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Curvature-induced repulsive effect on the lateral Casimir-Polder–van der Waals force

Danilo T. Alves ,1,2,* Lucas Queiroz ,1,† Edson C. M. Nogueira ,1,‡ and N. M. R. Peres2,3,§

1Faculdade de Física, Universidade Federal do Pará, 66075-110, Belém, Pará, Brazil
2Centro de Física, Universidade do Minho, P-4710-057, Braga, Portugal

3Departamento de Física, Universidade do Minho, P-4710-057, Braga, Portugal

(Received 17 August 2022; revised 11 April 2023; accepted 13 June 2023; published 27 June 2023)

Recently, it was shown that when a single protuberance is introduced on an infinite flat conducting surface, an
anisotropic particle, kept constrained to move on a plane above the surface, can feel not only a lateral van der
Waals (vdW) force that leads it to the protuberance, but, when the protuberance is narrow enough, a lateral force
that moves it away from the protuberance. Although this sign inversion in the lateral vdW force was found to be
related to the increasing in the curvature of the protuberance, the role of the curvature was not directly isolated
from the effect caused by the remaining infinite planar surface. In this paper, seeking to isolate the sign inversion
of the lateral vdW force as a result of the increase in curvature of an object, we consider a perfectly conducting
infinite cylinder and investigate the vdW interaction with a neutral polarizable point particle constrained to move
in a plane near the cylinder. We show that, under the action of the lateral vdW force, an isotropic polarizable
particle is always attracted to the point on the plane which is closest to the cylinder surface. On the other hand,
when we have an anisotropic particle, for certain particle orientations, anisotropy, and sufficiently high curvature
of the cylinder, this lateral vdW force can manifest a repulsive behavior, moving the particle away from the
cylinder. Since, in the literature, the sign inversion in the lateral force was discussed only in the context of the
vdW regime, here we also extend this inversion to the Casimir-Polder regime. In addition, we also show that
there are classical counterparts of this sign inversion effect, involving a neutral point particle with a permanent
electric dipole moment.

DOI: 10.1103/PhysRevA.107.062821

I. INTRODUCTION

The quantum electromagnetic dispersive force between a
polarizable particle and a macroscopic body is, generally,
denominated as the Casimir-Polder (CP) force, or as van der
Waals (vdW) force in the nonretarded regime [1–6]. Their at-
tractive or repulsive character can be influenced, for instance,
by the particle anisotropy and geometry of the bodies [7–11].
For example, an anisotropic polarizable particle can feel a
normal repulsive force when it is put on the symmetry axis of
a thin metal plate with a hole [7] or of a perfectly conducting
toroid [8]. In both cases, for a finite distance from the particle
to the origin, as we increase the radius of the hole (or toroid),
from a certain value of the radius the repulsion effect can
occur.

When corrugations are considered on the surface, lateral
CP–vdW forces appear, and nontrivial geometric effects can
be predicted, especially for these particular components of
these forces [11–25]. For instance, in Ref. [22], it was shown
that, when a sinusoidal corrugation with period L is introduced
on an infinite flat conducting surface at x = 0, an anisotropic
particle, kept constrained to move on a plane x = x0 above the
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surface, feels a lateral vdW force that leads it to the nearest
corrugation peak when sufficiently small values of the ratio
x0/L are considered. Otherwise, increasing the ratio x0/L, the
lateral vdW force can change its sign, moving the particle
away from the corrugation peak [22]. In Ref. [24], it was
considered a flat surface, still infinite, with only a single slight
protuberance. In this case, it was shown that a sign inversion in
the lateral vdW force can still occur when the protuberance is
narrowed [the ratio x0/l increases, with l being the character-
istic width of the protuberance as shown in Fig. 1(a)]. On the
other hand, the increasing curvature of the protuberance [its
narrowing in the y direction, as illustrated from Fig. 1(a)(i) to
1(a)(ii)] changes not only the induced charges on it but those
on the plane (since the charge distribution on the protuberance
and that on the remaining infinite plane affect each other).
Thus, on the sign inversion in the lateral vdW force, this model
did not allow a direct isolation of the role of the increasing
curvature of the protuberance from the effect caused by the
remaining infinite planar surface.

In this paper, seeking to isolate the sign inversion of the
lateral force as a result of the increase in curvature of an ob-
ject, we consider a conducting cylinder with its symmetry axis
in the z direction, as shown in Fig. 1(b), and investigate the
occurrence of a similar sign inversion in the lateral vdW force.
Our initial conjecture (which will be confirmed along this
paper) is that a neutral anisotropic polarizable point particle,
kept constrained to move on a given plane distant x0 > R from
the cylinder axis (with R being the cylinder radius), could
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FIG. 1. Illustration of the lateral force (arrows) acting on a neu-
tral anisotropic polarizable particle (elliptic figures), kept constrained
to move on a given plane x = x0 (horizontal dotted lines), in the
presence a perfectly reflecting surface. In (a), we illustrate the case
of a single protuberance, with characteristic width l: in (a)(i), the
particle feels a lateral force F (y) taking it back to A; in (a)(ii), for an
increased ratio x0/l , F (y) moves the particle away from A (this sign
inversion in the lateral force was predicted in Ref. [24]). In (b), we
illustrate our initial conjecture, which is investigated (and confirmed)
in this paper: the sign inversion in the lateral force for an infinite
cylinder of radius R, in both retarded and nonretarded regimes, as the
normalized curvature increases. In (b)(i), the particle feels a lateral
force F (y)

CP–vdW that takes it back to A, which is the point on the plane
closest to the cylinder surface. In (b)(ii), for an increased normalized
curvature x0/R, F (y)

CP–vdW moves the particle away from A, or from the
cylinder. This repulsive behavior reveals a nontrivial dependence of
the CP–vdW interaction on the cylinder normalized curvature.

feel a lateral vdW force that takes it back to the point closest
to the cylinder when it is slightly dislocated from this point
[see Fig. 1(b)(i)]. On the other hand, for sufficiently large
values of the normalized curvature x0/R [or 1/(R/x0), where
R/x0 is the normalized radius], the lateral vdW force would
change its sign, moving the particle away from the cylinder
[see Fig. 1(b)(ii)]. This means that, for a fixed distance x0 > R,
as we increase the ratio x0/R, from a certain value of this ratio

one can have the appearance of such repulsive effect, which
resembles the appearance of the repulsive effects shown in
Refs. [7,8], as discussed above. In addition, since the sign
inversion in the lateral force was discussed in the literature
only in the context of the vdW (nonretarded) regime, here
we also extend this inversion to the CP (retarded) regime.
We consider, as done in Refs. [26–28], a perfectly reflecting
surface since this allows us to write simpler formulas, which
provides a quick estimate of the existence of the mentioned
sign inversion in the lateral force.

The cylindrical geometry has been considered in problems
involving dispersive interactions [26–34], with curvature ef-
fects discussed, for example, in Ref. [34]. In addition, the
problem of how to probe geometric effects on the quantum
vacuum fluctuations, by considering the lateral CP force, has
been addressed [12,13]. Thus, the investigation carried out
here, by predicting a curvature-induced repulsive effect on the
lateral CP–vdW force, may be relevant for a better controlling
of the interaction between a particle and a curved surface, as
well as an additional way to understand geometric effects on
the quantum vacuum fluctuations.

The paper is organized as follows. In Sec. II, we investigate
the CP–vdW interaction between a perfectly reflecting infinite
cylinder and a neutral polarizable particle, kept constrained
to move on a given plane near the cylinder. We also discuss
the classical interaction involving a neutral particle with a
permanent electric dipole moment. In Sec. V we discuss some
implications of our results, and present our final comments.

II. CASIMIR-POLDER–VAN DER WAALS INTERACTION

A. Casimir-Polder regime

Let us start by considering the retarded (CP) regime, and
investigate the quantum energy interaction UCP between a
perfectly reflecting infinite cylinder and a neutral polarizable
point particle located at (x0, y0, z0), oriented in space in such
a way that its principal axes are parallel to the xyz axes
of a Cartesian system, as illustrated in Fig. 2. In this way,
an electric field applied on the particle, along any one of
these Cartesian axes, induces a dipole moment in the same
direction [35]. Although this is a particular orientation of a
polarizable point particle in space, it is sufficient to reveal
the curvature-induced repulsive effect on the lateral CP–vdW
force, which is the main focus of this paper. We remark that,
for an anisotropic polarizable particle (such anisotropy can
be related to its geometry), the magnitude of this induced
dipole moment is different in each direction and, because of
this, we illustrate this particle throughout the paper as being
elongated (although we are considering point particles), where
the direction of such elongation is that in which the particle
has the greatest polarizability. We also consider this particle
characterized by a frequency-dependent polarizability tensor←→α (ω), whose representation α(cart)(ω) in the Cartesian sys-
tem is given by

α(cart)(ω) =
⎡
⎣αxx(ω) 0 0

0 αyy(ω) 0
0 0 αzz(ω)

⎤
⎦. (1)
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FIG. 2. Illustration of a conducting cylinder, a neutral polarizable
particle (shown in two positions), and the Cartesian system xyz (z
axis is perpendicular to the paper plane). The particle is oriented in
space in such a way that its principal axes are parallel to the xyz axes.
In one position of the particle, for which φ = 0, these principal axes
coincide with the cylindrical ones. When the particle is translated
to another position for which φ �= 0, these axes do not coincide
anymore.

The tensor ←→α (ω), for a translated particle as illustrated in
Fig. 2, is represented in cylindrical coordinate system (ρ, φ, z)
by means of the matrix α(cil)(ω, φ) given by

α(cil)(ω, φ) =
⎡
⎣αρρ (ω, φ) αρφ (ω, φ) 0

αφρ (ω, φ) αφφ (ω, φ) 0
0 0 αzz(ω)

⎤
⎦, (2)

where αρρ (ω, φ)=αyy(ω) sin2 φ+αxx(ω) cos2 φ, αρφ (ω, φ) =
αφρ (ω, φ) = [αyy(ω) − αxx(ω)] sin φ cos φ, αφφ (ω, φ) = αyy

(ω) cos2 φ + αxx(ω) sin2 φ. Note that α(cart)(ω) = α(cil)(ω, 0),
cos φ = x/ρ, and sin φ = y/ρ.

To investigate the behavior of the interaction between the
particle and the cylinder, we take into account Eqs. (17)
and (27)–(29) from Ref. [27], which were found considering
the lowest nonvanishing order of perturbation theory and the
electric-dipole approximation, as shown in the Appendix (the
same formulas were also obtained in Ref. [28] by means of
the Green’s tensor method). In the CP interaction, one has
λ ji � δ, with δ =

√
x2

0 + y2
0 − R and λ ji being, respectively,

the distance of the particle from the cylinder, and the wave-
length of a typical transition between the states i and j of the
particle [27]. Thus, the behavior of UCP can be investigated
by considering, in the mentioned Eqs. (17) and (27)–(29) of
Ref. [27], the limit λ ji → 0 (or Eji → ∞, since λ ji ∝ 1/Eji,
with Eji being the energy of the transition between the states
i and j). The obtained formula can be written in terms of the
static polarizability tensor ←→α (0), specifically of the diagonal
components ρρ, φφ, and zz, which are given by

αkk (0) =
∑
j �=i

2|〈 j|d̂k|i〉|2
Eji

, (3)

where d̂k (k = ρ, φ, z) are the components of the dipole
moment operator. For a translated particle (see Fig. 2),

these components depend on φ according to Eq. (2), so
that we use αρρ (0, φ) = αxx(0)x2/ρ2 + αyy(0)y2/ρ2, and
αφφ (0, φ) = αxx(0)y2/ρ2 + αyy(0)x2/ρ2 in the obtained for-
mula. Thus, one has

UCP(x, y) = − h̄c

(4π )2ε0R4

[

(CP)

ρ (ρ)

(
αxx(0)

x2

ρ2 + αyy(0)
y2

ρ2

)

+ 

(CP)
φ

(ρ )

(
αxx(0)

y2

ρ2 + αyy(0)
x2

ρ2

)

+ 
(CP)
z (ρ )αzz(0)

]
, (4)

where


(CP)
ρ (ρ ) = 2

∞∑
m=0

′ ∫ ∞

0
du u

{
u2 Im(u)

Km(u)
[K ′

m(uρ)]2

− m2

ρ2

I ′
m(u)

K ′
m(u)

[Km(uρ )]2

}
, (5)



(CP)
φ

(ρ) = 2
∞∑

m=0

′ ∫ ∞

0
du u

{
− u2 I ′

m(u)

K ′
m(u)

[K ′
m(uρ )]2

+ m2

ρ2

Im(u)

Km(u)
[Km(uρ )]2

}
, (6)


(CP)
z (ρ ) = 4

∞∑
m=0

′ ∫ ∞

0
du u3 Im(u)

Km(u)
[Km(uρ )]2, (7)

where Im and Km are modified Bessel functions of first and
second kind, respectively, and

∑∞
m=0

′ fm = 1
2 f0 + ∑∞

m=1 fm,
R being the cylinder radius, x = x/R, y = y/R, ρ = ρ/R. We
highlight that once the particle is located at a distance δ �
λ ji, the limit λ ji → 0 can be applied in Eqs. (17) and (27)–
(29) of Ref. [27], with such application being independent of
the value of R. In other words, the retardation effects will be
relevant depending only on the relation between δ and λ ji, and
are not affected by the thickness of the cylinder with respect
to λ ji [27].

We start our analysis with the idealized case in which
αxx(0) = αzz(0) = 0. Now, let us keep the particle constrained
to move on a given plane x = x0 > 1 (see Fig. 2). We remark
that such constraint, also considered in Refs. [22–25], is just
a way to neutralize the action of the x component (normal) of
the force, enabling us to focus only on the behavior of the y
component (lateral).

From Eq. (4), we have that ∂UCP/∂y = 0 along the
dashed and dotted-dashed lines shown in Fig. 3, with
[∂2UCP(x0, y)/∂y2] > 0 [minimum points of UCP(x0, y)] along
the dashed line, and [∂2UCP(x0, y)/∂y2] < 0 [maximum points
of UCP(x0, y)] along the dotted-dashed one. Thus, in Fig. 3,
a particle in the dark region (1 < x < 6.44), slightly dislo-
cated from a point in the plane y = 0, feels a force F(y)

CP =
−∂UCP(x0, y)/∂y ŷ that takes it back to y = 0. On the other
hand, in the light region (6.44 < x), the particle is moved
away from y = 0 or, in other words, away from the cylinder
(see Fig. 3). This sign inversion in F(y)

CP, changing from an
attractive character to a repulsive one, is a nontrivial geometric
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FIG. 3. Some features of the CP interaction between a perfectly
reflecting cylinder and a polarizable particle (illustrated in several
positions by the ellipsoidal figures), with αxx (0) = αzz(0) = 0, and
kept constrained to move on a given plane x = x0 > 1 (three of them
represented by the vertical dotted lines). Note that the cylinder circu-
lar section and the axes x and y are represented at a same scale. We
also remark that the dashed and dotted-dashed lines are plotted taking
into account Eq. (4). We have ∂UCP/∂y = 0 on both dashed and
dotted-dashed lines, with the dashed line corresponding to minimum
points of UCP(x0, y), whereas the dotted-dashed one corresponding
to maximum points. In the dark region (1 < x < 6.44), when the
particle is dislocated, along the y axis, for instance, from the point
A to A′ (or A′′), it feels a force F(y)

CP (represented by the arrows) which
takes it back to A. In the light region (6.44 < x), when the particle is
dislocated, for instance, from the point B to B′ (or B′′), it feels a force
F(y)

CP which moves it away from B, and, consequently, away from the
cylinder. This sign inversion in F(y)

CP is a nontrivial geometric effect
regulated by the normalized curvature x = x/R. When the particle is
dislocated, along x = x0, for instance, from the point C to C′ (or from
D to D′), it feels a force F(y)

CP that moves it back to C (D).

effect regulated by the normalized curvature x. The behavior
of UCP(x0, y), for some values of x0, is shown in Fig. 4. In this
figure, when comparing Figs. 4(a) (attractive lateral force) and
4(d) (repulsive lateral force), one notes that the magnitude of
the energy remains in the same order, and, thus, the magni-
tude of the lateral force in these situations also has the same
order.

(a) (b)

(c) (d)

FIG. 4. The behavior of UCP(x0, y) for some values of x0. In (a),
x0 = 6.00. In (b), x0 = 6.44. In (c), x0 = 7.00. In (d), x0 = 7.50. (a),
(b) Correspond to the dark region in Fig. 3, whereas (c) and (d) to the
light one.

FIG. 5. For a particle characterized by αxx (0) = αzz(0) =
βαyy(0), it is shown the configurations of β and x for which y = 0
is a minimum (dark region) or a maximum (light region) point of
UCP(x0, y). The border between these two regions is given by the
curve x = γ (β ). We remark that γ (0) ≈ 6.44 (the situation discussed
in Fig. 3), and that above β ≈ 0.2 we just have a dark region.

For a particle with αxx(0) = αzz(0) = βαyy(0), with 0 �
β < 0.2, we have a behavior similar to that shown in Fig. 3,
but with the border between the dark and light regions
occurring at a value x = γ (β ). In Fig. 5, we show the con-
figurations of β and x for which y = 0 is a minimum (dark
region) or a maximum (light region) point of UCP(x0, y).
Thus, the dark region of this figure represents configura-
tions for which [∂2UCP(x0, y)/∂y2]y=0 > 0, and the behavior
of the lateral force is similar to that described for the dark
region in Fig. 3. Aside from this, the light region represents
[∂2UCP(x0, y)/∂y2]y=0 < 0, and the behavior is similar to that
described for the light region in Fig. 3. The border between
the two regions in Fig. 5 is given by the curve x = γ (β ).
Note that γ (0) ≈ 6.44, which corresponds to the situation
discussed in Fig. 3. We remark that for β � 0.2 we just
have a dark region, so that any repulsive effect of the lateral
force is suppressed. Isotropic polarizable particles are char-
acterized by β = 1 and, thus, under the action of the lateral
force, these particles are always attracted to the cylinder. This
means that the existence of these discussed repulsive effects
demands anisotropy on the polarizability of the considered
particle.

Three limiting cases can be investigated in the CP regime,
namely, λ ji � δ � R, λ ji � R � δ, and R � λ ji � δ [27].
When λ ji � δ � R, the cylinder is very large with respect
to the distance from the particle to the cylinder, and thus
R → ∞ can be considered in Eqs. (5)–(7). As a consequence
of this limit, the lateral force is suppressed and one recovers
the original result calculated by Casimir and Polder in Ref. [4]
for the retarded interaction between a particle and a perfectly
conducting plane surface. In the other two cases, λ ji � R � δ

and R � λ ji � δ, the cylinder is very thin with respect to the
distance from the particle to the cylinder. As a consequence,
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FIG. 6. Illustration of some features of the vdW–CP interaction
between a perfectly reflecting cylinder and a polarizable particle
(represented in two positions by the ellipsoidal figures), kept con-
strained to move on a given plane y = y0 > 1 (represented by the
dotted line). The dashed line corresponds to minimum points of
UCP–vdW(x, y0 ), so that when the particle is dislocated, for instance,
from the point A to A′ (or A′′), it feels a force F(x)

CP—vdW (represented
by the arrows) which takes it back to A.

the greatest contributions for the summations in Eqs. (5)–(7)
come from the lowest values of m [27], so that, when we
consider them up to m = 1, one has


(CP)
ρ (ρ) ≈

∫ ∞

0
du u

[
u2 I0(u)

K0(u)
− 2

ρ2

I ′
1(u)

K ′
1(u)

][K1(uρ )

]2

+ 2
∫ ∞

0
du u3 I1(u)

K1(u)
[K ′

1(uρ )]2, (8)



(CP)
φ

(ρ ) ≈
∫ ∞

0
du u

(
u2 + 2

ρ2

)
I1(u)

K1(u)
[K1(uρ)]2

− 2
∫ ∞

0
du u3 I ′

1(u)

K ′
1(u)

[K ′
1(uρ )]2, (9)


(CP)
z (ρ ) ≈ 2

∫ ∞

0
du u3

{
I0(u)

K0(u)
[K0(uρ)]2

+ 2
I1(u)

K1(u)
[K1(uρ )]2

}
. (10)

Since these equations were obtained considering R � δ, they
give a better description of the CP interaction for particles in
the light region in Fig. 3 (where the repulsive effect in the
lateral force occurs) than in the dark one.

It is worth to mention that these curvature-induced effects
are affected by the particle orientation in relation to the plane
where it is kept constrained to move. As an example, let
us consider the particle with αxx(0) = αzz(0) = βαyy(0) (0 �
β � 1) oriented as illustrated in Fig. 2, and kept constrained
to move on a given plane y = y0 > 1 (see Fig. 6). In this case,
we have that the point x = 0 is always a minimum point of
UCP(x, y0), independent on the value of β or y. This means
that, when this particle is slightly dislocated from a point in

the plane x = 0, it feels a force F(x)
CP = −∂UCP(x, y0)/∂x x̂ that

takes it back to x = 0 in all values of y (see Fig. 6).

B. The van der Waals regime

Now, let us consider the nonretarded (vdW) regime, and in-
vestigate the quantum energy interaction UvdW. In this regime,
one has δ � λ ji, and thus, the behavior of UvdW can be investi-
gated by considering, in Eqs. (17) and (27)–(29) of Ref. [27],
the limit λ ji → ∞ (or Eji → 0). After this, one obtains the
formula for UvdW given by Eq. (19) in Ref. [26], which is writ-
ten in terms of the expectation values 〈d̂2

ρ〉, 〈d̂2
φ〉, and 〈d̂2

z 〉. For
a translated particle (see Fig. 2), the components αρρ and αφφ

depend on φ according to Eq. (2), so that we write 〈d̂2
ρ〉(φ) =

h̄
π

∫ ∞
0 dξ αρρ (iξ, φ) = 〈d̂2

x 〉x2/ρ2+〈d̂2
y 〉y2/ρ2, and 〈d̂2

φ〉(φ) =
h̄
π

∫ ∞
0 dξ αφφ (iξ, φ) = 〈d̂2

x 〉y2/ρ2 + 〈d̂2
y 〉x2/ρ2. Thus, one ob-

tains

UvdW(x, y) = − 1

4πε0R3

[

(vdW)

ρ (ρ )

(
〈d̂2

x 〉 x2

ρ2 + 〈d̂2
y 〉 y2

ρ2

)

+ 

(vdW)
φ

(ρ )

(
〈d̂2

x 〉 y2

ρ2 + 〈d̂2
y 〉 x2

ρ2

)

+ 
(vdW)
z (ρ )〈d̂2

z 〉
]
, (11)

where


(vdW)
ρ (ρ ) = 2

π

∞∑
m=0

′ ∫ ∞

0
du u2 Im(u)

Km(u)
[K ′

m(uρ)]2, (12)



(vdW)
φ

(ρ ) = 2

π

∞∑
m=1

m2

ρ2

∫ ∞

0
du

Im(u)

Km(u)
[Km(uρ )]2, (13)


(vdW)
z (ρ ) = 2

π

∞∑
m=0

′ ∫ ∞

0
du u2 Im(u)

Km(u)
[Km(uρ)]2, (14)

with 〈d̂2
j 〉 = h̄

π

∫ ∞
0 dξ α j j (iξ ), for j = x, y, z. We highlight

that, as in the CP case, the limit λ ji → ∞ (or Eji → 0), used
to investigate the behavior of UvdW [given by Eqs. (11)–(14)],
can be considered independent on R, which means that the
condition δ � λ ji is sufficient for the retardation effects to be
neglected.

For the vdW case, we carry out an analysis similarly to that
done for the CP case. We start, again, focusing on the idealized
case of a particle characterized by 〈d̂2

x 〉 = 〈d̂2
z 〉 = 0. For a

particle kept constrained to move on a given plane x = x0 > 1,
from Eq. (11), we have that the dashed and dotted-dashed
lines shown in Fig. 7 represent the minimum and maximum
points of UvdW(x0, y), respectively. In this figure, the division
between the dark and light regions occurs at x ≈ 2.18. The
behavior of UvdW(x0, y), for some values of x0, is shown in
Fig. 8. When y = 0, we have x = (δ + R)/R; thus if x = 1.5
or x = 3, one has δ = 0.5 and δ = 2 (with δ = δ/R), respec-
tively. In this way, when we change the value of x from
x = 1.5 to 3, as done from Fig. 8(a) to 8(d), the distance from
the particle to the surface of the cylinder quadruplicates, and
this results in a difference of two orders of magnitude in the
energy, with such difference being carried to the magnitude of
the lateral force.
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FIG. 7. Some features of the vdW interaction between a perfectly
reflecting cylinder and a polarizable particle (represented in several
positions by the ellipsoidal figures), with 〈d̂2

x 〉 = 〈d̂2
z 〉 = 0, and kept

constrained to move on a given plane x = x0 > 1 (three of them rep-
resented by the vertical dotted lines). Note that the cylinder circular
section and the axes x and y are represented at a same scale. We also
remark that the dashed and dotted-dashed lines are plotted taking
into account Eq. (11). We have ∂UvdW/∂y = 0 on both dashed and
dotted-dashed lines, with the dashed line corresponding to minimum
points of UvdW(x0, y), whereas the dotted-dashed one corresponding
to maximum points. In dark region (1 < x < 2.18), when the particle
is dislocated, along the y axis, for instance, from the point A to A′ (or
A′′), it feels a force F(y)

vdW (represented by the arrows) which takes it
back to A. In light region (2.18 < x), when the particle is dislocated,
for instance, from the point B to B′ (or B′′), it feels a force F(y)

vdW which
moves it away from B, and, consequently, away from the cylinder.
This sign inversion in F(y)

vdW is a nontrivial geometric effect regulated
by the normalized curvature x. When the particle is dislocated, along
x = x0, for instance, from the point C to C′ (or from D to D′), it feels
a force F(y)

vdW that moves it back to C (D).

(a) (b)

(c) (d)

FIG. 8. The behavior of UvdW(x0, y) for some values of x0. In (a),
x0 = 1.50. In (b), x0 = 2.18. In (c), x0 = 2.50. In (d), x0 = 3.00. (a),
(b) Correspond to the dark region in Fig. 7, whereas (c) and (d) to the
light one.

FIG. 9. For a particle characterized by 〈d̂2
x 〉 = 〈d̂2

z 〉 = β〈d̂2
y 〉, it is

shown the configurations of β and x for which y = 0 is a minimum
(dark region) or a maximum (light region) point of UvdW(x0, y). The
border between these two regions is given by the curve x = γ (β ).
We remark that γ (0) ≈ 2.18 (the situation discussed in Fig. 7), and
that above β ≈ 0.32 we just have a dark region.

For a particle with 〈d̂2
x 〉 = 〈d̂2

z 〉 = β〈d̂2
y 〉, we show in Fig. 9

configurations of β and x for which y = 0 is a minimum (dark
region) or a maximum (light region) point of UvdW(x0, y). For
β � 0.32 we just have a dark region, so that any repulsive
effect of the lateral force is suppressed. Thus, as in the CP
case, isotropic particles (β = 1) are always attracted to the
cylinder. For 0 � β � 0.32, we can have dark and light re-
gions, depending on x and β. The border between these two
regions is given by the curve x = γ (β ). In this figure, note that
γ (0) ≈ 2.18, which corresponds to the situation discussed in
Fig. 7. In summary, for a particle with β � 0.32 the behavior
F (y)

vdW is given by the dark region in Fig. 7 for all x, and only
particles with β � 0.32 can exhibit the repulsive behavior
of F (y)

vdW shown by the light region in Fig. 7. Lastly, these
curvature-induced effects are affected by the particle orien-
tation in relation to the plane where it is kept constrained to
move, similar to the CP case, so that if we consider a particle
oriented as illustrated in Fig. 6, we also have a force F (x)

vdW that
always take the particle to x = 0, regardless of the value of y
(see Fig. 6).

Three limiting cases can be investigated in the vdW case,
namely, δ � R � λ ji, δ � λ ji � R, and R � δ � λ ji [27].
In both situations δ � R � λ ji and δ � λ ji � R, the cylinder
is very large with respect to the distance from the parti-
cle to the cylinder, and thus R → ∞ can be considered in
Eqs. (12)–(14). As a consequence of this limit, the lateral
force is suppressed and one recovers the original result for
the nonretarded interaction between a particle and a perfectly
conducting plane surface [36]. Now, when R � δ � λ ji, the
cylinder is very thin with respect to the distance from the
particle to the cylinder. As a consequence, the greatest con-
tributions for the summations in Eqs. (12)–(14) come from
the lowest values of m [27], so that, when considering the first
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term of these summations (m = 0 for 
ρ and 
z, and m = 1
for 
φ), one has


(vdW)
ρ (ρ) ≈ 1

π

∫ ∞

0
du u2 I0(u)

K0(u)
[K1(uρ )]2, (15)



(vdW)
φ

(ρ ) ≈ 2

πρ2

∫ ∞

0
du

I1(u)

K1(u)
[K1(uρ )]2, (16)


(vdW)
z (ρ ) ≈ 1

π

∫ ∞

0
du u2 I0(u)

K0(u)
[K0(uρ)]2. (17)

Since these equations were obtained considering R � δ [sim-
ilarly to Eqs. (8)–(10)], they give a better description of the
vdW interaction for particles in the light region in Fig. 7 than
in the dark one.

III. CLASSICAL INTERACTION

The discussed curvature-induced effects have a classi-
cal counterpart, which involves the interaction between a
grounded perfectly conducting infinite cylinder and a neutral
point particle with an electric dipole moment vector d =
dxx̂ + dyŷ + dzẑ. In this situation, the interaction energy Ucla

is simply given by replacing 〈d̂2
i 〉 → d2

i in Eq. (11) [26].
In this way, one can note that the behavior of this classical
interaction for the case of a particle oriented with dx = dz = 0,
for example, is similar to the quantum one for a particle
characterized by 〈d̂2

x 〉 = 〈d̂2
z 〉 = 0. In this situation, the dashed

and dotted-dashed lines shown in Fig. 7 also represent the
minimum and maximum points of Ucla(x0, y), respectively,
and thus, sign inversions in the lateral force also arise in the
classical context.

IV. DISCUSSIONS

Before discussing the results presented here, it is useful to
briefly review some of the ones found in Refs. [24,25] for the
sign inversions in the lateral vdW forces when considering an
infinite flat surface with only a slight protuberance.

A polarizable particle in the presence of a conducting plane
surface feels a CP–vdW force which is normal to this plane
[3,4]. On the other hand, when considering the presence of
a protuberance on such plane surface, the particle can feel
a force which is parallel to this plane (a lateral force). For
instance, when considering a Gaussian protuberance, as il-
lustrated in Fig. 1(a), if the particle is out of the x axis (for
example, at the point A′), beyond the force that is normal to
the plane, it feels a lateral force originated in the breaking
of the translation symmetry of the surface along the y axis.
In Ref. [24], it was shown that while an isotropic particle
feels a lateral vdW force that always tends to pull it to the
protuberance, an anisotropic particle can be pulled to the pro-
tuberance as well as pushed away from it. Specifically, it was
shown that increasing the curvature of the protuberance itself
[its narrowing in the y direction, as illustrated from Fig. 1(a)(i)
to 1(a)(ii)], a sign inversion in the lateral vdW force can occur.

The model of a single protuberance on an infinite plane
did not allow to isolate the effect of the increasing curvature
of the protuberance from the effect of the remaining infinite
planar surface. Seeking to isolate the sign inversion of the
lateral force as a result of the increase in the curvature of
an object, we considered here a conducting infinite cylinder,

FIG. 10. Some features of the CP–vdW interaction between a
perfectly reflecting cylinder and an isotropic polarizable particle
(represented by the circular figure), and kept constrained to move on
planes x = x0 > 1 (one of them represented by the vertical dotted
line). The complete CP–vdW force is always radial (F = F (ρ )ρ̂).
When the particle is dislocated along x = x0, for instance, from the
point A to A′, it feels a radial CP–vdW force, whose component
along the y direction F(y) always tends to pull back the particle to
A, attracting the particle to the cylinder. Thus, no sign inversion in
the lateral F(y) occurs when the particle is isotropic.

as shown in Fig. 1(b). Note that, similar to the presence of
the protuberance, the cylinder breaks the translation symmetry
along the y axis, so that a particle out of the x axis, in addition
to a force normal to the plane x = x0, feels a lateral force
(along the y axis), as illustrated in Fig. 1(b), whose origin is
discussed next.

When considering an isotropic particle, the lateral force
always attracts it to a point closest to the cylinder. This can be
viewed from the fact that the complete CP–vdW force F on an
isotropic particle is always radial (F = F (ρ)ρ̂), and that its y
projection, F(y) = (F (ρ)ρ̂ · ŷ)ŷ, always attracts the particle to
the cylinder, as illustrated in Fig. 10.

When considering an anisotropic particle, the total CP–
vdW force F is not radial in general. For example, let us
consider again the idealized case in which αxx = αzz = 0 (see
Fig. 11). When the particle is located at the point A, it feels a
total CP–vdW force which is radial, but when the particle is at
A′, it feels a total CP–vdW force which is no longer radial, but
having a component in the φ direction: F = F (ρ)ρ̂ + F (φ)φ̂

[the existence of such a φ component can be viewed directly
from the dependence of Eqs. (4) and (11) on φ, by means of x
and y]. Note that at A′ the radial part of the CP–vdW force has
a component in the y direction, F(ρ,y) = (F (ρ)ρ̂ · ŷ) ŷ, which
pulls back the particle to the position A, whereas the φ part has
a component in the y direction, F(φ,y) = (F (φ)φ̂ · ŷ) ŷ, which
pushes the particle away from the position A. Thus, at A′, one
has a competition between the y components from the radial
and φ parts of F (see Fig. 11), so that the resultant, given by
F(y) = F(ρ,y) + F(φ,y), produces an attractive behavior, pulling
back the particle to the point A, or closer to the cylinder (note
that this attractive behavior is because the particle is in the
dark region). In contrast, when the particle is at B′ (in light
region), F(y) produces a repulsive behavior, pushing the parti-
cle away from the point B (or from the cylinder) (see Fig. 11).
It is worth noting that a naive reasoning would lead to the
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FIG. 11. Some features of the CP–vdW interaction between a
perfectly reflecting cylinder and an anisotropic polarizable particle
with αxx = αzz = 0 (represented in some positions by ellipsoidal
figures), and kept constrained to move on planes x = x0 > 1 (some
of them represented by the vertical dotted lines). When the particle
is located at a point A, it feels a total CP–vdW force F which is
radial. When the particle is at A′, F is no longer radial, having a
component in the φ direction: F = F(ρ ) + F(φ), where F(ρ ) = F (ρ )ρ̂

and F(φ) = F (φ)φ̂. In the left inset, we illustrate the projection of
F (ρ )ρ̂ in the y direction, F(ρ,y), which pulls back the particle to
the position A; the projection of F (φ)φ̂ in the y direction, F(φ,y),
which pushes the particle away from the position A; the resultant
force F(y) = F(ρ,y) + F(φ,y), producing an attractive behavior, pulling
back the particle to the point A, closer to the cylinder (this attrac-
tive behavior is because the particle is in the dark region). When
the particle is at B′, F is also not radial. In the right inset, we illustrate:
the projection of F (ρ )ρ̂ and F (φ)φ̂ in the y direction; the resultant
force F(y), producing a repulsive behavior, pushing the particle away
from the point B, or from the cylinder (this repulsive behavior is
because the particle is in the light region).

expectation that, from A′ to B′, the magnitudes of F(ρ) and F(φ)

would decrease in the same proportion, so that F(y) would not
change its orientation. Interestingly, this does not occur in this
way, so that an imbalance in this proportion leads to a change
in the orientation of F(y). As shown in the previous sections,
depending on the value of x0/R (the normalized curvature),
F(y) can result in a lateral force with an attractive character
(dark region of Fig. 11) or a repulsive one, with this latter
situation allowed to occur in the light region of Fig. 11.

All the above discussion focused on the action of the y
component of F, with the particle kept constrained to move
on a given plane x = x0 > 1. In this paragraph, let us re-
move this constraint, and also include the normal force F(x)

in our analysis, as illustrated in Fig. 12. In the dark region,
the anisotropic particle feels an attractive force F(y) which
tends to pull back the particle to the x axis (or closer to the
cylinder), and a normal force F(x) tending to pull the particle
to the cylinder. In the light region in Fig. 12, a particle slightly
dislocated from the x axis feels a repulsive force F(y) which

FIG. 12. Illustration of the complete CP–vdW interaction be-
tween a perfectly reflecting cylinder and a polarizable point particle
(represented in two positions by the ellipsoidal figures), with 〈d̂2

x 〉 =
〈d̂2

z 〉 = 0. Unlike in Figs. 3 and 7, here the particle is not kept
constrained to move on a given plane x = x0 > 1, being free to move.
In the dark region, a particle slightly dislocated from the x axis feels
an attractive force F(y)

CP–vdW which tends to pull back the particle to
the x axis (or closer to the cylinder), and the normal force F(x)

CP–vdW
tends to pull the particle to the cylinder. In the light region, a particle
slightly dislocated from the x axis feels a repulsive force F(y)

CP–vdW
which tends to push the particle away from the x axis (or from the
cylinder), and the normal force F(x)

CP–vdW tends to pull the particle to
the cylinder.

tends to push the particle away from the x axis (or from
the cylinder), and the normal force F(x) tending to pull the
particle to the cylinder. In summary, while in the dark region
both components contribute to the attraction to the cylinder, in
the light region one of them (F(y)) contributes to a repulsion.
Thus, the repulsive behavior of F(y) is present, independently
of the particle being constrained to move on a given plane
x = x0 > 1. On the other hand, this behavior can be isolated
and more easily detected if such a constraint is considered, as
discussed next.

The detection of such geometric effects on the lateral
CP–vdW force could be done, for example, by keeping
an anisotropic particle constrained to move on a given
plane x = x0 > 1, trapped on an external harmonic poten-
tial Utrap(y) with equilibrium point at y = 0 (see Fig. 13),
and measuring the deviation, caused by the mentioned lat-
eral force, in the original trap frequency (see, for instance,
Refs. [12,22,24,37]). Let us consider a particle with mass
m and αxx(0) = αzz(0) = βαyy(0), with β < 0.2, and the CP
regime [or 〈d̂2

x 〉 = 〈d̂2
z 〉 = β〈d̂2

y 〉, with β < 0.32, and the vdW
regime], and oscillating with a certain frequency ωtrap in
the absence of the cylinder. The presence of the cylinder
modifies this oscillation frequency to a new value ω′

trap =√
ω2

trap + m−1[∂2UCP–vdW(x0, y)/∂y2], resulting in a frequency
deviation δωtrap ≡ ω′

trap − ωtrap. When 1 < x0 < γ (β ) [with
γ (β ) given in Figs. 5 and 9 for the CP and vdW cases, respec-
tively], an experimental apparatus would detect δωtrap > 0
(see dark region in Fig. 13). Otherwise, when γ (β ) < x0, one
would have δωtrap < 0 (see light region in Fig. 13). There-
fore, the sign inversion in the lateral force, changing from
an attractive behavior to a repulsive one (as illustrated in
Fig. 13), manifests, in this scenario, as a sign inversion in
the frequency deviation δωtrap, with this behavior revealing
a nontrivial dependence of the CP–vdW interaction with the
surface geometry, specifically of the normalized curvature.
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FIG. 13. Illustration of a particle kept constrained to move on
a given plane x = x0 > 1, and subjected to a trap harmonic poten-
tial Utrap(y) (illustrated by the dotted-dashed lines) with equilibrium
point at y = 0, near a perfectly reflecting cylinder. The dashed lines
represent UCP–vdW(x0, y). The presence of the cylinder modifies this
oscillation frequency to a new value ω′

trap, resulting in a frequency
deviation δωtrap ≡ ω′

trap − ωtrap. In dark region [1 < x < γ (β )], an
experimental apparatus would detect δωtrap > 0. Otherwise, in light
region [γ (β ) < x], it would detect δωtrap < 0.

V. FINAL REMARKS

In this paper, seeking to isolate the role of the increase
in curvature of an object on the sign inversion of the lateral
vdW force, the model of an infinite flat surface with a single
slight protuberance [discussed in the literature [24,25] and
illustrated in Fig. 1(a)] was replaced by that of a perfectly con-
ducting infinite cylinder with radius R, as shown in Fig. 1(b).
In common, both models in Figs. 1(a) and 1(b) break the
translation symmetry along the y axis. On the other hand, the
cylinder is a localized object in the y direction (−R � y � R),
in contrast with the infinite plane. In this way, we investigated
the effect of curvature of an object on the lateral vdW force,
mimicking a protuberance but removing any influence of a
remaining flat surface.

We investigated the vdW interaction with a neutral polar-
izable point particle constrained to move in a plane distant
x0 > R from the axis of the cylinder [Fig. 1(b)]. We showed
that an isotropic polarizable particle, under the action of the
lateral vdW force, is always attracted to the point closest
to the cylinder surface. On the other hand, when consider-
ing an anisotropic one, for certain particle orientations and
anisotropy, the lateral vdW force can move it away from
the cylinder (Fig. 7). In the literature, the sign inversion in
the lateral force was discussed only in the context of the

vdW regime. Here, we also extended this discussion to the
CP regime and found that the repulsive behavior can also
occur (Fig. 3), so that we were able to make a direct con-
nection between the sign inversion in the lateral force and
the increase in curvature of an object in both vdW and CP
regimes, fulfilling the main objective of this paper. Once such
connection was demonstrated here in these regimes, it may
be very interesting to study the behavior of such a curvature-
induced repulsive behavior of the lateral force for situations of
transition between these regimes, which can be done in further
investigations. It would also be interesting to perform a fully
electromagnetic calculation using the methods developed in
Ref. [38].

Finally, we also showed that there are classical counter-
parts of these effects, involving a neutral point particle with
a permanent electric dipole moment. The nontrivial connec-
tion between such effects and the curvature of the objects,
discussed in this paper, may be relevant for a better controlling
of the interaction between a particle and a curved surface in
classical and quantum physics.
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APPENDIX: MAIN STEPS TO OBTAIN EQS. (4)–(7)
AND (11)–(14)

In this Appendix, we briefly review the steps of the cal-
culations performed in Ref. [27] to obtain Eqs. (4)–(7) and
(11)–(14) used in this paper (in this Appendix, we consider
h̄ = c = 1). First, in Ref. [27], the authors considered the
particle interacting with the quantized electromagnetic field
E, whose interaction Hamiltonian was given by

Hint = −d · E, (A1)

where d is the dipole moment operator. The quantized elec-
tromagnetic field was written in terms of the vector potential,
which was given as a normal-mode expansion in terms of the
photon annihilation and creation operators, i.e.,

A(r, t ) =
∑
λ,σ

1√
2ε0ωλ

[a(σ )
λ F(σ )

λ
(r)e−iωt + H.c.], (A2)

where λ describes each mode of the field with polarization σ ,
and the normal modes F(r), in the Coulomb gauge, satisfy the
vector Helmholtz equation

(∇2 + ω2)F(r) = 0. (A3)

Also in Ref. [27], considering the particle in a state |i〉
and the field in the vacuum state |0〉, the energy shift due
to the particle-field interaction was calculated perturbatively,
considering the second perturbative order (the lowest nonva-
nishing one), and the electric-dipole approximation, so that,
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using Eqs. (A1) and (A2), the energy shift was written as

�W = −
∑

λ,σ, j �=i

ωλ

2ε0

∣∣〈 j|d|i〉 · F(σ )∗
λ

(r)
∣∣2

Eji + ωλ

, (A4)

where Eji is the energy of the transition between the states i
and j. The matrix elements 〈 j|d|i〉 are related with the particle
polarizability αkl (ω) as

αkl (ω) =
∑

j

2Eji〈i|d̂k| j〉〈 j|d̂l |i〉
E2

ji − ω2
, (A5)

with d̂k being the components of the dipole moment operator.
Thus, to obtain �W , one has only to solve Eq. (A3) with
the boundary condition that the tangential components of the
electric field and the normal component of the magnetic field
vanish at the surface of the cylinder. To calculate the inter-
action energy U (r0) between the particle and the conducting
cylinder, the authors in Ref. [27] subtracted from Eq. (A4) the
portion of the energy due to the field fluctuations in free space,
so that

U (r0) = �W − lim
R→0

�W. (A6)

Therefore, the authors found that

U (r0) = − 1

4πε0

∑
j �=i

[
ρ |d̂ρ |2 + 
φ|d̂φ|2 + 
z|d̂z|2] (A7)

with


ρ = 2

π

∞∑
m=0

′
∫ ∞

0
dk k

×
{(√

E2
ji + k2 − Eji

) Im(kR)

Km(kR)
[K ′

m(kρ)]2

+ m2

k2ρ2

(
E2

ji√
E2

ji + k2
− Eji

)
I ′
m(kR)

K ′
m(kR)

[Km(kρ)]2

}
,

(A8)


φ = 2

π

∞∑
m=0

′
∫ ∞

0
dk k

×
{(

E2
ji√

E2
ji + k2

− Eji

)
I ′
m(kR)

K ′
m(kR)

[K ′
m(kρ)]2

+ m2

k2ρ2

(√
E2

ji + k2 − Eji
) Im(kR)

Km(kR)
[Km(kρ)]2

}
, (A9)


z = 2

π

∞∑
m=0

′
∫ ∞

0
dk k

{
k2√

E2
ji + k2

Im(kR)

Km(kR)
[Km(kρ)]2

}
,

(A10)

which correspond, respectively, to Eqs. (17) and (27)–(29) of
Ref. [27].

Equations (A7)–(A10) are valid to any distance δ =√
x2

0 + y2
0 − R from the particle to the cylinder. In the model

discussed here, the only characteristic length scale is the
wavelength λ ji (with λ ji ∝ 1/Eji) of a typical transition be-
tween the states i and j of the particle. To achieve one of the
main goals of this paper, namely, to make a direct connection
between the sign inversion in the lateral vdW force and the
increase in curvature of an object, we consider δ � λ ji, so
one makes λ ji → ∞ (or Eji → 0) in Eqs. (A7)–(A10). Thus,
for the situation shown in Fig. 2, we obtain Eqs. (11)–(14)
as describing the interaction in the vdW regime. Since, in the
literature, the sign inversion in the lateral force was discussed
only in the context of the vdW (nonretarded) regime, another
goal of this paper is to extend this effect to the CP (retarded)
regime, where λ ji � δ, and one considers the limit λ ji → 0
(or Eji → ∞) in Eqs. (A7)–(A10). Thus, for the situation
shown in Fig. 2, we obtain Eqs. (4)–(7) as describing the
interaction in the CP regime. The expressions for the inter-
action energies in these asymptotic limits are significantly
simpler than the original general Eqs. (A7)–(A10), so that the
numerical calculations needed to investigate their behavior are
greatly reduced.
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