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Rydberg atoms are remarkable tools for the quantum simulation of spin arrays. Circular Rydberg atoms open
the way to simulations over very long time scales, using a combination of laser trapping of the atoms and
spontaneous-emission inhibition, as shown in the proposal of an XXZ spin-array simulator based on chains of
trapped circular atoms [Nguyen et al., Phys. Rev. X 8, 011032 (2018)]. Such simulators could reach regimes
(thermalization, glassy dynamics) that are out of the reach of those based on ordinary, low-angular-momentum
short-lived Rydberg atoms. Over the promised long time scales, the unavoidable coupling of the spin dynamics
with the atomic motion in the traps may play an important role. We study here the interplay between the
spin exchange and motional dynamics in the simple case of two interacting circular Rydberg atoms confined
in harmonic traps. The time evolution is solved exactly when the position dependence of the dipole-dipole
interaction terms can be linearized over the extension of the atomic motion. We present numerical simulations in
more complex cases, using the realistic parameters of the simulator proposal. We discuss three applications. First,
we show that realistic experimental parameters lead to a regime in which atomic and spin dynamics become fully
entangled, generating interesting nonclassical motional states. We also show that, in other parameter regions, the
spin dynamics notably depends on the initial temperature of the atoms in the trap, providing a sensitive motional
thermometry method. Last, and most importantly, we discuss the range of parameters in which the motion has
negligible influence over the spin dynamics.
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I. INTRODUCTION

Quantum simulation is a particularly important and active
field of the thriving quantum technologies [1,2]. It opens
the way to significant advances in the understanding and
design of quantum materials, in quantum chemistry, and more
generally in complex optimization problems. Many platforms
are actively considered to implement quantum simulators,
including superconducting qubits architectures [3,4], trapped
ions [5], neutral atoms in optical lattices [6,7], and Rydberg
atoms [8,9].

The extremely strong interaction between Rydberg atoms
(highly excited states with a principal quantum number n,
typically of the order of 50) is a particularly promising tool for
quantum simulation. The dipole blockade mechanism acting
on the laser excitation toward Rydberg levels from ground-
state atoms trapped in programmable arrays of optical tweez-
ers already led to simulations of spin arrays in conditions
where exact numerical approaches with classical computing
devices are difficult or impossible. Notable milestones are
the observations of quantum antiferromagnetic correlations
[10,11], of quantum phase transitions [12], of spin liquids
[13], and of dynamics related to quantum scars [14].

Most of the Rydberg quantum simulation experiments
so far have been based on laser-accessible, low-angular
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momentum � states. These states have at most a few hundred
microseconds lifetime, dominated by direct optical transitions
toward low-lying levels. The effective simulation time for an
array made up of a few hundred atoms is thus at most in the
microsecond range, corresponding to a few cycles of the spin
flip-flop between nearest neighbors. On the one hand, over
such short times, atomic motion is irrelevant (be it due to
the finite atomic temperature in the tweezers or to the dipolar
interaction forces themselves). On the other hand, this funda-
mental limitation of the simulation time makes it difficult to
study some interesting phenomena, such as thermalization or
disorder-induced slow glassy dynamics.

To circumvent this limitation, we have recently proposed
a quantum simulator based on circular Rydberg atoms [15].
These levels have maximum angular and magnetic quan-
tum numbers (|m| = � = n − 1). Their spontaneous-emission
lifetime (30 ms for n = 50) is much longer than that of
ordinary Rydberg atoms, since the only decay channel is a σ+-
polarized millimeter-wave transition. Blackbody-radiation
(BBR)-induced transfers on the microwave transitions out of
the circular state |nC〉 are efficiently suppressed in a cryo-
genic environment. Lifetimes of up to 10 ms have already
been observed with a radiation environment at 10 K [16]. This
long lifetime can be considerably lengthened by placing the
circular atoms in a plane-parallel capacitor, inhibiting their
main σ+-polarized spontaneous or BBR-induced decay chan-
nels [see Fig. 1(a)]. Conservative estimates indicate that the
individual atomic lifetime could reach the minute range [15].
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FIG. 1. (a) Pictorial scheme of the proposed circular state quan-
tum simulator with two interacting Rydberg atoms. Adapted from
Ref. [15]. (b) Sketch with notations and respective orientations.

Taking advantage of such long lifetimes makes it necessary
to laser-trap the atoms, e.g., in the ponderomotive potential
experienced by their nearly free outer electron in a laser beam.
Defect-free atomic chains with tens of atoms trapped in a
linear array of laser traps can be prepared by an original evap-
oration mechanism [15,17]. Arrays of hundreds of circular
atoms held in adapted optical tweezers could also be prepared
using well-established techniques [18,19]. The interactions
between nearest-neighbor circular atoms naturally implement
the Hamiltonian of an XXZ spin array. Interestingly, all pa-
rameters of the Hamiltonian can be tuned over a wide range
by adjusting the electric, magnetic, and microwave-dressing
fields applied onto the atoms. Circular atom quantum simula-
tors thus could open the way to a new simulation regime for
Rydberg-atom-based quantum simulator.

Over such long timescales, atomic motion in the laser traps
cannot be a priori neglected. In particular, the spin exchange
flip-flops are bound to create a modulation of the van der
Waals forces between adjacent atoms. This may lead to a
significant heating of the atomic array or even to the full en-
tanglement of the spin and motional dynamics. Interestingly,
such coupling between electronic states and vibrational modes
has recently been proposed to engineer multi-body interac-
tions [20] and mimick molecular dynamics [21]. The dressing
of spin excitations by phonon modes leads to the formation of
polaronic quasiparticle excitation, which dispersion relation
has been discussed in Refs. [22,23]. Note that these studies
discussed a situation different from that considered here [15],
since the two spin states then correspond to the ground state
and to a laser-accessible Rydberg state, with an interaction
based on the dipole blockade or facilitation mechanisms. Last,
protocols decoupling electronic and motion dynamics have
been addressed in Ref. [24] in a related configuration.

In Ref. [15], we have shown by qualitative arguments that,
for selected and realistic operational parameters of the pro-
posed simulator, the spin-motion entanglement can be made
negligible as compared to the XXZ spin Hamiltonian dynam-
ics. Here, we plan to substantiate this claim by a detailed
analysis of the motion along the interatomic axis of two

adjacent coupled atoms in a circular-state simulator. To un-
veil the main mechanisms, we focus on the simple dynamics
induced by spin-excitation exchange between two atoms. Our
approach is based on analytic solutions obtained at the ex-
pense of well-controlled approximations and on numerical
simulations of the exact system.

The paper is organized as follows. Section II describes
in more detail the trapping potential and introduces the rel-
evant degrees of freedom, the interaction potentials, and the
resulting spin-motion Hamiltonian with realistic experimental
parameters. Section III introduces a simple and global pic-
ture for the dynamics in terms of interfering paths and an
oscillator-spin coupling picture. Section IV shows that a lin-
ear approximation of the spin-motion Hamiltonian, valid for
small enough atomic displacements, is analytically tractable.
It allows us to provide quantitative predictions for the creation
of motional nonclassical “cat states” in a strong-interaction
and weak-trap limit. In Sec. V, we extend the results to finite
atomic temperatures. The initial motion of the atoms due to
their finite temperature comes into play and gradually reduces
the spin exchange oscillation contrast. We show that this could
lead, interestingly, to a precise thermometry of the atomic mo-
tion. Turning to the simulator regime in Sec. VI, we show that,
for strong enough laser trapping potentials, the spin dynamics
is effectively dominant over long timescales, of the order of
hundreds of spin-exchange times. We provide analytic pre-
dictions for the effects of second-order terms, which capture
the nonlinearities in this regime. Two Appendixes provide a
discussion of the stability of the trapping potential for very
weak traps (Appendix A) and some useful analytical formulas
(Appendix B).

II. MODEL AND PARAMETERS

A. Experimental context

We discuss here the spin-motion coupling in the context
of the circular-state simulator proposal described in Ref. [15].
Its principle is shown in Fig. 1. The circular atoms are placed
in a plane parallel capacitor, which plays two roles. On the
one hand, it provides a directing electric field F aligned along
the (Oz) quantization axis (axes definition in Fig. 1). The
nearly planar orbit of the circular atoms is thus parallel to the
capacitor plates. A few Gauss homogeneous magnetic field B,
aligned with (Oz), too, is used to tune the interatomic interac-
tion Hamiltonian. On the other hand, the capacitor inhibits the
σ+-polarized spontaneous emission and BBR-induced trans-
fers out of the circular states.

The circular atoms are trapped by a laser-induced pondero-
motive potential acting on their nearly free outer electron.
For the sake of definiteness, we will base our discussions
on the parameters of the ponderomotive trap for a chain of
atoms described in Ref. [15]. Our results can nevertheless be
applied, mutatis mutandis, to all trap geometries, provided
that the motion can be considered unidimensional along the
interatomic axis. Note that this is not a stringent hypothesis,
since transverse motion modifies the interatomic distance, de-
termining the strength of the dipole-dipole interactions, only
to the second order.

The positive ponderomotive energy, proportional to the
laser intensity I , confines the atoms near an intensity
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TABLE I. Parameters of the Hamiltonian for the three cases discussed in this paper (all the parameters are defined in the main text). Note
that for the CATS set of parameters, the 1/d3 dependence only applies to the J spin-exchange coupling, while Jz, δE0, and δζ vary with the
interatomic distance as 1/d6. The latter are therefore taken into account only in the exact numerical approach, while they are set to zero in the
analytical formulas pertaining to this case.

d ω

2π
Th

J
2π

Jz
2π

δE0
2π

δζ

2π
x0 |�|/2π

Type n, 	n m (μm) (kHz) (μK) (kHz) (kHz) (kHz) (kHz) Jz/J 	0/J ω/J (nm) (kHz) g α αz

XXZ 48, 2 6 6 50 2.4 −5.75 −6.10 67.1 −9.78 1.06 12.7 −8.7 48.2 22.83 0.008 −0.011 −0.071
THM 48, 2 6 6 15 0.72 −5.75 −6.10 67.1 −9.78 1.06 12.7 −2.61 87.7 21.25 0.0146 −0.067 −0.43
CATS 48, 1 3 8 50 2.4 −1277 −9.49 20 −0.87 0.0074 0.023 0.032 48.2 5105 0.006 −0.924 −0.0141

minimum. Periodic minima along the (Ox) interatomic axis
are created by two noninterfering laser beam arrangements at
a wavelength close to 1μm. A hollow Laguerre-Gauss LG0,1

mode provides a tight trapping in the radial direction. Two
coherent Gaussian beams interfering at a shallow angle in the
(xOy) plane create a periodic sine potential along the (Ox)
axis, with an adjustable spacing d between minima, deter-
mining the spacing of the final spin array. In this geometry,
the interatomic axis (Ox) is perpendicular to the quantization
one (Oz). An evaporative cooling procedure [15,17] prepares
with a high probability defect-free chains with up to N �
100 atoms. Here, we consider only the case of the simplest
nontrivial chain with N = 2 atoms. Generalization to longer
chains will be the subject of further work.

With experimentally realizable powers, the transverse trap-
ping angular frequency ω⊥ can be made much larger than the
longitudinal trapping frequency ω. We can thus neglect the
transverse motion and consider only a unidimensional atomic
motion along (Ox) around the equilibrium positions. Provided
that the extension of the atomic motion is small as compared
to the average distance to the longitudinal potential maxi-
mum (d/2) or, equivalently, that the atomic motional energy
is small as compared to the longitudinal trap depth (typi-
cally a few MHz), we can consider the trapping potential as
harmonic.

B. Spin-exchange Hamiltonian

In Ref. [15], the spin states in the simulated model
are represented by two circular states {|g〉 = |nC〉, |e〉 =
|(n + 	n)C〉}, with 	n = 2. For numerical evaluations, we
will consider the case n = 48 throughout this paper. We use
the notation σ̂ X,Y,Z for the Pauli matrices in the {|g〉, |e〉} basis.
The dipole-dipole interaction then acts at second order only in
a perturbation expansion, both for the interaction between two
atoms in the same state and for the spin-exchange process. As-
suming, for the time being, the atoms to be at rest at a relative
distance d , the spin-spin interaction Hamiltonian reads [15]

ĤS

h̄
= Jzσ̂

Z
1 σ̂ Z

2 + J
(
σ̂ X

1 σ̂ X
2 + σ̂Y

1 σ̂Y
2

) + δE0 + δζ

2

(
σ̂ Z

1 + σ̂ Z
2

)
,

(1)

where the indices refer to the atom number (see Fig. 1). For
d = 6μm, for instance, the spin exchange term is J = −2π ×
5.75 kHz. The spin-spin term Jz depends upon the electric
and magnetic fields applied on the atoms. We consider here
the typical situation with F = 9 V cm−1 and B = 12 Gauss,

corresponding to Jz = −2π × 6.2 kHz. This choice, leading
to Jz � J , corresponds, in terms of the XXZ model phase
diagram, to the interesting transition between the Luttinger
liquid and Néel order phases [15]. The δE0 and δζ energy
shift values in ĤS are listed in the first two lines of Table I.
All the parameters in the Hamiltonian have a 1/d6 distance
dependence. Note that the full XXZ Hamiltonian of Ref. [15]
is obtained by adding a coherent microwave drive nearly
resonant on the two-photon |g〉 → |e〉 transition. It amounts
to a position-independent modification of δζ that does not
modify the spin-exchange dynamics considered in this work,
and to the introduction of an effective transverse magnetic
field Hamiltonian [∝�(σ̂ X

1 + σ̂ X
2 )]. We will not consider this

more general situation here, namely, we only consider the
� = 0 situation. Note that the value of δζ is given in the
rotating frame where δζ = 0 at infinite interatomic distance.

The spin Hamiltonian ĤS splits the four-dimension Hilbert
space of the two spins into three uncoupled blocks. Two
correspond to the states |g, g〉 and |e, e〉. These states, besides
energy shifts, have no spin dynamics and we can thus focus
on the spin exchange evolution inside the last block, made
up of the subspace {|e, g〉, |g, e〉}, in which ĤS reduces to a
2 × 2 matrix, denoted Ĥ (eg)

S . In this two-level subspace, we
introduce another set of Pauli matrices, �̂X,Y,Z , with �̂Z =
|e, g〉〈e, g| − |g, e〉〈g, e|. Using the identities

σ̂ X
1 σ̂ X

2 + σ̂Y
1 σ̂Y

2 = 2[σ̂+
1 σ̂−

2 + σ̂−
1 σ̂+

2 ] = 2�̂X

σ̂ Z
1 σ̂ Z

2 = −1 σ̂ Z
1 + σ̂ Z

2 = 0, (2)

the reduced Hamiltonian reads

Ĥ (eg)
S

h̄
= 2J�̂X − 	0 with 	0 = Jz − δE0. (3)

This Hamiltonian describes a spin-exchange Rabi oscillation
at a frequency 4J between |e, g〉 and |g, e〉. The diagonal term
	0 plays no role in this exchange dynamics and could a priori
be removed. However, we must keep it here since it depends
on the interatomic distance and, thus, participates in the spin-
motion coupling.

As shown later, a strong entanglement between motion and
spin requires an exchange interaction much larger than that
reached in the 	n = 2 situation described above. We thus
consider also the case in which the spin model is encoded on
two adjacent circular states, {|g〉 = |nC〉, |e〉 = |(n + 1)C〉}.
In this 	n = 1 situation, the spin exchange is a resonant,
first-order process in the dipole-dipole interaction. The Hamil-
tonian Ĥ (eg)

S retains the same form, but J overwhelms the
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position-dependent part of the second-order van der Waals
interaction term 	0. The actual parameter values for d =
8μm are given in the last line (CATS) of Table I. In the
following, we use the generalized form

Ĥ (eg)
S,m = 2J�̂X − 	m, with 	m = δm,3 	0, (4)

where δ is the Kronecker symbol, where all the coefficients
are evaluated with an interatomic distance d , and where m is
the decay exponent of the interaction, which scales as 1/dm.

C. Spin-motion Hamiltonian

We now consider the coupling between spin and motion
induced by the interatomic distance dependence of the spin-
interaction terms. The positions of the atoms with respect to
the center of each trap are represented by the operators x̂1,2.
We will write the dynamics in terms of the relative position
operator x̂ = x̂2 − x̂1, which vanishes when the two atoms are
both at the trap centers (interatomic distance d).

The spin Hamiltonian can then be written as

Vm(x̂) = Um(x̂) ⊗ Ĥ (eg)
S,m with Um(x̂) =

(
1 + x̂

d

)−m

,

(5)

where m is the decay exponent of the interaction. In the
	n = 1 situation, m = 3. In the 	n = 2 situation, m = 6.
In Sec. IV D, we will focus on the m = 3 case. In all other
sections we will consider the m = 6 case.

For small enough motions, the adjacent longitudinal trap
wells in which the atoms are trapped can be considered as
harmonic, with an oscillation frequency ω. The interaction-
free motion Hamiltonian of the two particles i = 1, 2 is then

Ĥi = p̂2
i

2M
+ 1

2
Mω2x̂2

i , (6)

where M is the atomic mass. Changing to the relative motion
coordinates and dropping the center-of-mass part of the
Hamiltonian, which decouples from the relative-motion part,
one gets

Ĥ = p̂2

2μ
+ 1

2
μω2x̂2 + Um(x̂) ⊗ h̄(2J�̂X − 	m), (7)

where μ = M/2 is the reduced mass. For later calculations, a
convenient basis is that of the harmonic oscillator associated
to the relative motion, with a natural length scale

x0 =
√

h̄

2μω
. (8)

With the quantization x̂ = x0(â† + â) and p̂ = (ih̄/2x0)(â† −
â), followed by the introduction of a dimensionless relative
position

ξ̂ = x̂/x0 (9)

associated to the momentum π̂ = i(â† − â), with [ξ̂ , π̂ ] = 2i,
the Hamiltonian finally reads

Ĥ

h̄
= ω

(
n̂ + 1

2

)
+ (1 + gξ̂ )−m⊗ (2J�̂X − 	m). (10)

The two most important timescales in this Hamiltonian are
2π/ω, the period of the mechanical oscillations of the atoms,
and 1/4J , the period of the spin-exchange Rabi oscillations.
The coupling strength between the position and spin degrees
of freedom is controlled by

g = x0

d
, (11)

which is assumed to be much smaller than one. We note that
〈�̂X 〉 is a conserved quantity since [Ĥ, �̂X ] = 0.

The Um(x̂) operator can be expanded as a power series in
the coupling constant g to order K :

Um(x̂) = (1 + gξ̂ )−m =
K∑

k=0

cm(k)gk ξ̂ k, (12)

with cm(k) = (−m)(−m − 1) · · · (−m − k + 1)/k!. We will
use numerical matrix inversion to treat the exact K = ∞
case. We check that the main source of error in the numerics
originates in the mandatory truncation Nmax of the harmonic
oscillator Hilbert space.

For analytical approaches, we will consider the linearized
operator (K = 1) as well as the effect of the first nonlinear
term (K = 2). Up to second order, we can also write

Um(ξ̂ ) � 1 − ηξ̂ + f

2
η2ξ̂ 2, (13)

where f = 1 + 1/m and where we define the effective Lamb-
Dicke parameter η as

η = gm. (14)

Note that, since the dipole-dipole interaction has a fast
variation with the average interatomic distance d , it results
in forces that could overwhelm the trapping force if the traps
are weak enough. The stability of the trapping would then be
questionable. We investigate this effect in Appendix A. We
show that, for weak harmonic traps, the action of the dipole-
dipole forces could indeed lead to instabilities. However, for
the rather tight traps considered in the following, the stability
is not an issue.

The independent parameters in this situation are d , n, 	n,
and ω, from which all relevant quantities can be computed.
For instance, the coupling constant between spin and motion
is expressed as

g =
√

h̄

M

1

d
√

ω
. (15)

For the sake of definiteness, we will consider in the fol-
lowing only three sets of parameters designed by acronyms
describing their main application:

(1) XXZ for the best realization of the pure spin-exchange
model, with minor influence of atomic motion,

(2) THM for a maximum impact of atomic motional tem-
perature on the spin model and application to atomic motion
thermometry, and

(3) CATS for motion-spin entanglement and the genera-
tion of cat states.

The precise values of the parameters are given in Table I.
To these parameters we may add, when relevant, the initial
temperature of the atomic motion in the traps. We will use a
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FIG. 2. Trapping potential and the corresponding effective po-
tentials versus the relative distance x for the CATS set of parameters
(see Table I). The solid dark red line is the actual sinusoidal pondero-
motive potential, and the solid blue line its harmonic approximation.
The blue dotted and dashed lines are, respectively, the V+(x) and
V−(x) effective potentials for each atomic state |±X 〉. The gray
dashed and dotted thin vertical lines represent the centers of these
effective potentials.

typical temperature range of 2−20μK (1μK ≡ 20.84 kHz).
It can be experimentally reached with a final optical molasses
cooling stage before preparation of circular states, eventually
followed by additional cooling through adiabatic lowering of
the laser trapping potential [25].

III. A SIMPLE INTUITIVE APPROACH

A. Interfering paths

In this section, we provide a first general view on the spin-
motion dynamics, based on the quantum interference between
two paths. Using the projectors on the two eigenstates of �̂X ,
|±X 〉 = (|e, g〉 ± |g, e〉)/

√
2 with eigenvalues ±1, we get

Ĥ = Ĥ+ ⊗ |X 〉〈X | + Ĥ− ⊗ |−X 〉〈−X |, (16)

in which we recognize two different single-particle effective
Hamiltonians for the relative position dynamics

Ĥ± = p̂2

2μ
+ V±(x̂), (17)

with the two spin-state-dependent potentials

V±(x̂) � 1
2μω2x̂2 + h̄(±2J − 	)U (x̂). (18)

Note that, for the sake of simplicity, we have dropped the m in-
dex for the potential Um and the energy 	m, and replace them
with U and 	, respectively. The potentials V± are depicted
in Fig. 2. The trapping stability in the presence of the dipole
interaction forces, and hence the physical relevance of these
shifted potentials, is discussed in Appendix A.

Let us assume that the initial state is the product state
|�(t = 0)〉 = |ψ0(x)〉|e, g〉, where ψ0(x) is an arbitrary wave
function. Due to the block diagonal form of the Hamiltonian,

the evolving state simply reads

|�(t )〉 = 1√
2

(|ψ+(x, t )〉|+X 〉 + |ψ−(x, t )〉|−X 〉), (19)

in which

|ψ±(x, t )〉 = e−iĤ±t |ψ0(x)〉 (20)

are the two wave packets, initially both equal to |ψ0(x)〉 but
evolving under the two different V± potentials.

Expressing the evolved state in the {|e, g〉, |g, e〉} basis, we
find that |ψ±(x, t )〉 involves two so-called “cat states” for the
relative position correlated to the two atomic states:

|�(t )〉 ∝ |ψ+〉 + |ψ−〉√
2

|e, g〉 + |ψ+〉 − |ψ−〉√
2

|g, e〉. (21)

Then, the probability Peg(t ) that the atoms are back to the
initial spin state |e, g〉 (the spin-exchange Rabi oscillation
signal) is directly probing the interference between these two
paths:

Peg(t ) = 1

2
[1 + Re〈ψ−(x, t )|ψ+(x, t )〉] (22)

= 1

2

[
1 + Re

(∫
ψ∗

−(x, t )ψ+(x, t )dx

)]
. (23)

In the limit of very weak interactions, g → 0, U (x̂) reduces
to the unity operator. The potentials V±(x̂) have the same
shape, but are shifted by two different energies ±2J − 	.
The wave packets |ψ±〉 are identical, but evolve with different
phase factors. We thus recover the ordinary spin-flip-flop Rabi
oscillation:

Peg(t ) = 1
2 [1 + cos (4Jt )]. (24)

One of the main goals of this paper is to understand how the
coupling of the effective spin to the relative motion modifies
this simple behavior.

B. An oscillator coupled to a rotator

Another simple way to understand the dynamics is to use
Ehrenfest’s theorem. The dynamical evolution of an observ-
able expectation value, A(t ) = 〈ψ (t )|Â|ψ (t )〉, is given by Ȧ =
(i/h̄)〈[Ĥ, Â〉]. For the relative position, one gets

ẍ + ω2x = − h̄

μ

〈
dU

dx̂
(2J�̂X − 	)

〉
, (25)

i.e., an oscillator forced by its coupling to the effective spin
expectation value with components 
s = 〈 
�〉. Since ṡX = 0,
the spin dynamics only takes place in a plane parallel to the
Y Z one. We introduce a phase-space operator

Ŝ = �̂Z + i�̂Y , with [�̂X , Ŝ] = −2Ŝ, (26)

which physically follows the evolution in the spin phase
space. The equation of motion for the overlap function S(t ) =
〈Ŝ〉 = 〈ψ−|ψ+〉 [see (19)] reads

Ṡ(t ) = −i4J 〈U (x̂)Ŝ〉. (27)

In the following, we study the coupling between the oscillator
x̂ and the rotator Ŝ as one progressively expands U (ξ̂ ) to
orders one (linear coupling) and two (first nonlinear term)
[see (13)].
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IV. THE LINEAR COUPLING LIMIT

A. The potentials structure

We start with the linearized interaction potential (K = 1)

U (ξ̂ ) � 1 − ηξ̂ . (28)

Rewriting the two spin-dependent potentials as

V±(x̂) = 1

2
μω2(x̂ − x±

0 )2 ± h̄�

2
− h̄	 − h̄ω

(
α2 + α2

z

)
,

(29)
we see that the potentials are shifted in position and energy
with respect to each other (see Fig. 2). Each potential is now
centered around a spin-dependent minimum

x±
0 = 2 x0α

± = 2x0(±α − αz ), (30)

with the two dimensionless shifts in phase space

α = η
2J

ω
and αz = η

	

ω
. (31)

The energy difference between the minima of the two poten-
tial wells, V±(x), corresponds to the Rabi frequency

� = 4J

(
1 + 2η2 	

ω

)
, (32)

only modified to the second order in η. The energy spectrum
is straightforwardly obtained from (29):

E (n, s)

h̄
= ω

(
n + 1

2

)
+ �

2
s − 	 − ω

(
α2 + α2

z

)
, (33)

with s = ±1 and n ∈ N. Since the potentials remain
parabolic, the relative motion is still harmonic. From the
Ehrenfest equation (25), taking as initial conditions sX =
cos θ0 and ẋ = 0, we get

ẍ + ω2(x − x̄) = 0, (34)

with

x̄ = 2x0(α cos θ0 − αz ). (35)

In this limit, the dynamics of the position expectation value is
independent of the spin dynamics. A simple physical interpre-
tation of the Rabi frequency formula (32) is that it corresponds
to making the simplest approximation x̂ � x̄ in (27) assuming
(28) and cos θ0 = 0.

B. Diagonalization using polaron transformation

Shifted harmonic potentials can be diagonalized with dis-
placement operators. We need to condition them to the spin
operator in order to diagonalize the full linearized Hamilto-
nian

Ĥ

h̄
= ω

(
n̂ + 1

2

)
+ (1 − ηξ̂ ) ⊗ (2J�̂X − 	). (36)

At the operator level, this is performed using a unitary polaron
transformation

Û (α, αz ) = D̂(α�̂X − αz ), (37)

in which D̂ is the Glauber’s displacement operator [26]. In the

transformed Hamiltonian ˆ̃H = Û†(α, αz )Ĥ Û (α, αz ), spin and

FIG. 3. Phase-space trajectories of the states |ψ±(t )〉 correspond-
ing to an initial coherent state |α0〉, in the linear coupling (K = 1)
case. The values of α± correspond to the CATS parameter set of
Table I, and here, α0 = 1 + α−.

positions are decoupled:

ˆ̃H

h̄
= ω

(
n̂ + 1

2

)
+ �

2
�̂X − 	 − ω

(
α2 + α2

z

)
. (38)

The energies of this Hamiltonian are given by (33). Using this
diagonal form, the time evolution operator in the original basis
reads

e−it Ĥ = D̂[(α�̂X − αz )(1 − e−iωt )]e−iωt n̂

⊗ e−i(α�̂X −αz )2 sin(ωt )e−i �t
2 �̂X . (39)

A direct application of this result is to compute the spin
dynamics when starting in a Fock state |n〉 for the relative
position and in |e, g〉 for the atomic state. The phase-space
operator expectation value S(t ) is then given by

Sn(t ) = e−2|γ (t )|2 Ln(|2γ (t )|2)ei[�t−�(t )], (40)

in which γ (t ) = α(1 − e−iωt ), �(t ) = 4ααz sin(ωt ), and Ln is
the nth Laguerre polynomial. The Rabi oscillation contrast is
thus governed by the oscillating γ (t ) function.

C. Cat states and Rabi oscillations

The linear coupling limit allows us to compute explicitly
the cat state (19). For the sake of definiteness, we consider the
initial state |ψ0(x)〉 to be a coherent state |α0〉 for the position
so that |�(t = 0)〉 = |α0〉|e, g〉. The |ψ±(x, t )〉 wave functions
are then coherent states, too. Their amplitudes evolve, in the
oscillator phase space, on circles centered around α± and of
radius |α0 − α±| (see Fig. 3). More formally, we get

|ψ±(x, t )〉 = e∓i �
2 t+iθ±(t )|α± + (α0 − α±)e−iωt 〉 (41)

= e∓i �
2 t+iθ±(t )|γ0(t ) ± γ (t )〉, (42)

in which we have defined

γ0(t ) = α0e−iωt − αz(1 − e−iωt ), (43)

γ (t ) = α(1 − e−iωt ). (44)

The phases θ±(t ), resulting from the basis change used in the
polaron transformation, read, assuming α0 ∈ R,

θ±(t ) = (α±α0 − α±2) sin ωt . (45)
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Using (22), the spin flip-flop Rabi oscillation can be explicitly
computed. We get

Peg(t ) = 1

2
{1 + e−4α2(1−cos ωt ) cos [�t − �(t )]}, (46)

with

�(t ) = 4α(αz + α0) sin(ωt ). (47)

Compared to (24) describing the motion-free spin exchange,
the frequency of the Rabi oscillation is slightly altered
as shown in (32). The oscillation is also phase-shifted by
the time-dependent phase �(t ) oscillating at the trap oscil-
lation frequency. Finally, the most important modification
due to the spin-motion coupling is the periodic contrast
function exp[−4α2(1 − cos ωt )], which oscillates at the trap
frequency, too. For a small displacement α (i.e., for a small
spin-motion coupling η), this function is close to 1. In the limit
of vanishing coupling, we thus recover the simple flip-flop
Rabi oscillation. On the contrary, for |α| > 1, this function
nearly collapses periodically. The vanishing Rabi oscillation
contrast reveals a full entanglement of the spin and motional
degrees of freedom, in a Schrödinger-cat state involving two
well-separated coherent components in the oscillator phase
space. We now explore numerically this phenomenon in re-
alistic conditions.

D. Numerical results in experimentally realistic conditions

What are the experimental conditions to observe such a cat
state? First of all, we need a large enough α to separate the two
coherent components in the oscillator phase space, but we also
have to remain in the weak coupling regime g � 1 so that the
linear dependence of the coupling with interatomic distance is
valid. With the spin coded on a two-photon transition between
two Rydberg states n and n + 2, we find that it is difficult to
separate the two cat components without getting an annoying
contribution of the nonlinear effects at large α.

Consequently, we rather consider a 	n = 1 situation
(CATS parameters in Table I). As stated above, the interatomic
dependence of the spin exchange term in the Hamiltonian
corresponds to m = 3, while all other van der Waals terms
have a m = 6 dependence. The analytic solutions above thus
only apply when using the expression of 	 defined in (4),
namely, when canceling the 	 terms. For the numerical ap-
proach, instead, we use the full position dependence of the
spin-motion Hamiltonian:

Vfull(x̂)/h̄ = U3(x̂) ⊗ 2J�̂X − U6(x̂) ⊗ 	0, (48)

and we take into account the exact form of the potentials (K =
∞). The initial motional state is a thermal equilibrium (cen-
tered on α0 = 0) at a temperature T = 2μK. From the simple
theoretical model, we predict α+ = 0.91 and α− = −0.94.
The Hilbert space for motion is truncated to a maximum
of 100 phonon states. We have checked that the numerical
precision is not limited by this truncation.

The results of this simulation are plotted in Fig. 4. For
the sake of clarity, we use the color blue for quantities
relative to the effective spin, red for those related to the rel-
ative position, and violet for mixed spin-position quantities.
The figure shows the main relevant observables: the Rabi

oscillation signal Peg(t ) and the entanglement entropy between
the oscillator and the rotator, evaluated using the von Neu-
mann entanglement entropy

SvN = −Tr[ρ̂S (t ) ln ρ̂S (t )], (49)

where ρ̂S (t ) is the effective-spin density matrix. The maximal
value of SvN is ln 2. We also plot ξ (t ), the dimensionless
relative position. Regarding energy exchanges, we split the
Hamiltonian into three energy terms Ĥ = h̄(Ĥo + ĤS + ĤoS )
in which

Ĥo = ωn̂; (50)

ĤS = 2J�̂X − 	0; (51)

ĤoS = [U3(ξ̂ ) − 1)] ⊗ 2J�̂X − [U6(ξ̂ ) − 1] ⊗ 	0. (52)

They are respectively the relative-motion energy, the spin
energy, and the spin-position coupling energy, which vanishes
when g → 0. While the total energy (in green) and the spin
energy are always conserved, there is some energy exchange
between the relative motion (in red) and the coupling energy
(in violet). For this set of parameters, the Rabi period TR =
2π/� is much shorter than the position oscillation period
Tω = 2π/ω. The Rabi oscillations and entanglement entropy
nicely display a collapse and revival phenomenon with, in
between, a plateau signaling the cat formation.

Beyond these mean values and in order to probe the cat
formation, the motion in phase space is presented through two
Wigner functions. First, the standard Wigner function defined
using the number parity operator �̂ = (−1)n̂ as

W (α) = 1

π
Tr[ρ̂oD̂(α)�̂D̂†(α)], (53)

with α = (x + ip)/
√

2, D̂(α) the displacement operator, and
ρ̂o = TrSρ̂ the reduced density matrix for the position. Sec-
ond, we see in (21) that the cat coherence should appear in the
projected Wigner function

W (α) = 1

π
Tr〈e, g|ρ̂|e, g〉D̂(α)�̂D̂†(α), (54)

in which the oscillator density matrix is conditioned on the
atomic state |e, g〉. Both Wigner functions are plotted in Fig. 4
for various times. For 36 � t/TR � 60, halfway before the
Rabi revival, we clearly observe a well-formed cat state, sig-
naling the entanglement between the oscillator and the rotator.
The size of such a cat is usually measured by the square of the
distance between its components in phase space. We get here
a maximum value of 13.6 phonons, corresponding to a rather
large animal.

V. FINITE TEMPERATURE

In this section, we extend the analytical solution of the
linear coupling model (K = 1) to a finite initial atomic mo-
tion temperature. We also assume a more general initial spin
state. We compute analytically all relevant observables and
get direct estimates for Rabi contrast as a function of realis-
tic experimental parameters. We finally show that a careful
choice of these parameters turns the spin exchange into a
precise thermometer for the initial atomic motional state, with
interesting potential applications.
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FIG. 4. Example of cat states appearing in the joint spin-motion dynamics. The parameters are those of the CATS line in Table I. The initial
atomic temperature in the traps is T = 2μK. These simulations are performed including the exact, nonlinear dependence of the van der Waals
interactions with distance (K = ∞). Curves with lighter colors are for K = 1 (linear coupling) with the same parameters. We use blue for
quantities relative to the effective spin, red for those related to the relative position, and violet for mixed spin-position quantities. (a) Top row:
spin-exchange Rabi oscillation (probability to find the atoms in the state |e, g〉) and spin-motion entanglement entropy. Second row: relative
position and spin-motion energies (see text) versus time. The green horizontal line is the total energy. (b) First row: snapshots of the motional
Wigner function W (α) during the first spin-exchange Rabi oscillation period. Second row: projected Wigner function W (α) at the same times.
In these two rows, the green lines represent the two circular trajectories ξ±(t ) of the cat state’s coherent components amplitudes (see Fig. 3).
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A. Initial state

We consider that the spin degree of freedom is prepared in
a pure state. Using a Bloch sphere representation of the spin
� with quantization axis along X (note the unusual choice of
orientation), we define the angles (θ0, φ0) so that the initial
spin state is

|ϕ〉 = c+|+X 〉 + c−|−X 〉, (55)

with

c+ = cos

(
θ0

2

)
and c− = sin

(
θ0

2

)
eiφ0 . (56)

In density matrix form, ρ̂S = |ϕ〉〈ϕ|. The initial state |e, g〉,
used in previous sections, is recovered when θ0 = π/2 and
φ0 = 0.

For the relative position, we consider a displaced thermal
state. At a finite temperature T , the phonon number in the
harmonic well is n̄ = 1/(eTh/T − 1), with Th = h̄ω/kB being
the natural temperature scale (its relevant values are given in
Table I). The initial thermal density matrix is then

ρ̂β = 1

1 + n̄

∞∑
n=0

(
n̄

1 + n̄

)n

|n〉〈n|. (57)

We consider in addition an initial coherent displacement by an
amplitude α0, as before. The displaced thermal state density
matrix is ρ̂β (α0) = D̂(α0)ρ̂βD̂†(α0). Eventually, the full initial
state is the factorized state

ρ̂(t = 0) = ρ̂S ⊗ ρ̂β (α0). (58)

B. Observables

During the time evolution, we extract analytically and
numerically all relevant quantities from the density matrix
ρ̂(t ). For the effective spin 
�, we compute all components

of 
s = 〈 
̂�〉, or, equivalently, the reduced spin density matrix
ρ̂S (t ) = Troρ̂(t ), where Tro denotes the trace over the mechan-
ical oscillator degree of freedom. We already noticed that sX

is a conserved quantity since [H, �̂X ] = 0. The probability
Peg(t ) that the first atom is in an excited state (the Rabi os-
cillation signal) is given by

Peg(t ) = Tr(ρ̂(t )|e, g〉〈e, g|) = 1
2 [1 + sZ (t )]. (59)

For the relative position, we compute the averages

ξ (t ) = 〈â† + â〉, π (t ) = 〈i(â† − â)〉 (60)

as well as the mean occupation of the oscillator n(t ) = 〈n̂〉.
Finally, we also compute the entanglement entropy defined in
Eq. (49).

C. Exact solution in linear coupling

We can use the results of the polaron transformation in

Sec. IV B, after which ˆ̃H gives a trivial dynamics since spin
and position are decoupled. Formally, the calculation boils
down to a basis change,

ρ̂(t ) = e−iĤt ρ̂(0)eiĤt = Ûe−i ˆ̃Ht Û†ρ̂(0)Ûei ˆ̃Ht Û†, (61)

that eventually entangles the spin and position degrees of
freedom. The resulting state reads

ρ̂(t ) = |c+|2D̂(γ0 + γ )ρ̂βD̂†(γ0 + γ )|X 〉〈X |
+ |c−|2D̂(γ0 − γ )ρ̂βD̂†(γ0 − γ )|−X 〉〈−X |
+ c∗

+c−ei�t−iϑ (t )D̂(γ0 − γ )ρ̂βD̂†(γ0 + γ )|−X 〉〈X |
+ c∗

−c+e−i�t+iϑ (t )D̂(γ0 + γ )ρ̂βD̂†(γ0 − γ )|X 〉〈−X |,
(62)

in which one recovers the Rabi frequency �. The density
matrix coefficients display the overlap and entanglement be-
tween two coherent states, with amplitudes evolving on the
circles γ0(t ) ± γ (t ) in phase space [γ0(t ) and γ (t ) are given
by Eqs. (43) and (44)]. The relative phase shift ϑ (t ) in (62)
reads

ϑ (t ) = 2α(2αz + α0) sin(ωt ). (63)

The spin dynamics is obtained by tracing out the relative
position:

ρ̂S (t ) = |c+|2|X 〉〈X | + |c−|2|−X 〉〈−X |
+ C(t )[c∗

+c−ei�t−i�(t )|−X 〉〈X |
+ c∗

−c+e−i�t+i�(t )|X 〉〈−X |], (64)

in which we have introduced the contrast function

C(t ) = e−2(2n̄+1)|γ (t )|2 = e−4(2n̄+1)α2(1−cos ωt ), (65)

and where the phase �(t ) is defined in (47). From this den-
sity matrix, we compute the average spin components, which
evolve as

sX (t ) = cos θ0 (66)

sY (t ) = C(t ) sin θ0 sin[�t − �(t ) + φ0] (67)

sZ (t ) = C(t ) sin θ0 cos[�t − �(t ) + φ0]. (68)

We obtain finally the extension of the spin-exchange Rabi
oscillation signal [Eq. (46)] to a finite initial temperature,

Peg(t ) = 1
2 {1 + C(t ) sin θ0 cos [�t + φ0 − �(t )]}, (69)

where the Rabi oscillations are modulated by the contrast
C(t ). In addition, we also derive explicitly the entanglement
entropy between the spin and position degrees of freedom:

SvN(t ) = −λ+(t ) ln λ+(t ) − λ−(t ) ln λ−(t ), (70)

where the eigenvalues λ± of the reduced density matrix ρ̂S (t )
read

λ±(t ) = 1
2 [1 ±

√
cos2 θ0 + sin2 θ0 C2(t )]. (71)

A measurement of the contrast function C(t ) thus gives an
indirect probe of the entanglement in the system. Maximum
entanglement SvN = ln 2 is reached when cos θ0 = 0 and
C(t ) → 0, which occurs in the linear limit when the coupling
displacement α gets sufficiently large, as is the case for the
CATS parameters.

As detailed in Appendix B, we can also compute explicitly
all observables related to the relative position and energy.
Physically, observables involving �̂X result in a combination
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of the two trajectories’ contributions, while observables in-
volving �̂Y and �̂Z capture interferences between the two
paths and involve the contrast function C(t ). This naturally
generalizes to the finite temperature case the considerations
of Sec. III A. As an example, one has

ξ (t ) = 2Re{|c+|2[γ0(t ) + γ (t )] + |c−|2[γ0(t ) − γ (t )]}
〈ξ̂ Ŝ〉(t ) = 4c−c∗

+C(t ) ei[�t−�(t )]

× [Re(γ0 + γ ) − γ (n̄ + 1) + γ ∗n̄].

More explicitly, the mean relative position reads

ξ (t ) = ξ̄ + (ξ0 − ξ̄ ) cos(ωt ), (72)

with ξ̄ = 2(α cos θ0 − αz ) and ξ0 = 2α0. This oscillating be-
havior with a constant shift ξ̄ shows that the previous result
(34) extends to finite temperature and is thus temperature
independent in the linear coupling limit.

D. Application to atomic motion temperature measurement

The above results suggest that the spin-motion observables
could be used for a precise determination of the initial tem-
perature T or, equivalently, of the mean phonon number n̄ for
the atoms in their traps. Indeed, the contrast function C(t ),
and thus, for instance, the Rabi signal Peg(t ), are dependent
on n̄. This dependence is minimized for a large ω/J ratio, an
optimal condition for the observation of nearly unperturbed
spin exchange, as shown in the next section. For a weak trap
(compatible with the stability of the system), i.e., for a small
ω/J ratio, the temperature dependence is much higher and
the spin exchange signal becomes a good thermometer for the
initial atomic temperature.

In order to exploit this sensitivity, while remaining in the
realm of the linear coupling, we propose to use the set of
parameters THM of Table I and focus on the first oscilla-
tions. The spin exchange oscillation signals are displayed in
Fig. 5 for initial temperatures ranging from zero to 50μK.
Figure 5(a) presents the analytical solution in the linear
regime and Fig. 5(b) an exact numerical simulation taking
into account the exact distance dependence (K = ∞). Both
figures show a clear dependence of the Peg(t ) signal with
temperature, particularly in the region of the first minimum.
Their comparison shows that, for such a weak ω value, the
nonlinear effects already play an important role.

Figure 5(c) shows the first minimum of the Rabi oscillation
signal, P∗

eg = Peg(TR/2), as a function of temperature. The
linear and exact results are in good agreement for low enough
temperatures, with a common slope of about 2.2 %/μK. A
determination of P∗

eg at the % uncertainty level thus provides
an interesting 1-μK precision on the temperature.

The sensitivity discussion can be made more precise by
computing dP∗

eg/dT or, equivalently, dP∗
eg/dn̄. Using the lin-

ear regime expressions, we get

dP∗
eg

dn̄
= 4α2(1 − cos ϕR) cos(4ααz sin ϕR)

× e−4α2(1−cos ϕR )(2n̄+1), (73)

where ϕR = ωTR. Figure 6 shows a color-map plot of dP∗
eg/dn̄

for n̄ = 1 as a function of the only two remaining inde-

FIG. 5. Atomic motion thermometry with spin exchange Rabi
oscillations. The experimental parameters are those of line THM
from Table I. (a) Analytical result for the linear coupling. (b) Ex-
act numerical result including nonlinear effects. (c) Probability
Peg(TR/2) at the first minimum of Peg(t ) used as a thermometer.

pendent parameters, the interatomic distance d and the trap
frequency ω/2π . The chosen parameter region (d > 5μm
and ω/2π > 10 kHz) corresponds to a stability region of the

traps (see Appendix A), except in the zone where
dP∗

eg

dn̄ < 0.
The THM parameter set is clearly close to the wide optimum
found here, with about a 3%/phonon maximum. Note that the
sensitivity range of temperatures can be tuned by varying the
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FIG. 6. Maps of the sensitivity (73) with n̄ = 1 as a function of
experimental control parameters d and ω with other parameters fixed
according to THM.

experimental parameters d and ω. For instance, for higher ω

values, the sensitivity is lower but the measurement range can
be extended to accordingly higher temperatures.

The precise measurement of the Rabi signal thus provides
a sensitive thermometry for the initial atomic motion in the
traps. It is most sensitive for rather small oscillation frequen-
cies and for small average phonon numbers, conditions for
which other methods (thermal expansion after releasing the
trap, observation of motional sidebands, etc.) are not readily

applicable. The short involved timescale (for the THM set
of parameters, TR/2 = 23.5μs only) makes the method also
useful for simulators based on ordinary, laser-accessible short-
lived Rydberg states. It could provide a useful tool for the
diagnostic of Rydberg quantum simulators.

VI. LONG-TERM SPIN EXCHANGE: TEMPERATURE
AND NONLINEARITY

We now come back to the original spin simulator of
Ref. [15]. One of the key features of the circular-state quantum
simulator is that it makes, in principle, very long simulation
times accessible. It is thus important to scrutinize the spin-
motion behavior over longer timescales than in the previous
sections. For a simple case, we focus on the spin-exchange
Rabi oscillation for the XXZ set of parameters given in
Table I. With a 	n = 2 configuration and a large trapping fre-
quency (ω/2π = 50 kHz, ω/|J| = 8.7), this set of parameters
is likely to minimize the influence of atomic motion. We will
see that it is indeed the case at very low initial atomic tem-
peratures, but that nonlinearities of the interaction potential
(which can be treated perturbatively since g is small) play a
key role at a finite temperature.

The main results of this section are presented in Fig. 7.
In the upper panel, we show the results of the linear approx-
imation (K = 1) for the Rabi oscillation signal, the relative
position oscillations, and the entanglement entropy. The tem-
perature is here chosen to be 5μK, but the linear regime
results are almost temperature independent in this range. Not

FIG. 7. Examples of Rabi oscillations for the experimental parameters of the XXZ set in Table I, with an initial temperature of T = 5 µK.
The initial atomic state is |e, g〉. The linear coupling plots [upper panel (a)] correspond to K = 1 while nonlinear numerics [lower panel (b)]
are performed with K = ∞. In both panels, we show first the Rabi oscillation signal Peg(t ), the oscillations of the relative position ξ (t ), and
the spin-motion entanglement entropy SvN(t ).
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surprisingly, we obtain a nearly unperturbed spin exchange
Rabi oscillation signal over 50 periods (it remains unperturbed
forever), with a negligible entropy (note the scale of the last
frame).

The exact Rabi oscillation signal including the spin-motion
Hamiltonian to all orders (K = ∞) is unperturbed, too, over
the first 50 Rabi periods, when assuming a zero initial tem-
perature. However, as shown in the lower panels of Fig. 7, the
contrast of the Rabi oscillation decreases quite rapidly when
the initial temperature is set to 5μK. We analyze in detail this
effect to show that it is not induced by decoherence, as might
be feared, but rather due to a gradual dephasing of the Rabi
oscillations corresponding to different initial phonon num-
bers. We recall that we are considering a closed-system model.
We will see that the Rabi oscillation signal exhibits periodic
revivals with a full contrast, showing that this effect does not
hamper the perspectives for a quantum simulator. In order to
explore this dynamics analytically, we use the second-order
expansion of the interaction potential U (ξ̂ ) given by Eq. (13).

A. Dynamics to second order

Starting from (25) and rewriting it in dimensionless vari-
ables to second order in η, we get

ξ̈ + ω2(ξ − ξ̄ ) = − f ωη2(4J〈ξ̂ �̂X 〉 − 2	ξ ). (74)

Thus, we need to evaluate 〈ξ̂ �̂X 〉. Since the pure state evolu-
tion from (19) generalizes to

|�(t )〉 = c+|ψ+(x, t )〉|+X 〉 + c−|ψ−(x, t )〉|−X 〉, (75)

one gets

ξ (t ) = 〈ξ̂ 〉 = |c+|2ξ+(t ) + |c−|2ξ−(t ) (76)

〈ξ̂ �̂X 〉 = |c+|2ξ+(t ) − |c−|2ξ−(t ), (77)

where ξ±(t ) are the two mean trajectories in each single-
particle potential V±(x̂):

ξ±(t ) = 〈ψ±(x, t )|ξ̂ |ψ±(x, t )〉. (78)

Since one can apply the Ehrenfest theorem for these two
single-particle time evolutions, we get the following equa-
tions of motion up to order two in η:

ξ̈±(t ) + ω2
±[ξ±(t ) − ξ̄±] = 0, (79)

where

ω± = ω
√

1 + 2 f η(±α − αz ) (80)

ξ̄± = 2(±α − αz )

1 + 2 f η(±α − αz )
. (81)

Since the evolution equation in (25) involves the derivative
of U (ξ̂ ), the dependence in ξ̂ is still linear at second order
in η, which makes the calculation tractable. The trajectories
thus remain two harmonic oscillations that start from the same
initial condition ξ0. Assuming no initial velocity, we have

ξ±(t ) = ξ̄± + (ξ0 − ξ̄±) cos(ω±t ). (82)

The effect of nonlinearity is to displace the mean position
and amplitude of the oscillations but, most importantly, to
lift the degeneracy of their frequencies and introduce beating
when combining the two trajectories ξ± in observables such

FIG. 8. Difference δξ (t ) between results for linear K = 1 and
nonlinear K = ∞ coupling on the relative position ξ (t ) with the
parameters of Fig. 7.

as the relative distance ξ (t ) in Eq. (76). An example of such
beating with the XXZ set of parameters is given in Fig. 8 by
plotting the difference between the position computed with all
nonlinear terms (K = ∞) and the position computed at linear
coupling (K = 1), i.e.. δξ (t ) = ξ (K=∞)(t ) − ξ (K=1)(t ).

B. Rabi oscillations contrast loss by dephasing

In Fig. 7, we observe that the main effect of nonlinearities
is to induce an appreciable contrast loss. In Fig. 9(a), we show
the envelope of the Rabi oscillations obtained by computing

|S|(t ) =
√

s2
Y (t ) + s2

Z (t ), (83)

with the same parameters, but extending the calculation up
to time t = 500 TR. We observe an almost perfect revival of
the Rabi oscillations around 370 TR and a dependence on
temperature much stronger with nonlinear effects than in the
linear prediction of Fig. 7.

We interpret this effect as resulting from the gradual de-
phasing of the Rabi oscillations corresponding to the different
initial phonon numbers n present in the initial thermal mo-
tional state. Indeed, we can treat the second-order nonlinear
term as a perturbation from the linear-coupling Hamiltonian
Ĥ0, given in (36), by writing the Hamiltonian as

Ĥ = Ĥnl ≡ Ĥ0 + η2 f

2
ξ̂ 2(2J�̂X − 	). (84)

Its eigenstates are the displaced Fock states D̂(α�̂X −
αz )|n, s〉 (s = ±). The energies to first order in perturbation
theory read

E (n, s) = E0(n, s) + η
f

2
ω

{
α
[
(2n + 1) + 4α2 + 12α2

z

]
s

− αz
[
(2n + 1) + 4α2

z + 12α2
]}

, (85)

where the E0(n, s) are given by Eq. (33). We thus see that
the Rabi frequency now depends linearly on the phonon
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FIG. 9. (a) Effect of temperature on the contrast of Rabi oscil-
lations in the presence of nonlinear effects with the parameters of
Fig. 7. (b) Comparison between the K = 2 and K = ∞ results for
T = 10 µK with Eq. (92). Insets are zooms at short times and close
to the revival peak.

number n:

� → �′ + �d n, (86)

where

�′ = � + 2J f η2(α + 4α3 + 12ααz ) (87)

�d = 4J f η2. (88)

With the XXZ set of parameters, α � 1, and we can simplify
the Rabi frequency to � → � + �d n.

At a finite initial temperature, the S(t ) = sZ (t ) + isY (t )
function is the incoherent average

S(t ) =
∞∑

n=0

pnSn(t ) (89)

of the time-evolved Sn(t ) issued from Fock state n, with the
Boltzmann weights

pn = 1

1 + n̄

(
n̄

1 + n̄

)n

. (90)

As an ansatz for the Sn(t ) functions, we use the linear coupling
result given by Eq. (40) extended to an arbitrary spin initial

state:

Sn(t ) = 2c−c∗
+e−2|γ (t )|2 Ln(|2γ (t )|2)ei[�t−�(t )]ei�d nt , (91)

in which second-order terms only introduce a Rabi-frequency
change, reflected by the last term involving �d . With this
simple assumption, the series (89) is carried out using the
generating function of the Laguerre polynomials, so that

S(t ) = 2c−c∗
+C(t )

ei[�t−�(t )]

1 + n̄(1 − ei�d t )

× exp

{
|2γ (t )|2n̄

(1 + n̄)(1 − ei�d t )

1 + n̄(1 − ei�d t )

}
, (92)

with C(t ) given by (65). More practically, starting from |e, g〉,
the Rabi signal can be derived from

sZ (t )=C(t )

× (1 + n̄) cos[�t − �(t )] − n̄ cos[�t − �(t ) + �dt]

1 + 2n̄(n̄ + 1)[1 − cos(�dt )]
.

(93)

Since �d � �, this expression, and hence the Rabi signal,
have a quasi-period Td = 2π/�d . It explains the gradual ini-
tial contrast loss and the nearly full Rabi-contrast revival
observed in Fig. 9(a).

At short times with respect to Td , one gets a quadratic
decay for the envelope |S(t )| � C(t )[1 − (t/τd )2], from the
denominator in (92), with

τd = 1/[�d

√
n̄(n̄ + 1)] (94)

being a typical dephasing time.
The minimum Cmin of the contrast occurs when �dt = π .

Since C(t ) oscillates much faster than the revival signal, a
good estimate of the minimum contrast is given by

Cmin � e−8(1+2n̄)α2

1 + 2n̄
. (95)

The dominant term at weak coupling (α � 1) is the denomi-
nator, which, remarkably, does not depend on the coupling in
this regime.

The contrast loss, due to the gradual dephasing between the
various Fock states contributions, and the revivals obviously
require an initial dispersion of the phonon number and are
only predicted when including the second-order terms in the
evolution. We have considered here an initial thermal state, but
the periodic collapses and revivals of Peg(t ) would be observed
for any initial state (other than a single Fock state), including
of course coherent states.

In Fig. 9(b), we compare the analytic formula at second
order for T = 10μK with numerical results at second order
(K = 2) and at all orders (K = ∞). Remarkably, for this set of
parameters, the second-order formula, despite that it involves
further approximations, reproduces almost exactly the K = 2
numerical result. The main effect of the higher-order nonlin-
ear terms is to deform the revival toward a shorter time (larger
�d ) in an asymmetric manner.

For the experimental parameters XXZ considered in this
section, the expected long-term dynamics of the spin ex-
change is thus obtained only when the initial atomic
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temperature is small at the scale of the temperature Th corre-
sponding to the trap frequency. This is a strong requirement,
even if sideband-cooling mechanisms can be used in principle
to fulfill it. Nevertheless, the loss of contrast results from a
mere dephasing of different Rabi frequencies that could, in
principle, be limited by echo techniques.

VII. CONCLUSION

We have explored in this paper various aspects of the
coupling between spin exchange and motion in the context of
a spin-array quantum simulator based on interacting, trapped
circular Rydberg atoms [15], with quite realistic experimental
parameters. We have shown that, in the tight trap regime, this
coupling can be made small and that long-term spin-exchange
Rabi oscillations are observed. Nevertheless, we have un-
veiled the essential role of a finite atomic temperature and
of the nonlinear behavior of the spin-motion interaction and
shown that unperturbed simulations over very long timescales
would require either echo methods to get rid of the Rabi
oscillations dephasing or a careful cooling of the atoms in
their vibrational ground state.

It would thus be important to assess the motional tempera-
ture in a low-phonon number regime, where standard methods
might be of little use. We have shown that the spin exchange
itself provides a solution. By relaxing the trapping potential,
the spin-exchange Rabi signal can be made utterly sensitive to
the atomic temperature, even on very short time scales. This
thermometry method could also be useful in other situations,
particularly for quantum simulators based on low angular
momentum Rydberg atoms.

In the limit of an extremely strong coupling between the
spin exchange and motion, obtained only for a resonant, first-
order dipole-dipole interaction between the atoms, we have
shown that spin and motion become fully entangled, resulting
in interesting motional states. The involved quantum super-
positions of different coherent amplitudes, a Schrödinger-cat
situation, is also realistically observable in present experi-
ments [25].

Obviously, this paper is only a first step in the exploration
of a very rich situation. We have considered here only the
spin-exchange dynamics to unveil the main mechanisms, but
it would be straightforward, at least numerically, to extend
to the full XXZ dynamics that is obtained by dressing the
atomic transition with a nearly resonant microwave field. The
extension to larger chains is also an interesting objective. How,
for instance, would the propagation of a single excitation over
a chain of atoms be modified by the coupling with the atomic
motion? How does this experimentally achievable situation
compares with, for instance, the spin-charge decoupling mod-
els? Obviously, the exact numerical approach will face severe
problems, even for a few atoms.
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APPENDIX A: CONSIDERATIONS ON THE STABILITY
OF EFFECTIVE POTENTIALS

This section briefly tackles situations when a strong
coupling between spin and motion induces nonperturbative
behaviors. This regime is undesirable experimentally, and the
goal of this section is to get quantitative estimates of the cou-
pling required to enter this regime and some typical qualitative
behaviors that one can observe for such parameters.

1. Stability of spin-dependent potentials

In Fig. 2, we see that the experimental trapping poten-
tials cannot be approximated by a quadratic potential if the
x variable takes too large values. At large temperatures or
couplings, while the system explores large values of x, this
is one possible limitation of the previous description. In this
section, we wish to discuss another limitation that is intrin-
sic to Hamiltonian (7), i.e., with harmonic traps, and that is
relevant at large coupling g when nonlinear effects have to
be taken into account. Indeed, in the linearized version of the
Hamiltonian in the previous sections, the two effective wells
of (29) remain parabola that are merely shifted in energy and
position. However, using the dimensionless variable ξ = x/x0,
one rewrites the spin-dependent potentials as

V±(ξ )

h̄
= ω

4
ξ 2 + ±2J − 	

(1 + gξ )m
, (A1)

with ξ ∈ [−1/g,+∞]. In this form, one sees that for ξ →
−1/g, the second term diverges. Whether the potential di-
verges to ±∞ depends on the sign of the numerator. If the
two prefactors are positive, i.e., when

2|J| < −	, (strong stability condition), (A2)

the stability of both potentials around their minima is ensured,
whatever the coupling strength g. Clearly, if 	 � 0, this con-
dition is never fulfilled. Thus, this strong stability requires
	 < 0 and J not too large, since 2|J| < |	|. The extrema of
(A1) are solutions of the equation

ξ (1 + gξ )m+1 = g
2m

ω
(±2J − 	), (A3)

for which the two minima ξ±
0 � x±

0 /x0 at weak coupling g are
those given in Eq. (30). In the strong-stability condition case,
these minima are positive and go through an intermediate
maximum before decaying towards zero as

ξ±
0 �

(
2m

|	 ∓ 2J|
ω

)1/(m+2) 1

gm/(m+2)
(A4)

at large coupling g. This behavior is illustrated in Fig. 10. In
such a case, the overall qualitative interfering paths picture re-
mains correct, with trajectories that are deformed but nothing
dramatic happens.

When (A2) is not satisfied, there typically exists at least
one potential with a negative divergence branch as illustrated
in Fig. 11 for a metastable V− potential. Metastability is
associated to the existence of an intermediate maximum ξM
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FIG. 10. (a) Example when the V± are both stable. (b) Evolution
of the minima of these potentials with coupling g. Parameters are
chosen for illustration purposes and do not correspond to experimen-
tally realistic ones.

solution to (A3), that is necessarily negative. At weak cou-
pling g, we directly see in (A3) that it scales as

ξM � −1/g. (A5)

When increasing g, the maximum eventually merges with
the minimum of the same branch at a critical coupling gc

beyond which the minimum disappears, corresponding to a
breakdown of the laser-trap stability. Before that, tunneling
through the metastable potential could already become signif-
icant. Consequently, the metastability region is given by the
conditions

2|J| > −	 and g < gc (metastability condition). (A6)

The value of the critical coupling reads

g(m)
c,± = 1√

2m

(m + 1)(m+1)/2

(m + 2)(m+2)/2

√
ω

|	 ∓ 2J| . (A7)

The associated value of the critical dimensionless relative
distance is

ξc = − 1

(m + 2)gc
. (A8)

FIG. 11. (a) Same as Fig. 10 but in the case where one of the
potential is metastable. (b) Evolution of the minima (full lines) and
maximum (dashed lines) as a function of the coupling g.

More explicitly, for m = 3 (for which we can neglect 	) and
m = 6, Eq. (A7) gives

g(3)
c,± ≈ 0.116847

√
ω

|2J| , (A9)

g(6)
c,± ≈ 0.063958

√
ω

|	 ∓ 2J| . (A10)

These values may become small when ω < |	 ∓ 2J|. We
observe that only at sufficiently low trap frequencies ν and
distance d , in which one reaches strong couplings g, one goes
beyond the critical value gc,−.

2. Typical behavior of observables

In Fig. 12, we give a typical example of behavior in the
strong coupling regime. We choose a 	n = 2 situation but
starting with n = 50 and with slightly different magnetic and
electrical fields. The main parameters are d = 6μm and ω =
7 kHz so that α � −1.38 and g � 0.021 is large but with
g � gc,− so that metastable trapping occurs. In Fig. 12(a), the
trajectory in the metastable well (in blue) becomes strongly
deformed and eventually oscillates in a confined region of
the well. On the contrary, the stable well has an almost
harmonic behavior with small oscillations close to the min-
imum. The Rabi oscillations of Fig. 12(b) display deformed
revivals after a few periods TR but eventually transform in a
structureless signal with many frequencies. These two aspects
also reflect in the behavior of the entanglement entropy of
Fig. 12(c).

APPENDIX B: COHERENT STATE DICTIONARY
AND CALCULATION OF OBSERVABLES IN

THE LINEAR COUPLING LIMIT

With the exact result (62), one can derive all possible
observables concerning the position and correlators between
position and spin using the standard formula for coherent
states. We briefly recall that traces of position observables are
best computed in the coherent state phase space representation
[26]. For instance, using the coherent state representation of
the thermal density matrix, one writes

Tr[ρβD(γ )] = 1

π n̄

∫
d2α e−|α|2/n̄〈α|D(γ )|α〉 = e−|γ |2(n̄+1/2).

(B1)
This generalizes to

Tr[ρβ ξ̂ D(γ )] = 1

π n̄

∫
d2α e−|α|2/n̄〈α|(a + a†)D(γ )|α〉

= [(n̄ + 1)γ − n̄γ ∗]e−|γ |2(n̄+1/2). (B2)

Note that in formulas (B1) and (B2), γ is a generic parameter
and does not correspond to (44), contrary to the next formulas
below. As an application, we get the following results for the
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(a) (b) (c)

FIG. 12. Typical behavior in the metastability regime for temperature T = 0μK and parameters described in the main text. (a) ξ± phases
space trajectories. (b) Rabi oscillations signal Peg(t ). (c) Entanglement entropy SvN(t ).

simplest observables involving the relative position:

n(t ) = n̄ + |c+|2|γ0(t ) + γ (t )|2 + |c−|2|γ0(t ) − γ (t )|2
(B3)

σ 2(t ) = σ̄ 2 + (1 + 2n̄)[|c+|2|γ0(t ) + γ (t )|2

+|c−|2|γ0(t ) − γ (t )|2] (B4)

ξ (t ) = 2{|c+|2 Re[γ0(t ) + γ (t )]

+|c−|2 Re[γ0(t ) − γ (t )]} (B5)

〈ξ̂ 2〉(t ) = 1 + 2n̄ + 4{|c+|2 Re[γ0(t ) + γ (t )]2

+|c−|2 Re[γ0(t ) − γ (t )]2} (B6)

〈ξ̂�X 〉(t ) = 2{|c+|2 Re[γ0(t ) + γ (t )]

−|c−|2 Re[γ0(t ) − γ (t )]} (B7)

〈ξ̂ 2�X 〉(t ) = (|c+|2 − |c−|2)(1 + 2n̄) + 4{|c+|2
× Re[γ0(t ) + γ (t )]2 − |c−|2Re[γ0(t ) − γ (t )]2}

(B8)

〈ξ̂�Y 〉(t ) = 4C(t )Im{c−c∗
+ei�t−i�(t )[Re(γ0 + γ )

−γ (n̄ + 1) + γ ∗n̄]} (B9)

〈ξ̂�Z〉(t ) = 4C(t )Re{c−c∗
+ei�t−i�(t )[Re(γ0 + γ )

−γ (n̄ + 1) + γ ∗n̄]}, (B10)

in which σ 2 = 〈n̂2〉 − 〈n̂〉2 are number fluctuations in the po-
sition, with the thermal expectation σ̄ 2 = n̄(n̄ + 1).
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Controlling quantum many-body dynamics in driven Rydberg
atom arrays, Science 371, 1355 (2021).

[15] T. L. Nguyen, J. M. Raimond, C. Sayrin, R. Cortiñas, T. Cantat-
Moltrecht, F. Assemat, I. Dotsenko, S. Gleyzes, S. Haroche, G.
Roux, T. Jolicoeur, and M. Brune, Towards Quantum Simu-
lation with Circular Rydberg Atoms, Phys. Rev. X 8, 011032
(2018).

[16] T. Cantat-Moltrecht, R. Cortiñas, B. Ravon, P. Méhaignerie,
S. Haroche, J. M. Raimond, M. Favier, M. Brune, and C.
Sayrin, Long-lived circular Rydberg states of laser-cooled ru-
bidium atoms in a cryostat, Phys. Rev. Res. 2, 022032(R)
(2020).

[17] M. Brune and D. J. Papoular, Evaporative cooling to a Rydberg
crystal close to its ground state, Phys. Rev. Res. 2, 023014
(2020).

[18] D. Barredo, V. Lienhard, S. de Leseleuc, T. Lahaye, and A.
Browaeys, Synthetic three-dimensional atomic structures as-
sembled atom by atom, Nature (London) 561, 79 (2018).

[19] D. Barredo, V. Lienhard, P. Scholl, S. de Léséleuc, T. Boulier,
A. Browaeys, and T. Lahaye, Three-Dimensional Trapping
of Individual Rydberg Atoms in Ponderomotive Bottle Beam
Traps, Phys. Rev. Lett. 124, 023201 (2020).

[20] F. M. Gambetta, W. Li, F. Schmidt-Kaler, and I. Lesanovsky,
Engineering NonBinary Rydberg Interactions via Phonons in
an Optical Lattice, Phys. Rev. Lett. 124, 043402 (2020).

[21] M. Magoni, R. Joshi, and I. Lesanovsky, Rydberg tweezer
molecules: Spin-phonon entanglement and Jahn-Teller effect,
arXiv:2303.08861.

[22] P. P. Mazza, R. Schmidt, and I. Lesanovsky, Vibrational Dress-
ing in Kinetically Constrained Rydberg Spin Systems, Phys.
Rev. Lett. 125, 033602 (2020).

[23] M. Magoni, P. P. Mazza, and I. Lesanovsky, Phonon dressing of
a facilitated one-dimensional Rydberg lattice gas, SciPost Phys.
Core 5, 041 (2022).

[24] S. R. Cohen and J. D. Thompson, Quantum computing with
circular Rydberg atoms, PRX Quantum 2, 030322 (2021).

[25] P. Mehaignerie et al. (unpublished).
[26] R. J. Glauber, Coherent and incoherent states of the radiation

field, Phys. Rev. 131, 2766 (1963).

063106-17

https://doi.org/10.1038/s41586-019-1070-1
https://doi.org/10.1126/science.abi8794
https://doi.org/10.1126/science.abg2530
https://doi.org/10.1103/PhysRevX.8.011032
https://doi.org/10.1103/PhysRevResearch.2.022032
https://doi.org/10.1103/PhysRevResearch.2.023014
https://doi.org/10.1038/s41586-018-0450-2
https://doi.org/10.1103/PhysRevLett.124.023201
https://doi.org/10.1103/PhysRevLett.124.043402
http://arxiv.org/abs/arXiv:2303.08861
https://doi.org/10.1103/PhysRevLett.125.033602
https://doi.org/10.21468/SciPostPhysCore.5.3.041
https://doi.org/10.1103/PRXQuantum.2.030322
https://doi.org/10.1103/PhysRev.131.2766

