 171Yb.

The time series are shown in Fig. 2(b). We employ the
electron-shelving technique [26] and use a 399-nm probe laser
to detect the population of the atoms and collect the laser-
induced fluorescence by a photomultiplier tube (PMT). After
loading cold ytterbium atoms in a one-dimensional optical
lattice, we employ a 578-nm pulse to excite atoms to the
3P0 state. Subsequently, the first pulse of the 399-nm probe
laser is applied to detect the remaining population of the
1S0 state and record it as P1. We assume that the excitation
fraction of the 1S0−3P0 transition is η1, which remains con-
stant during the measurements. Therefore, the population of
atoms in 3P0 at this time can be expressed as P1η1/(1 – η1).
Then, the 3P0 → 3D1 transition is driven by a 1389-nm laser.
After that, the second 399-nm pulse is employed to detect the
population P2, which implies that the atoms go back to the
ground state through the 3P0 →3 D1 →3 P1 →1 S0 channel.
The last 399-nm pulse is to detect the background atoms
and record them as P3. Eventually, the excitation fraction of
the 6s6p 3P0 → 5d6s 3D1 transition can be expressed as
η2= (P2 – P3)/[P1η1/(1 – η1) – P3].

The frequency of the 1389-nm laser is stabilized on an
optical frequency comb [27]. We selectively excited atoms to

TABLE I. The magnetic dipole (A) coefficient of 171Yb for the
5d6s 3D1 state.

A (MHz) Ref.

Theory –2349 [21] (2019)

Experiment –2040(2) [22] (1999)
–2047(47) [23] (2012)

–2032.67(17) This work

FIG. 2. Schematic of the experimental setup for frequency mea-
surement. (a) The 1156-nm laser is prestabilized on a 30-cm
ultra-low-expansion cavity [28]. After frequency doubling, the 578-
nm laser is sent to a comb and the lattice trap separately. The
frequency of AOM2 is fixed to ensure the 578-nm laser is constantly
in resonance with the atoms during the measurement. Optical paths
are depicted by solid lines; electric signals are shown by dashed lines.
PD: photonic detector. (b) The relevant time series.

either of the hyperfine states 3D1 (F = 1/2, 3/2) by tuning the
1389-nm laser and locking its frequency on the different teeth
of the comb. Building on this foundation, the transition spectra
are performed by scanning the rf driver frequency of the
acoustic optical modulator [AOM1 shown in Fig. 2(a)] before
the chamber within a small range. As the obtained spectral
linewidth is wider than the natural linewidth of the transition
at 484 kHz (natural linewidth γ= 1/2πτ , the lifetime of the
5d6s 3D1 state τ= 329 ns [23]), we further investigate the
broadening effect. Figures 3(a) and 3(b) show the linewidth
of the spectra dependence on the intensity I and time duration
T of the 1389-nm laser pulse. We could find that the width of
the spectra is not dominated by the intensity broadening effect
when set I at 0.08 nW/mm2. Furthermore, we observe that
the linewidth will decrease with the reduction of T for both
transitions. After optimizing the intensity and time duration
of the 1389-nm beam, the obtained spectra for both transitions
with the minimum measured linewidth are shown in Figs. 3(c)
and 3(d). We fit the spectra with the Lorentzian function, and
the minimum linewidth of the spectra is around 705 kHz,
which is 1.5 times wider than the natural linewidth.

III. SYSTEMATIC SHIFTS

When we consider the absolute frequency for a specific
atomic transition, the frequency shifts induced by various
systematic effects cannot be ignored [29,30]. These shifts
and uncertainties are evaluated by varying one experimental
parameter at a time and scanning the resonance transition ten
times continuously. Then the average center frequency fc of
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FIG. 3. The spectra and measured linewidth of the 6s6p 3P0 →
5d6s 3D1 transitions as a function of the 1389-nm beam intensity
I and time duration T. (a) Linewidth dependent on intensity I with
T = 12 ms. (b) Linewidth dependent on time duration T with I =
0.8 nW/mm2. The blue circles are the measurement data for the
3P0 F = 1/2 →3 D1 F = 1/2 transition and the red circles are the
measurement data for the 3P0 F = 1/2 →3 D1 F = 3/2 transition.
Each point has been measured four times. The corresponding data
are fitted with the function 1

2πτ

√
1 + I

Is
+ c for (a) and kT + c for

(b), where Is = 0.24 μW/mm2 is the saturated intensity. By fitting
the spectra of the 6s6p 3P0 (F = 1/2)→ 5d6s 3D1 (F = 1/2, 3/2)
transitions with the Lorentzian function, we show that the linewidths
are 0.705 MHz for (c) and 0.800 MHz for (d).

the spectra is recorded as an individual data point in Fig. 4.
According to the fc under different experimental conditions,
we can evaluate the frequency shifts such as the lattice light
shift, the Zeeman shift, the density shift, and the 1389-nm
probe light shift. Table II gives the systematic frequency
shifts with their associated uncertainties for the 6s6p 3P0

(F = 1/2) → 5d6s 3D1 (F = 1/2, 3/2) transitions.

Trapping atoms in an optical lattice will induce a lattice
Stark shift for a given transition [31]. For a given state in
the presence of an electric field, the lattice light shift is given
by [32]

�ν = −αU − βU 2, (2)

where U is the trap depth for the lattice and is proportional
to the lattice intensity. We measure the relative shifts for
the transitions as a function of lattice power at different lat-
tice frequencies. Following Eq. (2), the lattice light shift �ν

will vanish when the lattice power is zero. This means that
the power dependence curves at different lattice frequencies
should intersect at one point at zero lattice intensity. However,
as shown in Figs. 4(a) and 4(e), we obtain three zero-intensity
frequencies for each transition in our actual measurements,
which may be derived from the statistical uncertainty of the
measurement. We take the standard deviation of the obtained
three zero-intensity frequencies as the uncertainty of the lat-
tice light shift. Thus, the lattice light shifts can be determined
as –1170 ± 54 kHz for the 6s6p 3P0 (F = 1/2) → 5d6s 3D1

(F = 1/2) transition, and as –1197 ± 52 kHz for the 6s6p 3P0

(F = 1/2) → 5d6s 3D1 (F = 3/2) transition with ∼2 W of
operating lattice power and a 394.798-THz lattice frequency.

With a nonzero magnetic field environment, magnetic field
B will induce a shift in an atomic transition frequency. In-
cluding both first- and second-order Zeeman shifts, a magnetic
field B gives a shift [33]

�νB = mF δgμ0B + aB2, (3)

where δg is the difference in the g factor of the transition
states. We measure the transition shifts as a function of B
to determine the Zeeman shift arising from the bias magnetic
field. The resulting data shown in Figs. 4(b) and 4(f) are fitted
with aB2 + bB. Therefore, we determine that the first-order
sensitivity is 306 ± 84 kHz/kHz/G and the second-order sen-
sitivity is –274 ± 61 kHz/G2 for the 6s6p 3P0 (F = 1/2) →
5d6s 3D1 (F = 1/2) transition, and 480 ± 72 kHz/kHz/G

FIG. 4. Frequency shifts and uncertainties measurements. Measuring (a) relative transition shifts as a function of the lattice power at
different lattice frequencies, (b) Zeeman shifts, (c) relative transition shifts as a function of the atom number, (d) probe Stark shifts as a
function of the 1389-nm laser intensity for the 3P0 F = 1/2 → 3D1 F = 1/2 transition and (e)–(h) for the 3P0 F = 1/2 → 3D1 F = 3/2
transition.
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TABLE II. Transition frequency shifts and uncertainties budget.

6s6p 3P0 F = 1/2 → 5d6s 3D1 F = 1/2 6s6p 3P0 F = 1/2 → 5d6s 3D1 F = 3/2

Effect Shift(kHz) Uncertainty(kHz) Shift(kHz) Uncertainty(kHz)

Lattice Stark –1170 54 –1197 52
First-order Zeeman 72 20 113 17
Second-order Zeeman –15 3 –21 3
Density 43 28 112 21
Probe Stark 1 1 5 1
Total –1069 64 –988 59

and –385 ± 50 kHz/G2 for the 6s6p 3P0 (F = 1/2) → 5d6s
3D1 (F = 3/2) transition.

Large atom density in the optical lattice will yield signifi-
cant atomic interactions that will perturb the atomic transition
frequency [34,35]. The shift is proportional to the atomic den-
sity [36], thus we investigate the density-induced frequency
shift by varying the atom number loaded into the optical
lattice. The atom number is reduced by a variation of the
laser power for the Zeeman slower. The density shift as a
function of different atom numbers is shown in Figs. 4(c)
and 4(g). Extrapolating this measurement result to the zero
atomic number, we obtain the sensitivity of the density shift:
1.2 ± 0.8 Hz/atom and 3.2 ± 0.6 Hz/atom for the 6s6p 3P0

(F = 1/2) → 5d6s 3D1 (F = 1/2) and the 6s6p 3P0 (F =
1/2) → 5d6s 3D1 (F = 3/2) transitions.

The probe ac Stark shift, which is caused by the 1389-nm
laser, is proportional to the probe laser intensity I [37],

�ν = KI, (4)

as shown in Figs. 4(d) and 4(h), the effect of the 1389-nm
laser power on the 6s6p 3P0 (F = 1/2) → 5d6s 3D1 (F =
1/2, 3/2) transition frequencies is explored within the inten-
sity range around (0.3 to 6.7) Is, while keeping the duration
of 1389-nm laser pulse constant. It is determined that K =
7 ± 15 kHz/(μW/mm2) and K = 63 ± 17 kHz/(μW/mm2)
for the 6s6p 3P0 (F = 1/2) → 5d6s 3D1 (F = 1/2) and
the 6s6p 3P0 (F = 1/2) → 5d6s 3D1 (F = 3/2) transitions,
respectively.

IV. ABSOLUTE FREQUENCIES
AND HYPERFINE CONSTANT

A commercial optical frequency comb from the Menlo
systems is employed to measure the frequency of the laser. As
shown in Fig. 2(a), the frequency of the 1389-nm laser is ref-
erenced to an absolute frequency-stabilized optical frequency
comb. The comb’s repetition frequency frep is referenced on
a 578-nm ultrastable clock laser. The offset frequency fCEO

of the comb is locked to an H-maser. The frequency of the
578-nm laser at the frequency comb f578 is

f578 = ± 2 fCEO + n1 frep ± f578beat. (5)

Similarly, the frequency of the 1389-nm laser at the frequency
comb f1389 is

f1389 = ± fCEO + n2 frep ± f1389beat, (6)

where f578beat or f1389beat is the heterodyne beat between the
578-nm or 1389-nm laser and the comb, and ni is the integer

of the comb mode number. The frep, f578beat, and f1389beat

are measured by the frequency counter respectively. Conse-
quently, we could determine the f578 and f1389 according to
Eqs. (5) and (6).

To determine the absolute frequencies for a given tran-
sition, it is necessary to trace the frequency measurement
results to the International System of Units (SI) second. Since
the clock transition of 171Yb is the secondary representation
of the SI second, its absolute frequency is well known. We
could determine the absolute frequency of the 6s6p 3P0 (F =
1/2) → 5d6s 3D1 (F = 1/2, 3/2) transitions against an H-
maser through the comb, which is corrected by the absolute
frequency of the 171Yb clock transition. For each measure-
ment, we probe the clock transition spectra of 171Yb with a
linewidth at a few Hz. Then we compare the frequency of the
clock transition measured by the comb with the 2017 the Inter-
national Committee for Weights and Measures-recommended
absolute frequency of 518 295 836 590 863.6 Hz [6], and a
frequency difference of about �ν578 = –1.71 kHz is obtained.

FIG. 5. The absolute frequencies measurement of the 6s6p 3P0

(F = 1/2) → 5d6s 3D1 (F = 1/2, 3/2) transitions for (a) the 3P0

F = 1/2 → 3D1 F = 1/2 transition and (b) the 3P0 F = 1/2 →
3D1 F = 3/2 transition. Both transitions are measured four times.
The absolute frequencies are determined by averaging the results of
the four measurements and are indicated by the orange solid lines.
The light orange shading represents the corresponding statistical
uncertainties. The present measurement results for the hyperfine
splitting (c) and the magnetic dipole A coefficient (d) of the 3D1 state
are compared with previous theory and experiment results.
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Therefore, the correction for the 1389-nm optical frequency is
�νc = –0.71 kHz. The absolute frequencies fab of the 6s6p
3P0 (F = 1/2) → 5d6s 3D1 (F = 1/2, 3/2) transitions are
determined by

fab = f1389 − fc + �νsys + �νc, (7)

where �νsys is the systematic frequency shifts for individual
measurement. We perform four measurements for both transi-
tions and take the average value as the final absolute frequency
results, as shown in Figs. 5(a) and 5(b), the corresponding
standard deviation is taken as the statistical uncertainty. The
error bar for each data point is contributed by a combina-
tion of statistical and systematic uncertainties. The statistical
uncertainty mainly comes from multiple measurements for
the center frequency of the transition spectra. According to
the absolute frequency measurement results of the two hy-
perfine transitions, the corresponding hyperfine splitting and
the magnetic dipole A coefficient for the 5d6s 3D1 state can
be acquired as 3049.01(26) MHz and 2032.67(17) MHz. Fig-
ures 5(c) and 5(d) plots our results.

V. CONCLUSION

In conclusion, by referencing the secondary representation
of the SI second and evaluating the systematic frequency
shifts in detail, we have directly measured the absolute fre-
quency of the 1389-nm repumping transition of the 171Yb
atomic optical clock. The absolute frequencies are 215 875
746.15 ± (0.21)stat ± (0.06)sys MHz for the 6s6p 3P0 F =
1/2 → 5d6s 3D1 F = 1/2 transition and 215 872 697.14 ±

(0.11)stat ± (0.06)sys MHz for the 6s6p 3P0 F = 1/2 →
5d6s 3D1 F = 3/2 transition. The uncertainty is mainly de-
rived from the statistical uncertainty arising from multiple
measurements of the transition frequency. According to the
absolute frequencies measurement results, the hyperfine split-
ting and the magnetic dipole coefficient A is determined,
which is one order of magnitude more accurate than the pre-
vious measurements. Therefore, it can provide a much more
accurate reference for theoretical calculations. Moreover, as
the 6s6p 3P0 → 5d6s 3D1 transition is the repumping chan-
nel for the 171Yb optical clock, adequate knowledge of the
absolute frequency of the transition, not only can help us
promote the efficiency of repumping the atoms, but also could
reduce the laser power demand on the repumper during the
clock interrogation. This will contribute to reducing the power
consumption of the optical clock system for further applica-
tions in environments such as transportable or space stations.
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