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Elastic scattering of Airy electron packets on atoms
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The problem of elastic scattering of a nonrelativistic electron Airy beam on a hydrogen atom in the ground 1s
state is considered in the Born approximation. It is demonstrated that the angular dependence of the scattering
probability density is, in general, azimuthally asymmetric. When the position of the atom happens to coincide
with a minimum of the probability density of the Airy beam, the asymmetric pattern is represented by four
separated peaks. We show that this behavior is very sensitive to the precision with which the relative position
of the atom and the minima is defined and study how uncertainty in the position can affect observation of the
azimuthal asymmetry. Finally, we consider a spatially localized target and discuss the difficulties of observing
the asymmetry for targets with sizes exceeding a critical value determined by the beam parameters and by the
position of the target center.
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I. INTRODUCTION

In this paper, we aim to give a detailed analysis of elastic
scattering of an electron wave packet of a special shape by a
potential field in the Born approximation. Real particle wave
packets are localized both in the coordinate space and in the
momentum one, however, they are conventionally represented
as plane waves in the scattering problems. Nevertheless, there
are examples of experimentally investigated scattering pro-
cesses in which large impact parameters greatly contribute to
the cross sections [1] or a finite transverse coherence length of
the wave packets plays a crucial role [2,3]. In these cases, the
plane-wave description is no longer sufficient, and particles
must be described as wave packets.

The non-Gaussian wave-packet solutions to the Shrödinger
equation have been known for over several decades now (see,
for instance, Refs. [4,5]). In 2010 to 2011, it was reported
on experimental generation of the vortex electrons carrying
a definite value h̄l of an intrinsic angular orbital momen-
tum along the particle propagation axis [6,7], and the orbital
quantum number l can already be as high as 1000 [8]. These
states are characterized by the spiraling current density and
the magnetic moment being proportional to l . In 2013, the
electron Airy beams with the energies up to 200 keV were
experimentally created by diffraction of electrons on the nano-
scale holograms [9].

Both elastic and inelastic scatterings of the nonrelativistic
vortex electrons on atoms have been theoretically studied
in Refs. [10,11], respectively. In paper [12], a model was
developed for scattering of a general wave packet beyond
the plane-wave approximation, and the special cases of a
twisted electron [13] and of a so-called Schrödinger cat state
[14] were studied. Interaction of twisted relativistic electrons
with the atomic targets has also been examined beyond the
Born approximation [15]. More complex processes, such as
ionization of atoms using electron vortex beams [16–18] and
angular momentum transfer [19,20] have been thoroughly
investigated.

As the scattering studies beyond the plane-wave approx-
imation are a relatively new field, most works have treated
the vortex electrons. The electron Airy packets represent a
massive generalization of the optical Airy beams [21], and
the latter have found various applications in optical micro-
manipulation [22], optical trapping [23,24], generation of
plasma channels [25], surface Airy plasmons [26,27], and
in lasers [28,29]. A distinguishing feature of an Airy beam
is a cubic dependence of the phase ϕ of a vector poten-
tial (or a wave function) in momentum representation on
a particle momentum: ϕ(k) ∼ ξ 3

x k3
x + ξ 3

y k3
y with ξ = {ξx, ξy}

being a two-dimensional vector, which transforms as coordi-
nates under the Lorentz boosts [30]. The electron Airy beam
has an intrinsic electric quadrupole moment [31] and, unlike
the vortex electron, it has an azimuthally asymmetric spatial
profile.

As the electron Airy beams are not that widely used com-
pared to their optical counterparts, it is timely to generalize
the theory of Refs. [12–14] for scattering of the azimuthally
asymmetric electron Airy beams and to investigate the sensi-
tivity of the cross section and the number of scattering events
to the packet size and shape defined by the phase ϕ of the
wave function in momentum representation. In this paper, we
analyze such a scenario and try to answer the question whether
the current experimental capabilities are sufficient to distin-
guish an Airy beam from the azimuthally symmetric Gaussian
packet or the twisted Bessel beam in atomic scattering.

The structure of the paper is as follows. In Sec. II A, we
recall the standard Born approximation. Then, we discuss
generalization of these formulas for scattering of the wave
packets developed in Ref. [12] and present an expression for
the number of events. In Sec. II B, we consider a special
case of the Airy beam and derive the scattering amplitude.
Then in Secs. II C and II D, we consider the generalization
of the number of events for scattering on a macroscopic (in-
finitely wide) and mesoscopic (localized) targets, respectively.
In Sec. III, we present density plots for different scattering
scenarios and introduce special points of the first and of the
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second type as well as transitional points characterized by
distinctive scattering patterns. We analyze the feasibility of
the scattering patterns and their sensitivity to the parameters
of the beam and the scatterer. Then, we discuss the azimuthal
dependence of the number of events and finally study how the
scattering patterns alter for the mesoscopic targets.

II. THEORETICAL BACKGROUND

A. Basic formulas

Consider the scattering of a charged nonrelativistic particle
(electron) off a spherically symmetric potential field U (r)
with a typical radius of action a, which will be the Bohr radius
in what follows. For the initial and scattered electrons being
plane waves, the S-matrix element for the transition between
states with momenta pi and p f is expressed via the scattering
amplitude f (εi, θ, ϕ),

S(pw)
f i = 〈 f |S|i〉 = (2π )2iδ(εi − ε f )

f (εi, θ, ϕ)

me
,

εi = p2
i

2me
, ε f = p2

f

2me
, (1)

where me is the electron mass. The corresponding number of
scattering events and the differential cross section are

dν = Ne|〈 f |S|i〉|2 d3 p f

(2π )3
,

dσ

d

= | f (εi, θ, ϕ)|2. (2)

Here, Ne is the number of the incident electrons.
For the initial state being a wave packet,

|i〉 =
∫

|k〉�(k)
d3k

(2π )3/2
, (3)

the matrix element for the transition into the plane-wave state
with momentum p f is given by integration of the plane-wave
amplitudes with the packet’s wave function in momentum
representation,

S f i =
∫

〈p f |S|k〉�(k)
d3k

(2π )3/2
=

∫
S(pw)

f k �(k)
d3k

(2π )3/2
. (4)

We will consider a wave packet propagating along the z direc-
tion on average,

〈k〉 = (0, 0, pi ), (5)

with nonzero average of the absolute value of the transverse
momentum,

〈k⊥〉 = 〈|k⊥|〉 = κ0 = pi tan θk . (6)

Here, θk is the conical angle. We assume no coupling of the
longitudinal and transverse directions and, hence, factoriza-
tion of the wave function into transverse and longitudinal
parts,

�(k) = �⊥(k⊥)�long(kz ). (7)

We also assume the dispersions to be small compared to the
longitudinal momentum [32,33],


kx = 
ky ∼ 1

σ⊥
� pi, 
kz ∼ 1

σz
� pi, (8)

FIG. 1. Spatial distribution of the Airy wave packet. ξx = ξy =
2σ⊥, bx = by = 0.

where σ⊥ and σz are the transverse- and longitudinal-averaged
sizes of the electron packet. From the experimental point of
view, the interesting case is when the packet’s size σz is greater
than the field’s radius of action and yet still small enough to
neglect the packet’s spreading in the transverse plane during
the collision,

a � σz � σ⊥
pi

κ0
. (9)

Provided (9) is fulfilled, one can derive the following expres-
sion for the number of scattering events and the scattering
amplitude [12]:

dν

d

= Ne

cos θk
|F (Q)|2,

F (Q) =
∫

f (Q − k⊥)�⊥(k⊥)
d2k⊥
(2π )2

,

Q = (p f sin θ cos ϕ, p f sin θ sin ϕ, p f cos θ − pi ),

f (q) = − me

2π

∫
U (r)e−iq·rd3r, (10)

where p f = √
p2

i + κ2
0 and f (q) is a plane-wave scattering

amplitude in the first Born approximation.

B. Scattering of the Airy packet

In this section, we consider the special phase in the mo-
mentum space—so-called Airy packet [9,30]. The transverse
wave function in the momentum representation is

�⊥(k⊥) = N exp
( − k2

x σ
2
⊥ − k2

y σ
2
⊥
)

× exp

(
i

3
ξ 3

x k3
x + i

3
ξ 3

y k3
y − ikxbx − ikyby

)
, (11)

where N is the normalization constant defined by∫ |�⊥(k⊥)|2 d2k
2π

= 1 and b = {bx, by} is the impact parameter
introduced to account for non-head-on collision scenarios.
The probability density in coordinate representation is shown
in Fig. 1.
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We will consider two potentials—the hydrogenlike atom
and the Yukawa potential,

Uhyd(r) = −e2

r

(
1 + r

a

)
exp

(
−2r

a

)
,

UYu(r) = V0

r
exp(−μr). (12)

Here, μ is the inverse effective radius of action of a Yukawa
potential, V0 is the effective Yukawa potential amplitude. The
corresponding Born amplitudes for the potentials are as fol-
lows:

fhyd(q) = a

2

[
1

1 + (qa/2)2
+ 1

[1 + (qa/2)2]2

]
,

fYu(q) = − 2meV0

q2 + μ2
, (13)

which can be written in a general form with the help of the
function I (η, z) defined as follows:

I (η, z) =
∫ ∞

0
(1 + ηs)e−szds = f0

(
1

z
+ η

z2

)
,

fhyd(q) = a

2
I

(
1, 1 + q2a2

4

)
,

fYu(q) = −2meV0

μ2
I

(
0, 1 + 4q2

μ2

)
. (14)

Here, f0 is the amplitude of the potentials, which is either f0 =
a
2 or f0 = − 2meV0

μ2 . The amplitude for scattering of the Airy
packet on either one of the potentials of interest is then also
written in a general form

F (Q, b, η, a, f0)

= f0

∫
I

(
η, 1 + 1

4
(Q − k⊥)2a2

)
�⊥(k⊥)

d2k⊥
(2π )2

. (15)

Note that the function F (Q, b, 1, a, a
2 )— is the amplitude for

the scattering of the Airy packet on a ground-state hydrogen
atom into a plane-wave state and F (Q, b, 0, 2

μ
,− 2meV0

μ2 )—is
the amplitude for the same process but involving the Yukawa
potential. The final expression for the amplitude is given by a
one-dimensional integral,

F (Q, b, ξ, η, a, f0)

= f0N
(2π )2

ξxξy

∫ ∞

0
ds(1 + ηs) exp

{
−s

(
1 + 1

4
Q2a2

)}

× exp

{
2

3
ρ6

x (s) − iρ2
x (s)ζx(s) + 2

3
ρ6

y (s) − iρ2
y (s)ζy(s)

}

× Ai[−iζx(s) + ρ4
x (s)] Ai[−iζy(s) + ρ4

y (s)], (16)

where the expressions,

ρ2
x,y(s) = 1

ξ 2
x,y

(a2s/4 + σ 2
⊥),

ζx,y(s) = Qx,ya2s

2ξx,y
− i

bx,y

ξx,y

(17)

will be given physical interpretation shortly.

Expression (16) describes both the hydrogen atom and the
Yukawa potential. In the formula for the scattering amplitude,
Ai(z) is the Airy function properly defined for complex argu-
ments,

Ai(z) = 1

2π i

∫
C

exp

(
zt − t3

3

)
dt, (18)

where the integral is over a path C starting at a point at infinity
with π

2 < arg(t ) < 2π
3 and ending at a point at infinity with

7π
6 < arg(t ) < 3π

2 .
For a reason that will become clear shortly, it is convenient

to rewrite expression (16) in the following form:

F (Q, b, ξ, η, a, f0)

= f0

∫ ∞

0
(1 + ηs) exp

{
−s

(
1 + 1

4
Q2a2

)}
�⊥(bx, by, s)ds.

(19)

Note that the integrand in (19) taken at s = 0 is transverse
wave function of the packet in real space as a function
of the impact parameter �⊥(bx, by) = �⊥(bx, by, s = 0) and
|�⊥(x, y)|2 = |�⊥(x, y, s = 0)|2 is the spatial distribution
presented in Fig. 1.

Had we considered a wave packet in momentum represen-
tation (11) with the transverse size,

σ ′2
⊥ = σ 2

⊥ + a2s′

4
= ξ 2

x,yρ
2
x,y(s′), (20)

and nonzero average projections of the momentum,

〈kx,y〉 = Qx,ya2s′

4σ 2′
⊥

= 1

2ρ2
x,y(s′)

Re[ζx,y(s′)], (21)

the transverse wave function would have been exactly
�⊥(bx, by, s = s′). In the light of it, the amplitude for scat-
tering of a wave packet on a hydrogenlike atom (or Yukawa
potential) is represented by superposition of the wave packets
of the same shape but with different parameters. In this in-
terpretation, ρ2

x,y(s) is a dimensionless parameter determining
the size of the packet, and ζx,y(s) is a dimensionless parameter
the real part of which determines the direction and the abso-
lute value of the average transverse momentum of the wave
packet, and the imaginary part determines its average position
in space.

C. Scattering on a macroscopic target

After the discussion of the scattering by a single potential,
let us briefly describe scattering on a macroscopic (infinitely
wide) target, which consists of randomly distributed potential
centers. In this case, we would need to integrate over all
potential centers’ positions and introduce the averaged cross
section as the integration of the number of events over all
the impact parameters b and dividing the expression by the
number of particles in the incident packet. The result is as
follows:

d σ̄

d

= 1

Ne

∫
dν

d

d2b. (22)
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The wave function of the packet approaching a target at impact
parameter b can be written as

�⊥(k⊥) = a(k⊥)e−ik⊥b, (23)

where a(k⊥) is the wave function of a nonshifted packet.
Therefore, expression (22) is proportional to the integral,

I =
∫

F (Q)F ∗(Q)d2b, (24)

where

F (Q) =
∫

f (Q − k⊥)a(k⊥)e−ik⊥b d2k⊥
(2π )2

. (25)

After the integration over b and k⊥, we obtain

d σ̄

d

= 1

cos θk

∫
| f (Q − k⊥)|2|�⊥(k⊥)|2d2k⊥ (26)

(see details in Ref. [12]). Importantly, there is no dependence
on the phase in expression (26) meaning that scattering of the
wave packet on a macroscopic target is merely defined by its
transverse probability density and for the Airy packet it is the
same as for the Gaussian one.

D. Scattering on a mesoscopic target

In a more realistic experimental scenario, a focused elec-
tron beam collides with a localized atomic target. In order
to account for the geometrical effects in such a scenario, we
describe the target as an incoherent superposition of potential
centers. The density of the scatterers in the transverse plane
is characterized by a distribution function n(b), which is nor-
malized as follows: ∫

n(b)d2b = 1. (27)

For the numerical analysis below, we take n(b) to be a Gaus-
sian function,

n(b) = 1

2πσ 2
b

exp

(
− (b − b0)2

2σ 2
b

)
. (28)

For such a scenario, the number of events compared to (10)
modifies in the following way:

dν

d

= Ne

cos θk

∫
|F (Q, b)|2n(b)d2b. (29)

III. RESULTS

In the following subsections, we discuss only the scat-
tering on a hydrogen atom potential. Detailed discussion of
scattering on Yukawa potential, which is not qualitatively
different form hydrogen, would fall outside the scope of this
article. However, it is worth noting that the Yukawa poten-
tial is used very often as an approximation to the Coulomb
field of the nucleus screened by atomic electrons in a theory
of atomic collisions [34]. All the figures are presented for
pia = p f a = 10 [12]. Such a momentum value corresponds
to nonrelativistic, but still “fast” electrons, which ensures
the applicability of the Born approximation. For the scat-
tering on a hydrogen atom, this corresponds to the kinetic

FIG. 2. Angular distribution on flat angles θx and θy is almost
equivalent to the distribution with respect to Cartesian coor-
dinates on the plane of detector. cos θ = cos θx cos θy; sin ϕ =

sin θy√
1−cos2 θx cos2 θy

.

energy εi = 1.36 keV. The integral in (16) contains the ex-
ponential factor exp(−sQ2a2/4), which can be rewritten as
exp(−sp2

i sin(θ/2)2) with the explicit expression for Q given
in (10) plugged in and assuming p f = pi. Thus, it can be seen
that the increasing the projectile momentum simply leads to a
faster exponential decay of the scattering amplitude as a func-
tion of the polar angle θ , i.e., “narrowing” of the scattering
pattern.

We also assume that ξx,y = 2σ⊥ unless stated otherwise
[9,30]. We normalize the packet’s wave function to 1, meaning
that only one particle collides with the target. Thus, in the
following sections, it is more correct to speak of scattering
probability density rather than of the number of events.

A. Scattering pattern for central collision

The final results are more illustrative when expressed via
the so-called flat angles (30) [35] presented in Fig. 2,

cos θ = cos θx cos θy, sin φ = sin θy√
1 − cos2 θx cos2 θy

.

(30)

These angles are connected with the Cartesian coordinates
on a surface of a flat detector.

The number of events for the scattering on a single atom in
reality turns out to be very sensitive to the relative position of
the atom and the wave-packet’s probability density minima.
As can be seen in Fig. 3(a), the scattering pattern looks rather
symmetric for the head-on collision when the atom is placed
on the axis of the packet’s propagation with the impact param-
eter being bx = by = 0. This can be interpreted the following
way: The first maxima of the Airy packet is rather wide,
about 5σ⊥ ≈ 5a, which is why with the potential’s radius of
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FIG. 3. Scattering on a single atom: The dependence of the scattering probability density dν

d

(θx, θy ) on the flat angles for the head-

on collision (a) and for the atom being located at different special points of the first type defined by (31)–first minima (b)–(d) and third
minima (e). (a) σ⊥ = a, bx = by = 0; (b) σ⊥ = a, bx = by ≈ 4.8σ⊥; (c) σ⊥ = 5a, bx = by ≈ 4.8σ⊥; (d) σ⊥ = 10a, bx = by ≈ 4.8σ⊥; and
(e) σ⊥ = a, bx = by ≈ 11.17σ⊥.

action being equal to a the atom only feels the vicinity of
the first maximum and does not feel the Airy nature of the
wave packet, which manifests itself in oscillatory behavior in
one quadrant of the (x, y) plane. In a simple approximation,
we could say that the atom feels the packet as a Gaussian
one, and the pattern then turns out to be a symmetric circle
as expected for a such case [12].

B. Scattering pattern for special points of type 1

However, there are totally different scattering patterns that
occur when the atom is placed in the minima of the Airy
packet probability density. These points are defined by con-
ditions (31) that are both to be satisfied simultaneously,

Ai

(
−bx

ξx
+ σ 4

⊥
ξ 4

x

)
= 0,

Ai

(
−by

ξy
+ σ 4

⊥
ξ 4

y

)
= 0. (31)

In the following discussion, we will refer to such points as
special points of the first type. For the special points of the first
type the circular scattering pattern is replaced by a four-petal
pattern.

As can be seen in Fig. 3, the probability of the process
vanishes for the forward scattering, which corresponds to the
flat angles being in the vicinity of zero. In Fig. 3(b), we
illustrate the scattering probability density for scattering of
a narrow packet when its transverse size is equal to the po-
tential’s radius of action (σ⊥ = a, e.g., Bohr radius in case of
hydrogen atom) on the atom that is placed in the first minima

of the transverse probability density (bx ≈ 4.8σ⊥) and see
that the probability density is of order 10−3–10−2. Increasing
the wave-packet’s transverse size leads to a relatively sharp
decrease in the magnitude of the probability density, e.g.,
increasing the packet’s size by a factor of 5 leads to a decrease
in the probability density of the order of 10−7, nevertheless,
the scattering pattern qualitatively remains the same.

Switching the position of the atom from the first minima
to a different one keeps the scattering pattern visually the
same, however, its the magnitude decreases. As can be seen
in Fig. 3(e) when the atom is placed in the third minima with
bx = by ≈ 11.17σ⊥ the probability density decreases by the
order of 10−2. What else can be noted is that Figs. 3(b)–3(d)
are visually the same, and the difference is only in the values
of the probability density, however, for a different minima
Fig. 3(e) the petals are spaced further apart from each other.

C. Scattering pattern for special point of type 2

In reality, the probability density is at its minimum when
either one of the conditions (31) is fulfilled, thus, one could
ponder what would happen to the scattering pattern if the
atom is placed in a position that satisfies only one of them.
We will refer to such points as the special points of the second
type. We illustrate such scattering patterns when the atom’s
position satisfies the condition of only the first or the second
Airy function in (31) being equal to zero in Figs. 4(a) and
4(b), respectively. As can be seen in this case the circular
scattering pattern from Fig. 3(a) splits into a two-petal pat-
tern in two orthogonal directions depending on which Airy
function vanishes at that point. Similar to the case of placing
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FIG. 4. Scattering on a single atom: The dependence of the scattering probability density dν

d

(θx, θy ) on the flat angles for the atom being

located at different special points of the second type (a) and (b) and at a transitional point (c). (a) σ⊥ = 5a, bx ≈ 4.8σ⊥, by = 0; (b) σ⊥ =
5a, by ≈ 4.8σ⊥, bx = 0; and (c) σ⊥ = a, bx = by = 4σ⊥.

the atom in a special point of the first type the probability
density dν

d

(θx, θy) vanishes for very small flat angles meaning

vanishing probability of forward scattering.
Combining observations of the scattering from a special

point of the first and of the second type we can deduce
that each of the two equations in (31) behaves as a splitting
mechanism that transforms circularlike parts of the scattering
patterns into two pieces.

Now, we could try to go beyond the cases considered, thus
far, and study what would happen to the scattering pattern in
the vicinity of the special point. In Fig. 4(c), we illustrate
the case when impact parameter bx = by = 4σ⊥ is close to
the special point of the first type yet none of the conditions
(31) are satisfied. For such a scenario, we note transitional
behavior of the scattering pattern and will refer to such points
as transitional. Note that such a pattern also resembles the
scattering of a Gaussian wave packet with a nonzero impact
parameter [12]. We could interpret this result similarly to
the central collision: The contribution of the main maximum,
in this case, significantly exceeds the contribution of other
maxima.

D. Feasibility of scattering patterns and their sensitivity
to precision of the atom’s placement

In Sec. III B. the density plots are given for impact param-
eters defined up to 0.1σ⊥. For narrow packets with σ⊥ = a,
this implies the necessity to control the atoms position with
the degree of precision of 0.01–0.1 Å, which is hardly feasible
nowadays. For larger packets with σ⊥ = 5a, 10a the required
precision is insignificantly lower, and from an experimental
point of view, it is still impossible to achieve such accuracy,
and that is why we analyze the sensitivity of the scattering
patterns with respect to inaccuracy of atom’s position. In
Fig. 5 , we present the series of scattering patterns for values
of impact parameter being gradually increased by 0.2σ⊥. We
see that for the values |b| = 4.6σ⊥, 4.8σ⊥, 5σ⊥, 5.2σ⊥, 6σ⊥
which are all in the vicinity of the special point of the first type
the scattering pattern deviates from the one corresponding
to atom’s placement precisely the minima of the probabil-
ity density to a degree depending on the value of impact
parameter, and yet the four-petal form is still more or less
recognizable, thus, we can roughly estimate the required accu-
racy as ∼0.6σ⊥ = 1.2a. Moreover, for decreasing the required
accuracy of atom’s placement, one could consider scattering

on a Rydberg atom with the radius of action ã = an2, which is
much greater than a for large n. This would lead to rescaling
of the whole problem keeping all the expressions the same and
the required accuracy could then be of the order 1.2ã ∼ an2 ∼
10 nm for n = 10.

E. Azimuthal dependence for single atom scattering

After discussing the scattering patterns, let us dig deeper
into the scattering process for different scenarios. In reality,
the number of events is a sharp function in terms of the
polar angle, and it grows sharper with the increase in the
momentum, which we put equal to pia = p f a = 10 as stated
before. Hence, we fix the polar angle to be θ = 0.1 rad, and
study the azimuthal dependence of the number of events for
the scattering on a single atom.

In Fig. 6(a), we display the normalized number of events
for the scattering on an atom placed at the special point
of the first type (b = 4.8σ⊥—red dashed line) and at two
transitional points (b = 4.2σ⊥, b = 5.4σ⊥). In the curve de-
scribing special point, we see four visibly equivalent maxima
that correspond to the four-petal pattern. Shifting the impact
parameter, two of the maxima flatten out and for b = 4.2σ⊥
there are only two visible peaks, such as in the scattering
pattern Fig. 4(c) where the impact parameter is taken to be
b = 4σ⊥.

Increasing the size of the packet allows one to discover
that the scattering pattern for the special point is, in general,
much more sensitive to the azimuthal angle. It can be seen in
Fig. 6(b) as for the size of the packet σ⊥ = 5a the two curves
for the transitional points (black solid line for |b| = 4.2σ⊥,
blue dot-dashed line for |b| = 5.4σ⊥) flatten out compared to
the curve describing the special point of the first type.

If we now compare the azimuthal dependence for the spe-
cial points with different sizes of the packet in Fig. 6(c), we
see that the narrower the wave packet is, the smaller the ratio
of the number of events as a function of the azimuthal angle
is, and the greater its minimum value is.

Finally, we consider scattering on an atom placed at a
special point and study how the dependence changes when we
change the phase of the packet meaning different ξx’s and ξy’s
Fig. 6(d). The pattern of the dependence for different ξx’s and
ξy’s remains the same yet the ratio of probabilities decreases.
The idea behind it is that for smaller values of ξx’s and ξy’s the
wave packet is less and less distinguished as an Airy packet
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FIG. 5. Scattering on a single atom: Comparison of scattering patterns within the vicinity of a special point of the first type for evaluating the
sensitivity with respect to inaccuracy of impact parameter value for packet size σ⊥ = 2a. (a) bx,y = 4.4σ⊥, (b) bx,y = 4.6σ⊥, (c) bx,y = 4.8σ⊥,
(d) bx,y = 5σ⊥, (e) bx,y = 5.2σ⊥, and (f) bx,y = 5.4σ⊥.

(a) (b)

(c) (d)

FIG. 6. Azimuthal dependence of the ratio of probabilities dν(θ, ϕ)/dν(θ, ϕ = π/4) for different values of impact parameter, packet size,
and parameters ξx,y. We assume that bx = by and that outgoing electrons are detected at the polar angle θ = 0.1 rad. (a) σ⊥ = a, (b) σ⊥ = 5a,
(c) bx,y ≈ 4.8σ⊥, and (d) σ⊥ = a, Ai(−bx,y/ξx,y + σ 4

⊥/ξ 4
xy

) = 0.
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FIG. 7. Scattering on a mesoscopic target: The dependence of
the scattering probability density dν

d

(θx, θy ) on the flat angles for

scattering of the Airy packet with σ⊥ = a on a mesoscopic target
centered at the special point of the first type (bx,y ≈ 4.8σ⊥) with the
width σb = a. This corresponds to the case of a target consisting of
very few atoms.

and starts to resemble the Gaussian one more and more, and
this leads to the flattening of the azimuthal dependence of the
number of events.

F. Scattering pattern for a mesoscopic target

In this section, we turn to a more realistic experimental sce-
nario where we investigate scattering on a mesoscopic target
of a finite size. To study such a process, we describe the target
with the distribution function (28). In the case of incoherent
scattering on a mesoscopic target, meaning that we average
the scattering probability density rather than the scattering
amplitude, we can think of the scattering pattern as an overlay
of different scattering patterns for different placings of a single
atom. Thus, we will take into account a continuum of points
for atom’s placings that are neither special points of the first
nor of the second type the scattering pattern for which is more
or less circular and the scattering pattern from special points
with four or two petals and the transitional cases. As a result,
we expect the fout-petal and two-petal forms to smear out
and end up with a pattern which is nonvanishing for forward
scattering.

In Fig. 7, we present the scattering pattern for the trans-
verse size of the beam and the width of the target being equal
σ⊥ = σb = a and the center of the target located at the special
point of the first type. As can be seen in the figure, there
are no separated peaks as expected, yet after averaging over
impact parameters the pattern looks “quadratic” rather than
azimuthally symmetric even with a naked eye. The reason for
it is the narrow width of the target. As discussed above, the
resulting scattering pattern can be thought of as an overlay
of scattering patterns on the atom the position of which is
defined by the impact parameter bx = by = b with b pass-
ing all the values in the interval (4.8σ⊥ − σb, 4.8σ⊥ + σb) =

(3.8a, 5.8a), which does not contain the point corresponding
to the position of the main maximum of the probability density
(|b| ≈ 2.16a) of the Airy packet the amplitude of the scatter-
ing pattern for which Fig. 3(a) is of several orders higher.
Thus, the effects of the internal structure of the packet are
still visible. However, from the experimental point of view,
the size of target σb = a is hardly achievable, and the more
realistic scenario would imply σb ∼ 10 − 20a. For such a
target, the interval of the values of the impact parameters of
overlaying patterns would inevitably contain the main maxima
and azimuthal asymmetry would be practically invisible.

For a wave packet with ξx = ξy = ξ and the position of the
center of the target b0 being one of the special points of the
first type the following semiempirical inequality:

− b

ξ
+ σ 4

⊥
ξ 4

< −1.018 (32)

has to be satisfied for all b ∈ (b0 − σb, b0 + σb)’s for the ob-
servation of the contribution of the internal structure of the
wave packet to be possible. The inequality simply states that
for all absolute values of the impact parameter that contribute
to the resulting scattering pattern the argument of the Airy
function in (31) should be less than the position of the main
maxima (b ≈ −1.018), i.e., the main maxima does not con-
tribute to the pattern. With the use of (33), we could estimate
the critical width of the target σc that could allow observation
of the internal degrees of freedom of the packet in the scatter-
ing pattern as the value that satisfies

−b0 − σc

ξ
+ σ 4

⊥
ξ 4

= −1.018,

σc = b0 − σ 4
⊥

ξ 3
− 1.018ξ . (33)

When b0 = 4.8σ⊥, which corresponds to the first special
point, and ξ = 2σ⊥ the critical size estimate is σc = 2.64σ⊥.
From expression (33), it is clear that to achieve visible asym-
metry in scattering patterns on reasonable-sized mesoscopic
targets, one should place them at a farther special point of
the first type. We recall that there are infinitely many special
points of the first type as a result of oscillatory behavior
of the Airy function with the first three described by b ≈
4.8σ⊥, b ≈ 8.25σ⊥, b ≈ 11.16σ⊥.

Nonetheless, for the fixed polar angle θ = 0.1 rad, the vari-
ation of the ratio of probability densities dν(θ, ϕ)/dν(θ, ϕ =
π/4) as of the function of the azimuthal angle for σ⊥ = σb =
a is already on the order of 0.05. Increasing the size of the tar-
get inevitably leads to more and more azimuthally symmetric
(circular) scattering patterns as in the limit of a macroscopic
target, the cross section of the process no longer depends on
the phase of the wave packet as discussed in Sec. II D, and for
σb � σc = 2.64σ⊥ = 2.64a the asymmetry vanishes. For the
target width σb = 10a, the asymuthal variation of the ratio of
probabilities is already on the order of 10−3 and for σb = 30
it decreases to 10−4.

IV. DISCUSSION AND CONCLUSION

Recalling the definition for the plane-wave scattering am-
plitude entering Eq. (10), one can arrive at the following
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expression for the non-plane-wave amplitude:

F (Q) =
∫

f (Q − k⊥)�⊥(k⊥)
d2k⊥
2π

= − me

2π

∫
d2k⊥
2π

∫
d3r U (r) exp[i(Q − k⊥) · r]�⊥(k⊥)

= − me

2π

∫
d3r U (r) exp(iQ · r)�(r⊥), (34)

which allows one to retrieve information about the transverse
wave function of the initial state by applying Fourier trans-
form to derive

�(r⊥) = −U −1(r)

4meπ2

∫
F (Q)eiQ·rd3Q, (35)

which can be rewritten as

�(r⊥) = − me

2π

∫
F (Q)eiQ·rd3Q∫

f (q)eiq·rd3q
. (36)

Equation (36) allows one to derive the wave function of the
scattered particle from the amplitude. However, we stress that
a fully satisfying result would be an ability to retrieve, at
least, a portion of information about the wave packet’s dis-
tribution solely from the absolute value of the amplitude since
experimental measurements can, in reality, be insensitive to
its phase.

To summarize, we have applied the Born approximation
to the problem of elastic scattering of an azimuthally asym-
metricly charged Airy wave packet on a potential field. For
a single hydrogen atom, the probability density sharply de-
creases with the increase in the packet’s width. In particular,
as it changes from σ⊥ = a = 0.5 to σ = 5a = 2.5 Å, the
corresponding values drop from 0.01 to 10−8. For the angu-
lar dependence, we have found that the probability density
dν/d
(θx, θy) as a function of the angles (30) acquires the
four-petal shape when the atom is placed at the special points
of the first type and the two-petal shape when placed at the
special points of the second type. These points correspond the
minima of the packet probability density. Four-petal shapes
arise when both conditions in (31) are satisfied simultane-
ously, and two-petal shapes occur when only one of them is
fulfilled. Characteristic scattering patterns allow one to get
insight into internal structure of the wave packet by placing
the atom at different points, i.e., performing tomography of
the wave packet using an atom as a probing tool.

In reality, such specific positioning of the atom requires
the precision of the order of 0.1σ⊥ ∼ 0.1a − 1a ∼ 0.1–1 Å,
which seems to be very hard to realize. One way to circumvent
this obstacle is to use Rydberg atoms, which have much larger
radii of action ã = an2 ∼ 10−8–10−4 m, where n is a principal
quantum number. This simply leads to rescaling of the whole
problem keeping all the expression and results intact. Thus,
one can study scattering of wave packets with significantly
larger sizes up to σ⊥ ∼ 10–100 μm and greatly decrease the

required precision of atom’s placement to micrometer scale
since for Rydberg atoms n can be as high as 1000 [36].

Analyzing the azimuthal dependence of the ratio of prob-
abilities dν(θ, ϕ)/dν(θ, ϕ = π/4), we have shown that it is,
in general, much more sensitive to the azimuthal angle when
the atom is placed at the special point of the first type. For
b = 4.8σ⊥, which corresponds to the first special point of
the first type, the ratio variation is on order of 1, whereas
for b shifted by 0.6σ⊥, it is roughly ten times smaller. This
may turn out to be useful in different microscopy problems
where the information regarding some object is extracted from
azimuthal dependence of scattering patterns because setting
the investigated object at the special point would result in a
more explicit behavior.

Finally, we have discussed the most experimentally achiev-
able scenario, i.e., scattering on a mesoscopic target. For a
toy-model case of a narrow packet and an equally narrow tar-
get, the scattering pattern still contains information about the
internal structure of the wave packet, which is manifested in
quadratic shape of the probability density. We have introduced
the critical size of the mesoscopic target as the maximum
size, which could enable observation of the asymmetry in
the scattering pattern. For instance, for ξx = ξy = 2σ⊥, bx =
by = 4.8σ⊥, σ⊥ = a the critical size is

σc = 2.64a (FWHM = 6.22a). (37)

From analysis of the general expression for σc, it follows that
one could place the target center at a special point remote from
the packet’s main peak to make the observation of azimuthal
asymmetry more feasible apart from considering Rydberg
atoms rather than the hydrogen atom.

The nature of the studied effects and the problems that arise
along the way are not unique for Airy beams. They are the
result of non-Gaussian profiles and appear due to the presence
of a phase ϕ(p). Similar scattering scenarios could be studied
for different packets with phases, such as the vortex states,
Pearcy beams, and their various generalizations [37,38].
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