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Optical Feshbach resonances allow one to control cold atomic scattering, produce ultracold molecules, and
study atomic interactions via photoassociation spectroscopy. In the limit of ultracold s-wave collisions, the
strength of an optical Feshbach resonance can be expressed via an energy-independent parameter called the
optical length. Here we give fully analytic approximate expressions for its magnitude applicable to near-threshold
bound states of an excited molecular state dominated by a single resonant-dipole or van der Waals interaction.
We express these magnitudes in terms of intuitive quantities, such as the laser intensity, the excited-state binding
energy, the s-wave scattering length, and the Condon point. Additionally, we extend the utility of the optical
length to associative stimulated Raman adiabatic passage in three-dimensional optical lattices by showing that
the free-bound Rabi frequency induced by a laser coupling a pair of atoms in an optical lattice site can be
approximately related to the trap frequency and the optical length.
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I. INTRODUCTION

Feshbach resonances [1] emerge in cold atomic collisions
when the entrance scattering channel is coupled to a discrete
molecular state by, e.g., hyperfine mixing. Optical Feshbach
resonances (OFRs) [2] are created artificially by a laser tuned
nearby an electronically excited molecular bound state. The
unavoidable losses due to spontaneous decay from the excited
state are the foundation of photoassociation spectroscopy: an
essential tool for studying weakly bound states in homonu-
clear [3–13] and heteronuclear molecules composed of the
colliding species [14–17]. For several systems, most notably
88Sr [18], the decay from the excited bound state may ef-
ficiently produce ultracold ground-state molecules [18–23].
Finally, OFRs can control the scattering length [24–32] with
high spatial and temporal resolution [30].

The strength of an s-wave OFR can be expressed by an
optical length lopt [2,25,33,34] related to a free-bound Franck-
Condon factor between the ground-state scattering and excited
bound-state wave functions. These can be evaluated nu-
merically by solving the appropriate radial Schrödinger
equations. Alternatively, the Franck-Condon factors can be
approximated using the well-known reflection approximation
originally devised by Jabłoński in the context of his quantum
theory of spectral line broadening [35] and later appropri-
ated for cold collisions by Julienne [36]. The major virtue
of the reflection approximation is that it relates the strength
of a photoassociation line to the squared ground-state wave
function at the outermost Condon point (Fig. 1), a point
where the incident photon’s energy matches the energy dif-
ference between ground- and excited-state potential, and thus
can, e.g., explain gaps in photoassociation spectra as due
to nodes in the ground-state wave function. The reflection
approximation works well when the excited-state potential

has a much longer range than the ground-state potential, for
instance, when the excited state is dominated by a strong
resonant-dipole interaction. An improved version of the re-
flection formula, the stationary phase approximation [34], has
an extended range of validity that also covers van der Waals
(vdW) excited states so long as the excited-state vdW inter-
action is much stronger than the ground state’s. In practice,
however, to use either formula one still must compute the
ground-state wave function numerically (see, e.g., [37–39]),
estimate the excited-state vibrational splittings, and, for the
stationary phase formula, numerically integrate a WKB phase
shift, often lacking knowledge of the relevant interatomic
potentials. This may require postulating a model potential
without prior experimental input. Then, calculating, e.g., the
dependence of the photoassociation spectra on the scattering
length would require further manual tuning of that potential.

In this paper we evaluate the reflection [36,40] and sta-
tionary phase formulas [34] (where appropriate) using the
WKB approximation to arrive at fully analytic formulas for
the strengths of optical Feshbach resonances that require no
numerical solutions to the radial Schrödinger equation. To
do so, we will consider the excited-state interaction poten-
tial Ve(R) as dominated by a single −Ce

nR−n term, where R
is the internuclear distance. In particular, we will consider
two useful limiting cases: (i) an excited state with a strong
resonant-dipole interaction Ve ∼ −Ce

3R−3, which describes
homonuclear collisions in a laser field tuned near either an
allowed or a sufficiently strong intercombination transition,
and (ii) a vdW excited state Ve ∼ −Ce

6R−6, which describes
heteronuclear systems. We will express lopt using intuitive
physical quantities: the s-wave scattering length a, leading in-
teraction terms (Ce

3 or Ce
6), the excited-state binding energy Eb,

the Condon point RC , and the classical outer turning point Rt .
In particular, the explicit connection to the scattering length
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could help experimentalists choose the best isotopologue of a
system via mass scaling [41–43]. We will test our formulas
on real-world examples: intercombination line OFRs in Yb2

(a system whose excited-state interactions are dominated by
a resonant-dipole R−3 term) [12,29,44,45] and OFRs in the
Rb + Sr system near the Rb D1 line [46] (which has a van
der Waals R−6 tail in the excited-state interaction potential).
Despite approximating real atomic interactions with just one
dominant CnR−n term, we will find that the resultant fully
analytic formulas can still match numerical computations
semiquantitatively.

Finally, given the interest in the production of molecules
from atomic pairs in three-dimensional (3D) optical lattice
sites [47,48], we will show how the free-bound Rabi fre-
quency �FB for the transition of an unbound atomic pair state
in an optical lattice site to the excited molecular bound state
can be calculated from the optical length lopt and then test
it using 84Sr2 experimental data [13,48]. Our formula, based
on ideas from quantum defect theory [49], corroborates the
empirical observation [48] that the free-bound Rabi frequency
scales approximately with the optical lattice frequency ωtrap as
�FB ∝ ω

3/4
trap.

II. DERIVATION OF THE ANALYTIC FORMULAS

Here we analytically evaluate optical lengths within the
reflection approximation [36,50] and its more accurate ver-
sion, the stationary phase approximation [34], by using the
WKB approximation. In Sec. II A we will define the optical
length in terms of a free-bound Franck-Condon factor and in
Sec. II B we will quote the reflection and stationary phase ap-
proximations for that Franck-Condon factor. In the following
sections we will look at the individual terms that comprise
these approximations and evaluate them one by one. For the
ratio of vibrational spacings and potential slope (Sec. II C) we
will employ the Le Roy–Bernstein formula [51] allowing us to
write them in terms the dominant excited-state interaction and
the excited bound-state position. Then, in Sec. II D we will
introduce the three models of the ground-state wave function
in the zero-energy limit, i.e., the asymptotic, long-range, and
short-range models, that allow us to write the wave function
in terms of the ground-state s-wave scattering length and the
ground-state van der Waals coefficients Cg

6 and optionally Cg
8 .

In Sec. II E we will tackle the extra phase correction term
that differentiates between the reflection [36] and stationary
phase [34] approximations by using the WKB approximation
on locally linearized excited-state potential. In Sec. II F we list
the final analytic formulas: Eqs. (21a)–(22c).

A. Optical length

Consider an ultracold collision of two atoms, in an s wave,
at a kinetic energy E , and described by an energy-normalized
scattering wave function fg. The strength of an OFR, or its
ability to induce observable photoassociative losses or a useful
change to the scattering length, is commonly expressed via an
optical length, defined as [2,25,33,34]

lopt = �stim

2kγm
. (1)

Here γm is the decay rate of the excited bound state and
h̄�stim = 2π |〈 fg|V opt|ψb〉|2 is a stimulated rate [50] induced
by coupling an excited bound state ψb to the ground-state
scattering wave function fg, via a matrix element Vopt that
describes the interaction of the colliding atoms with light.
For a laser detuned by δ, the change to scattering length
	a and the photoassociative inelastic collision rate Kin

[2,12,13,25,31,52,53] are

	a = loptγmδ

δ2 + (ηγm)2/4
, (2)

Kin = g
2π h̄

μ

loptηγ 2
m

δ2 + γ 2
m(η + 2klopt )2/4

, (3)

where γm is the natural linewidth of the excited bound state,
η � 1 is a broadening factor that accounts for other loss pro-
cesses, μ is the reduced mass, g is a symmetry factor (2 for
a thermal gas of identical bosons and 1 otherwise), and the
wave number k = √

2μE/h̄ at collision energy E .
In this paper we consider optical Feshbach resonances

close to near-threshold excited molecular bound states where
the molecular dipole transition moment and the molecular
state decay rate γm can be expressed in terms of the properties
of the constituent atoms. In such a case it is well known
[33,45,50,53–56] that the optical length becomes

lopt = 3λ3
a

16πc
I frot

|〈 fg|ψb〉|2
k

, (4)

where I is the laser intensity (hereafter assumed equal to 1
W/cm2), λa is the atomic transition wavelength, and frot is
a rotational Hönl-London factor stemming from translating
the electric-field operator from space-fixed to body-fixed co-
ordinates [54,57]. Within the Wigner threshold regime the
amplitude of the ground-state scattering wave function fg is
proportional to

√
k, making lopt ∼ f 2

g /k practically constant
with respect to collision energy. Thus lopt may be evaluated in
the limit of zero energy and used for all collision energies in a
sufficiently cold gas [53].

B. Reflection and stationary phase approximations

The starting point for the present paper is the stationary
phase approximation formula [34,36,50] for the Franck-
Condon factor which, in this paper, we will further evaluate
using WKB approximations. The full derivation of the sta-
tionary phase formula can be found in Ref. [34]; here we will
only briefly outline the derivation.

The regular wave functions for the ground- and excited-
state potentials can be written in the Milne form

ψb(R) =
(

∂Eb

∂v

)1/2( 2μ

π h̄2

)1/2

αe(R) sin[β(R)], (5)

fg(R) =
(

2μ

π h̄2

)1/2

αg(R) sin[φ(R)], (6)

where αg(R) and αe(R) are the local amplitudes of the ground-
and excited-state wave functions, respectively, and φ(R) and
β(R) are their respective phases. Thus, the desired Franck-
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FIG. 1. In an optical Feshbach resonance the initial atomic scat-
tering state, characterized by a collision energy E and wave vector k,
are coupled by the incident photon h̄ω to an excited molecular bound
state at energy Eb. Here Vg and Ve are the ground- and excited-state
potentials, respectively, Rt is the classical outer turning point of
the excited bound state, and RC is the outermost Condon point, the
internuclear distance where the photon energy matches exactly the
energy difference between the ground- and excited-state potentials.

Condon factor

|〈 fg|ψb〉|2 = ∂Eb

∂v

(
2μ

π h̄2

)2

|Ieg|2 (7)

can be written in terms of the following integral:

Ieg =
∫ ∞

0
dRαe(R)αg(R) sin[β(R)] sin[φ(R)]. (8)

The oscillating terms can be rewritten as
sin[β(R)] sin[φ(R)] = {cos[β(R) − φ(R)] − cos[β(R) +
φ(R)]}/2. The fast oscillating second term contributes little to
the integral and can be omitted.

The crux of the stationary phase approximation lies in
the observation that the main contribution to this integral
stems from the stationary phase point where ∂β(R)/∂R −
∂φ(R)/∂R ≈ 0. Within the WKB approximation the respec-
tive derivatives are β(R)/∂R ≈ √

2μ[Eb − Ve(R)] = ke(R)
and φ(R)/∂R ≈ √−2μ[Vg(R)] = kg(R) and the stationary
point becomes the Condon point (Fig. 1), defined as the out-
ermost point RC where Ve(RC ) − Eb = Vg(RC ). Additionally,
while the entirety of the ground-state wave function cannot
be described by the WKB approximation (see Sec. II D),
the phase and amplitude of the excited-state wave function
for R < Rt can be well approximated by αe(R) = {2μ[Eb −
Ve(R)]}−1/4 and β(R) = −π/4 − 	β(R, Rt ) with the phase
integral 	β(R, Rt ) = ∫ Rt

R dR′ke(R′), with Rt the classical
outer turning point.

In the final step of the derivation, the phase difference is
expanded to second order around the Condon point RC ,

φ(R) − β(R) ≈ b0 + b1(R − RC ) + b2

2
(R − RC )2, (9)

where b0 = φ(RC ) + 	β(RC, Rt ) + π/4, b1 ≈ 0, and b2 ≈
μDC/h̄2ke(RC ) [34]. Here the slope difference at the Con-

don point DC = V ′
e (RC ) − V ′

g (RC ). Finally, the integral can be
evaluated assuming that the amplitudes αg,e are slowly varying
around the Condon point [34,50]:

Ieg ≈ 1

2

∫ ∞

0
dRαe(R)αg(R) cos

(
b0 + b2

2
(R − RC )2

)

≈ 1

2
αe(RC )αg(RC )

√
2π

b2
cos

(
b0 + π

4

)

≈ −
√

π h̄2

2μDC
αg(RC ) sin[φ(RC ) + 	β(RC, Rt )]. (10)

The final approximate Franck-Condon factor can be writ-
ten as a product of four terms [34]

|〈 fg|ψb〉|2 ≈ ∂Eb

∂ν

1

DC
| fg(RC )|2

× sin2[φ(RC ) + 	β(RC, Rt )]

sin2[φ(RC )]
. (11)

In this work we will aim to analytically approximate these
terms. The first term ∂Eb/∂ν is the local vibrational spacing
in the excited state. The second depends on the difference DC

between the excited- and ground-state potential slopes taken
at the Condon point RC : DC = V ′

e (RC ) − V ′
g (RC ). We will treat

the two together in Sec. II C. The third term is the squared
ground-state wave function at the Condon point. The last is
a phase correction term [34] that will improve our model for
the more deeply bound states where the difference between
RC and the classical outer turning point Rt can be substantial.
For very weakly bound states of a resonant-dipole system the
Condon point RC is very close the outer turning point Rt and
Eq. (11) reduces to the well-known reflection approximation
[35,36,40,50]

|〈 fg|ψb〉|2 ≈ ∂Eb

∂ν

1

DC
| fg(RC )|2. (12)

The stationary phase approximation works best when the two
molecular potentials Ve and Vg are very different; while in the
resonant-dipole case this is usually true unless the resonant-
dipole interaction is very weak, for vdW systems this implies
an excited-state interaction coefficient Ce

6 significantly larger
than the ground state Cg

6 [34].

C. Vibrational spacing and potential slopes

In our quest towards simple expressions we will benefit
from two main observations. First, the Le Roy–Bernstein the-
ory [51,58] provides a formula for the vibrational spacing in a
−CnR−n potential,

∂Eb

∂ν
= h̄

√
2π

μ

�(1 + 1/n)

�(1/2 + 1/n)

n

C1/n
n

(−Eb)(n+2)/2n, (13)

where �(x) is the Euler gamma function and Eb is the res-
onance position. When the OFR laser is on resonance and
the collision energy E → 0, the difference in potentials at
the Condon point matches the bound-state energy Ve(RC ) −
Vg(RC ) = Eb. We can write the potential difference in terms of
multipole expansions Ve − Vg = −Ce

3R−3 − 	C6R−6 − · · · ,
where 	C6 = Ce

6 − Cg
6 . To the lowest order, the appropriate
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Condon points for the resonant-dipole and vdW systems are
Rr-d

C ≈ (Ce
3 )1/3(−Eb)−1/3 and RvdW

C ≈ 	C1/6
6 (−Eb)−1/6. Simi-

larly, we may approximate the difference in potential slopes
with Dr-d

C ≈ −3C3R−4
C and DvdW

C ≈ −6	C6R−7
C . With these

choices the first two terms in Eq. (11) simplify to

(
∂Eb

∂ν

1

DC

)r-d

≈ h̄

√
2π

μ

�(4/3)

�(5/6)

1√−Eb
, (14a)

(
∂Eb

∂ν

1

DC

)vdW

≈ h̄

√
2π

μ

�(7/6)

�(2/3)

(
	C6

Ce
6

)1/6 1√−Eb
. (14b)

D. Zero-energy ground-state wave functions

The second simplification stems from the Wigner threshold
law [2,45,53,59,60]: For sufficiently low collision energies,
the ratio |〈 fg|ψb〉|2/k is effectively constant, allowing us to
evaluate fg at zero energy, where simple analytic models
are available. However, due to the breakdown of the WKB
approximation near RvdW = (2μCg

6/h̄2)1/4/2 [2,40], we will
be forced to use separate wave-function models for the long-
range (R � RvdW) and short-range (R � RvdW) internuclear
separations.

The asymptotic (R → ∞) form of the s-wave scattering
wave function [shown in Fig. 2(a)] is

f asym
g (R) ∼

√
2μ

π h̄2k
sin(kR + η), (15a)

where the phase shift η due to the short-range potential defines
the scattering length via a = limk→0 −η/k. At internuclear
distances closer to RvdW the long-range van der Waals interac-
tion causes the wave function to deviate from its asymptotic
form. Reference [36] gives the approximate formula

f long
g (R) ≈

√
2μ

π h̄2k
sin

[
k

(
R − a − 8

15

R4
vdW

R3

)](
1 − 4

5

R4
vdW

R4

)
,

(15b)

which closely matches the numerical wave function for R
ranging from +∞ down to about RvdW [Fig. 2(a)].

For short-range interatomic distances, i.e., R � RvdW, we
will use a WKB wave function

f short
g (R) ≈

√
2μ

π h̄2 A(R, E )C−1(E ) sin[φ(R, E )], (15c)

where A(R, E ) = 1/
√

klocal(R) and φ(R, E ) are the typ-
ical WKB amplitude and phase. Since we assumed that
the ground-state potential Vg(R) ∼ −Cg

6R−6, the local wave
number klocal = [k2 − 2μV (R)/h̄2]1/2 entering the expres-
sion for the WKB amplitude can be replaced with
klocal ≈ (2μCg

6/h̄2)1/2R−3 = 4R2
vdWR−3. The additional term

C−1(E ) = {kā[1 + (a/ā − 1)2]}1/2 is a correction to the
amplitude for near-threshold scattering wave functions
[2,63,64]. The quantity ā = 2−1/2[�(3/4)/�(5/4)]RvdW =
(0.956) . . . (RvdW) is the mean scattering length that enters the
semiclassical formula for a in a vdW potential [41].

FIG. 2. Comparison of model zero-energy scattering wave func-
tions on the example of 176Yb2 (a = −24a0 [61,62]). (a) Numerical
wave function (thick gray line) approximated by the asymptotic
wave function (16) (blue dashed line); its improved version, the
long-range model of Ref. [36], Eq. (17) (blue solid line); and the
WKB short-range wave function (18) (red solid line), respectively.
(b) Comparison of the short-range WKB wave fuction (18), where
the wave-function phase φ(R) is calculated without (red solid line)
and with (red dashed line) the φ8(R) phase correction (17c). A quick
glance reveals that including the extra phase correction improves the
agreement with the numerically obtained wave function.

The zero-energy WKB phase φ(R) can be related to
the s-wave scattering length at its large-R limit φ∞ =∫ ∞

R0
klocal(R′)dR′ that enters the well-known semiclassical for-

mula a = ā[1 − tan(φ∞ − 3π/8)] [41]. Thus we can very
well start at infinite nuclear separation with the asymptotic
value of φ∞ obtained by inverting the semiclassical formula
and accumulate the WKB phase inward. Since the Condon
points RC are well past the Le Roy radius [58], we can expand
the ground-state potential as Vg ≈ −Cg

6R−6 − Cg
8R−8 and ex-

press the phase φ(R) as

φ(R) = φ∞ − φ6(R) − φ8(R), (16)

where the individual phase terms are

φ∞ = 3π

8
+ arctan

(
1 − a

ā

)
, (17a)

φ6(R) =
∫ ∞

R

(
2μCg

6

h̄2 R−6

)1/2

dR = 2

(
RvdW

R

)2

, (17b)

φ8(R) = 1

8

√
2μ

h̄

Cg
8√
Cg

6

R−4. (17c)
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The term φ6 is the exact WKB phase due to just the R−6

tail. The next van der Waals term −Cg
8R−8 can be accounted

for perturbatively. A first-order WKB phase correction due to
a small additional potential δV on top of a potential V may be
expressed as [65]

δφ ≈ 1

2

∫ ∞

RC

√
2μ

h̄

δV√|V (R)|dR. (18)

The expression for φ8 is obtained by assuming the δV =
−C8R−8 contribution is much smaller than the V = −C6R−6

term. While φ6 alone may be sufficient for many applications,
taking the C8 term into account significantly improves the
model wave function at shorter internuclear separations, as
shown in Fig. 2(b). Finally, in the zero-energy (k → 0) limit
we have∣∣∣∣∣ f 2

g (RC )

k

∣∣∣∣∣
asym

≈ 2μ

π h̄2 (RC − a)2, (19a)

∣∣∣∣∣ f 2
g (RC )

k

∣∣∣∣∣
long

≈ 2μ

π h̄2

(
RC − a − 8

15

R4
vdW

R3
C

)2

×
(

1 − 4

5

R4
vdW

R4
C

)2

, (19b)

∣∣∣∣∣ f 2
g (RC )

k

∣∣∣∣∣
short

≈ 2μ

π h̄2 ā

[
1 +

(a

ā
− 1

)2
]

× R3
C

4R2
vdW

sin2[φ(RC )]. (19c)

We note that while the simple asymptotic expression only
reproduces the outermost node of the scattering wave function
(and only for a large positive scattering length), it will turn
out useful for transitions to weakly bound states supported by
a strong resonant-dipole interaction whose Condon points are
usually well past RvdW. The short-range model is a rapidly
oscillating function due to the sin2[φ(RC )] term and is appro-
priate for vdW systems and more deeply bound states in the
resonant-dipole case. The typical values of RvdW range from
about 30a0 to about 100a0 [2].

E. WKB phase correction

The last term in Eq. (11) adds an excited-state WKB phase
correction 	β(RC ; Rt ) = ∫ Rt

RC
[2μ(Eb − Ve)/h̄2]1/2dR [34] that

improves upon the reflection approximation for deeply bound
states. For this reason, we will only use it in conjunction
with the short-range wave-function model [Eq. (15c)]. We
can obtain an approximate analytic solution to this integral by
simply linearizing Ve around the classical outer turning point
Rt . Since by definition at the turning point Ve(Rt ) = Eb, we
can approximate Ve(R) as Ve(R) ≈ Eb + V ′

e (Rt )(R − Rt ). For
the resonant-dipole case

[	β]r-d ≈
√

2μCe
3

h̄

2
√

3

3
R−2

t (Rt − RC )3/2, (20a)

whereas for a van der Waals system

[	β]vdW ≈
√

2μCe
6

h̄

2
√

6

3
R−7/2

t (Rt − RC )3/2. (20b)

The distance between the turning and Condon points itself
Rt − RC can be estimated as follows. The turning point is
defined as a point where the excited-state potential matches
the bound-state energy: Ve(Rt ) = Eb. The position of the Con-
don point additionally depends on the ground-state potential:
Ve(RC ) − Vg(RC ) = Eb. In a vdW system, if one ignores any
potential terms other than C6, then Rt = (−Ce

6/Eb)1/6 and
RC = (−	C6/Eb)1/6. For a resonant-dipole system with a
dominant −Ce

3R−3 excited-state interaction we can start from
the definitions of RC and Rt to obtain, after some algebra,

Rt = RC

(
1 − Cg

6R−3
C

Ce
3

)−1/3

≈ RC

(
1 + Cg

6R−3
C

3Ce
3

)
,

and hence Rt − RC ≈ Cg
6R−3

C /3Ce
3. Finally we can, without

losing much accuracy, replace the RC on the right-hand side
with Rt so that Rt − RC ≈ Cg

6R−3
t /3Ce

3.

F. Final formulas

Combining the formulas for resonant-dipole vibrational
spacing [Eq. (14a)] with the asymptotic [Eq. (19a)] and
long-range wave-function models [Eq. (19b)], respectively,
produces the following approximate expressions:

l r-d,asym
opt = 3λ3

a

16πc
I frot

2
√

2μ

h̄
√

π

�(4/3)

�(5/6)

1√−Eb
(RC − a)2, (21a)

l r-d,long
opt = 3λa

3

16πc
I frot

2
√

2μ

h̄
√

π

�(4/3)

�(5/6)

1√−Eb

×
(

RC − a − 8

15

R4
vdW

R3
C

)2(
1 − 4

5

R4
vdW

R4
C

)2

. (21b)

It is worth pointing out that in the limit of R � RvdW the long-
range formula reduces to the asymptotic one.

To obtain the short-range expression we similarly com-
bine the formula for the vibrational spacing [Eq. (14a)],
but with the short-range (WKB) wave function [Eq. (19c)],
and, in this case, also take into account the WKB phase
correction [Eq. (11)]. This has the effect of replacing the
sin2[φ(RC )] term in the model wave function with an appro-
priate sin2[φ(RC ) + 	β(RC, Rt )] term:

l r-d,short
opt = 3λ3

a

16πc
I frot

2
√

2μ

h̄
√

π

�(4/3)

�(5/6)

1√−Eb
ā

×
[

1 +
(a

ā
− 1

)2
]

R3
C

4R2
vdW

sin2[φ(RC )

+ 	β(RC, Rt )]. (21c)

Similar formulas for a van der Waals–dominated ex-
cited state can be constructed analogously and the final
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formulas are

lvdW,asym
opt = 3λ3

a

16πc
I frot

2
√

2μ

h̄
√

π

�(7/6)

�(2/3)

(
	C6

Ce
6

)1/6

× 1√−Eb
(RC − a)2, (22a)

lvdW,long
opt = 3λ3

a

16πc
I frot

2
√

2μ

h̄
√

π

�(7/6)

�(2/3)

(
	C6

Ce
6

)1/6

× 1√−Eb

(
RC − a − 8

15

R4
vdW

R3
C

)2

×
(

1 − 4

5

R4
vdW

R4
C

)
, (22b)

lvdW,short
opt = 3λ3

a

16πc
I frot

2
√

2μ

h̄
√

π

�(7/6)

�(2/3)

(
	C6

Ce
6

)1/6

× 1√−Eb
ā

[
1 +

(a

ā
− 1

)2
]

R3
C

4R2
vdW

sin2

× [φ(RC ) + 	β(RC, Rt )]. (22c)

III. EXAMPLES

Now we can proceed to testing our approximations. To
test the formulas for the resonant dipole case, we will use
the example of intercombination line photoassociation of Yb2

[44,45]. For the van der Waals case we will look at photoasso-
ciation near the D1 line of Rb in the Rb + Sr system [23,46].

A. A resonant-dipole case: Intercombination line
photoassociation in Yb

Our first example is a resonant-dipole-dominated case of
photoassociation near the 1S0 → 3P1 transition of Yb [44,45].
The excited 1S0 → 3P1 asymptote supports four Hund’s case
(c) molecular states with the projection of electronic angular
momentum on the internuclear axis |�| = 0, 1 and with ger-
ade (g) and ungerade (u) symmetry. By the Laporte rule only
electric dipole transitions to the u excited states are possible
from the g electronic ground state. The long-range interaction
in the excited electronic state is dominated by the resonant-
dipole terms

Ce
3,0 = 3

2

h̄

τA

(
λA

2π

)3

(23)

for the |�| = 0 state and Ce
3,1 = −Ce

3,0/2 for the |�| = 1 state.
Here τA and λA are the excited-state lifetime and transition
wavelength, respectively. The resonant-dipole interaction is
strongly repulsive in the 1u, state leaving 0u

+ as the only
molecular state supporting a series of bound states near the
dissociation limit. From an s-wave collision only excited
states with total angular momentum Je = 1 can be reached.

Figure 3 shows optical lengths of intercombination line
OFRs in the resonant-dipole-dominated Yb system. The
numerical optical lengths were calculated using previous
ground- [62] and excited-state models [45] using the Colbert-
Miller discrete-variable representation (DVR) method [38]
with a variable grid [39]. Both the excited- and ground-state
wave functions were calculated using the DVR method. For

FIG. 3. Optical lengths in a resonant-dipole-dominated system
on the example of intercombination-line OFRs in Yb [44,45]. Dots
represent excited bound states. The gray lines connecting the dots
were interpolated by scaling the quantum defect in the excited-state
potential. The blue dashed and solid lines denote the asymptotic
and long-range models (21a) and (21b), respectively. The red lines
denote the short-range model (21c). The asymptotic and long-range
models match the numerical results down to about −1 and −2 GHz
detuning, respectively. The enhanced modeling of the ground-state
wave function [36] employed in the long-range model improves the
agreement compared to the asymptotic model. For larger detunings
the short-range model utilizing the WKB ground-state wave func-
tion correctly reproduces the numerical optical lengths satisfactorily
down to about −20 GHz, beyond which the positions of nodes are no
longer correct. A more detailed error plot for the 174Yb2 case (bottom
panel) is shown in Fig. 5(a).

the scattering wave function we picked the lowest solution
above the dissociation limit, which we found to be energet-
ically well within the Wigner threshold law. This enabled us
to calculate the Franck-Condon factor in Eq. (4) as a simple
vector dot product between the DVR matrix eigenvectors.

The ground-state potential is based on ab initio calcula-
tions [66] with fitted long-range parameters Cg

6 ≈ 1937Eha6
0

and Cg
8 ≈ (2.265 × 105)Eha0 (Eh and a0 are the atomic units
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of energy and length). The scattering lengths for the 168Yb,
172Yb, and 174Yb isotopes are 253a0, −593a0, and 105a0,
respectively [61,62]. The van der Waals length is RvdW ≈ 78a0

and the mean scattering length ā ≈ 74a0. For the excited
state we use a Lennard − Jones + C8 potential model [45]
where the Ce

3 ≈ 0.1949Eha3
0 is calculated from Eq. (23) us-

ing the lifetime τA = 869.6 ns (γa = 2π × 183 kHz) and the
transition wavelength λa = 555.8 nm. The rotational Hönl-
London factor is frot = 1

3 [45,53,55] and the excited state
has an added rotational interaction energy Vrot = (h̄2/2μR2)
[Je(Je + 1) + 2] [67].

The tested binding energy range from −1 MHz to
−100 GHz corresponds to RC between over 1000a0 and
25a0 and allows us to demonstrate the crossover between
the asymptotic long-range and short-range models and their
limitations. The transition between the long-range and short-
range models being correct occurs for the range of binding
energies where the Condon points lie close to RvdW. This is
related to the behavior of the ground-state scattering wave-
function models and their ranges of validity: R � RvdW for the
asymptotic model, R � RvdW for the long-range model, and
R � RvdW for the short-range model [2]. The cutoff binding
energy that marks the transition from short- to long-range
models follows from requiring that the Condon point RC ≈
RvdW. This happens when Eb/h ≈ −C3RvdW/h ≈ −2.7 GHz
[marked with an arrow in Figs. 3 and 5(a)].

In practice, the asymptotic model works for bound-state
energies down to about −1 GHz. The improved modeling of
the scattering wave function in the long-range model extends
this to about −2 GHz. The short-range model worked well
for energies between about −2 and −20 GHz. For bound
states below that the contribution of the excited-state vdW
interaction becomes significant and our assumption of a pure
resonant-dipole excited state is no longer valid. If the scat-
tering length a is close to ā (like in 174Yb) both models
can slightly misplace the last node because of the influence
the vdW potential on the wave function around RvdW [2].
Figure 5(a) shows the relative errors for the three models for
the example case of 174Yb. The asymptotic model matches the
numerical calculations to within 10% for bound-state energies
down to about −200 MHz; the long-range model, again, has
an extended region of applicability. Away from nodes the
short-range model is correct to within about 20% for bound-
state energies from about −2 GHz to about −20 GHz.

B. A van der Waals case: Rb D1-line photoassociation of RbSr

As an example of a system with a van der Waals–
dominated excited state we pick photoassociation of Rb and
Sr atoms near rubidium’s 795-nm 2S1/2 → 2P1/2 D1 transition
[46]. There is only one Hund’s case (c) molecular potential
near the 2P1/2 + 1S0 asymptote of RbSr, with total electronic
angular momentum j = 1

2 and projection |�| = 1
2 . The case

(c) long-range interaction coefficient Ce
6 (|�| = 1

2 ) can be ex-
pressed [23] using interaction coefficients for the 1S + 2P
Hund’s case (a) � and � curves,

Ce
6 (|�| = 1

2 ) = 1
3Ce

6 (2�) + 2
3Ce

6 (2�), (24)

FIG. 4. Optical lengths in a van der Waals system on the example
of RbSr OFRs near the Rb D1 line. Here all of the numerical values
are satisfactorily reproduced by the short-range model (22c). The
asymptotic and long-range models (22a) and (22b), respectively, are
applicable only to very weakly bound states. This is easily explained
by pointing out that the outer turning points for almost all excited
states lie inward of RvdW, where only the short-range WKB ground-
state wave function is applicable. An error plot for the 87Rb86Sr case
in the middle panel is shown in Fig. 5(b).

with the coefficients for the 2� and 2� states equal to 23 324
and 8436 atomic units, respectively. Importantly, the resul-
tant effective Ce

6 (|�| = 1
2 ) = 13 399 a.u. is over three times

larger than the van der Waals coefficient in the ground state,
Cg

6 = 3686Eha6
0 [15]. Having the van der Waals coefficient of

the excited state much larger than that in the ground state is
a prerequisite for using the stationary phase approximation
(11). The breakdown of this approximation when the two
interaction coefficients are of similar magnitude is described
in detail in Ref. [34].

To calculate the optical lengths in this system numerically
we used the recent empirical Lennard − Jones + C8 ground-
state potential [15] with Cg

6 ≈ 3686Eha6
0 and Cg

8 ≈ (4.64 ×
105)Eha8

0, whereas for the j = 1
2 and � = 1

2 excited state
we used a Lennard-Jones potential whose depth matches that
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FIG. 5. Example relative errors of approximate formulas for the
optical lengths of Feshbach resonances for 174Yb as a representative
example of (a) a resonant-dipole system and (b) a van der Waals
system 87Rb86Sr. The blue dashed lines represent the asymptotic
models and blue solid lines represent the long-range model. The red
solid lines denote the short-range models. Finally, the horizontal gray
lines mark a 10% error.

of the ab initio (2) � = 1
2 potential in [46]. We assumed

the ground-state collision to be dominated by the s wave,
with no rotational factor in the interaction potential, and we
assumed transitions to the rotationless J = 1

2 excited state
[23]. The parameters required to use the approximate formulas
(22a)–(22c) are as follows. The scattering lengths for 87Rb
paired with 84Sr, 86Sr, and 88Sr are 93a0, −43a0, and 170a0

[15,68], respectively, RvdW ≈ 77.5a0, ā ≈ 74a0, and finally
the rotational Hönl-London factor is frot = 1 [23].

Figure 4 shows the numerically calculated optical lengths
for three isotopic combinations of the RbSr system and their
approximate counterparts. Unlike the resonant-dipole exam-
ple in the preceding section, here the short-range model
describes virtually all resonances from the dissociation limit
down to Eb/h ≈ −50 GHz. The utility of the long-range and
asymptotic models is limited, as for transitions to most bound
states the Condon point RC lies at much shorter internuclear
separations than the van der Waals radius RvdW. In fact, for
RbSr a Condon point at RvdW ≈ 77.5a0 corresponds to an
excited-state binding energy of only about −	C6R−6

vdW/h =
−290 MHz [Figs. 4 and 5(b)]. van der Waals systems usually
have at most one or two bound states this close to the dissoci-
ation limit, so we expect the long-range model to occasionally
be applicable to the most weakly bound state in a van der
Waals system. Figure 5(b) shows the relative errors of each of
the approximate formulas. Compared to the resonant-dipole

example, here the formulas are more qualitative. While the
short-range formula still reproduces the numerical results to
within about 30% (away from nodes), the long-range model
fails below about −300 MHz and the asymptotic model fails
everywhere.

IV. OPTICAL LENGTH IN THE CONTEXT
OF ASSOCIATIVE STIMULATED RAMAN

ADIABATIC PASSAGE

A. Relationship between the optical length and free-bound
transitions in a 3D optical lattice site

The utility of lopt can be extended to coherent molecule
production via associative stimulated Raman adiabatic pas-
sage (STIRAP) [69–71] in a doubly occupied Mott insulator
[47,48]. Here we will give an expression for the free-bound
Rabi frequency �FB, induced when a laser couples an initially
unbound atomic pair in a 3D optical lattice site to an excited
molecular state, in terms of lopt. This is useful as �FB depends
on both the molecular physics and the trap parameters, while
lopt is an intrinsically molecular quantity. For an atomic pair
with similar masses and trapping frequencies ωtrap the cen-
ter of mass and relative motion separate [72,73]. The latter
is governed by a radial Schrödinger equation for the previ-
ous potential Vg(R), but with an added harmonic potential
Vho(R) = 1

2μω2
trapR2. The weak trapping potential quantizes

the scattering continuum into discrete trap states separated by
approximately 2h̄ωtrap and whose positions are the solutions
of [72–75]

1

2

�(1/4 − e/2)

�(3/4 − e/2)
= a

βho
, (25)

where e = Etrap/h̄ωtrap and βho = √
h̄/μωtrap is a charac-

teristic length associated with the harmonic trap potential,
typically on the order of 103a0–104a0.

In analogy to the OFR stimulated width h̄�stim =
2π |〈 fg|V opt|ψb〉|2, the free-bound Rabi frequency may be
defined as h̄�FB = |〈ψtrap|V opt|ψb〉|, where ψtrap is the trap
state wave function and V opt is the optical coupling matrix
element [50,53]. At internuclear distances that contribute to
the Franck-Condon factor (typically much shorter than βho),
the trapping potential is weak compared to the trap state en-
ergy. Since ψtrap and fg are the solutions of radial Schrödinger
equations that differ only by the weak harmonic potential
that vanishes for small R, the trap wave function can be ap-
proximated to within a scaling factor by the scattering wave
function calculated for the trap state energy. The scaling fac-
tor can be taken from multichannel quantum defect theory
[49,50], ψtrap = (∂Etrap/∂ν)1/2 fg(ktrap), where (∂Etrap/∂ν) is
the trap state spacing. Finally, we recall the relationship be-
tween the stimulated width and the optical length �stim =
2ktraploptγm for the wave number ktrap = √

2μEtrap/h̄. As a
result,

�FB =
(

1

2π h̄

∂Etrap

∂ν
2ktraploptγm

)1/2

. (26)

In a Mott insulator [48] the atoms occupy the lowest trap state
above the dissociation limit, so we use ktrap = √

2e0/βho and
(∂Etrap/∂ν) ≈ h̄ωtrap(e1 − e0), where e0 and e1 are the two
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FIG. 6. Calculation of free-bound Rabi frequencies �FB from
the optical length (for I = 1 W/cm2). (a) Numerical and analytic
[Eq. (26)] Rabi frequencies for transitions to 1S0 + 3P1 states at
−310, −353, and −303 MHz in 168Yb, 172Yb, and 174Yb, respec-
tively, as a function of trapping frequency ωtrap. Equation (26)
remains accurate as long as a � βho (alternative axis). (b) Plot of
�FB for the −228-MHz 1S0 + 3P1 state in 84Sr as a function of 〈n〉1/2.
Data points were measured by Ciamei et al. [48] and the shaded
area was calculated from lopt = 228(42)a0 measured by Reschovsky
et al. [13].

lowest solutions of Eq. (25). We stress that this derivation does
not need any of the assumptions we previously made for our
approximate formulas for lopt, but only that βho is much larger
than any other length scale, particularly a.

B. Results

Numerical testing for Yb shows that for typical trap fre-
quencies Eq. (26) works with an accuracy better than 10%
unless a is appreciable compared to βho [Fig. 6(a)]. In 174Yb
characterized by a moderate scattering length of a = 105a0,
the agreement is to better than 2% for all tested ωtrap. In
fact, as long as |a/βho| � 0.1, this accuracy is retained for all
tested isotopes. If the scattering length is resonant, as in 172Yb
(a = −593a0), our model becomes less accurate: For a trap-
ping frequency of 2π × 10 kHz (|a/βho| ≈ 0.3) the accuracy
deteriorates to about 10%.

Recent experimental investigations of associative STI-
RAP in an 84Sr Mott insulator by Ciamei et al. [48] and,

independently, of photoassociation rates in an 84Sr BEC in a
dipole trap by Reschovsky et al. [13] allow for a real-world
test of Eq. (26). Ciamei et al. measured �FB for transi-
tions to the −228 MHz state near the 1S0 + 3P1 asymptote
in 84Sr2 [Fig. 6(b)] and found the Rabi frequency to be
proportional to the square root of the single-atom average on-
site density 〈n〉 = 1/(2π )3/2a3

ho, where aho = √
h̄/mωtrap =

βho/
√

2. Indeed, aside from the weak dependence of reduced
trap energies on the scattering length, the trap state spacing
∂E/∂n ∝ ωtrap, the wave number ktrap ∝ ω

1/2
trap, and therefore

the free-bound Rabi frequency �FB ∝ l1/2
opt ω

3/4
trap ∝ l1/2

opt 〈n〉1/2.
By fitting Eq. (26) to the measured �FB we extract the
optical length lopt = 290(13)a0. Here a = 122.7a0 [76] and
γm = 2 × 2π × 7.5 kHz [11,77]; parentheses indicate the sta-
tistical fit uncertainty. The extracted optical length agrees to
within 1.4 mutual σ with the experimental lopt = 228(42)a0

measured by Reschovsky et al. [13]. Additionally, theoret-
ical �FB calculated using the optical length of Reschovsky
et al. [shaded area in Fig. 6(b)] generally reproduce the
measured �FB.

V. CONCLUSION

We have developed simple analytic formulas for the optical
Feshbach resonance strength parameter, the optical length, for
near-threshold bound states using the stationary phase approx-
imation [34–36,40,50]. We rely on the excited-state potential
being dominated by either a resonant-dipole R−3 interaction
typical for homonuclear photoassociation near strong lines
or a van der Waals R−6 tail appropriate for heteronuclear
systems. The optical length is expressed in terms of dominant
interaction parameters and the s-wave scattering length. We
have demonstrated our model using Yb2 and RbSr as real-
world examples and found semiquantitative agreement for
resonances up to tens of gigahertz from the dissociation limit.
The derived expressions could aid the design of future pho-
toassociation or OFR experiments when only the long-range
interaction parameters are known. The formulas could also
potentially be used to determine the scattering length from
experimental spectra if a more accurate method like two-color
photoassociation spectroscopy is not available or practical.
The resonant-dipole formulas will work for homonuclear
OFRs near any allowed atomic transition, but have worked
well for intercombination line OFRs in Yb [12,44,45] and
should apply to thus far unexplored systems with similarly
strong intercombination lines, particularly Hg [78–80] and Cd
[81–84], considered as references in optical lattice clocks.

We have also shown how the optical lopt may be used
in the context of coherent molecular formation via associa-
tive STIRAP in a 3D optical lattice [48,71] as a measure of
transition strength that is independent of trap parameters. We
have found the pump beam Rabi frequency �FB to be propor-
tional to l1/2

opt and approximately proportional to on-site density
〈n〉1/2 corroborating the empirical observation of Ciamei et al.
[48] for the 1S0 + 3P1 0u

+ −228-MHz resonance near the
intercombination line in 84Sr. From their experimental �FB

we extracted a value of lopt = 290(13)a0, which agrees with
an independently measured lopt = 228(42)a0 of Reschovsky
et al. [13].
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