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Coherent excitation of three-atom entangled states near a two-body Förster resonance
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We experimentally study three-body energy exchange during Rydberg excitation near a two-body Förster
resonance. By varying the excitation pulse duration or Rabi frequency, we coherently control the excitation
of three-atom entangled states. We prove coherence using an optical rotary echo technique and compare with a
model for excitation in a three-atom basis. Our results suggest a robust way to implement a three-body entangling
operation.
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I. INTRODUCTION

Interactions among ultracold atoms have enabled an ex-
plosion of progress in fundamental physics [1] and quantum
technologies [2]. Close-range interactions in quantum degen-
erate gases have revealed exotic phases of matter like Effimov
states [3] and the Tonks-Girardeau gas [4]. They have also
given insight into quantum dynamics, including phase transi-
tions [5,6], wave-packet transport [7], Anderson localization
[8], and quantum thermalization [9,10]. Ultracold Rydberg
atoms are particularly useful because of their long-range
couplings [2]. Dipole-dipole interactions in Rydberg systems
have been used to create neutral atom quantum gates [11–13],
flexible quantum simulators [14,15], single-photon sources
[16,17], and single-photon switches and transistors [18,19].
These long-range interactions have also opened new avenues
to study few-body physics, including Rydberg molecules
[20,21], facilitated excitation [22,23], and few-photon optical
nonlinearities [24–26].

There has been significant recent interest in nonradiative,
dipolar energy transfer. This transfer occurs most readily at
Förster resonance, or a near degeneracy between multiatom
Rydberg states. The process is reminiscent of fluorescence
resonance energy transfer, proposed by Förster to explain en-
ergy transport in biological systems [27–29]. State-changing
energy transfer has been studied for several decades near
two-atom Förster resonances, but beyond two-body effects
have been difficult to confirm [30–33]. This work was recently
extended to three- and four-atom Förster resonances [34–39]
and the Borromean nature of one such resonance was demon-
strated [35,36]. Energy exchange near few-body resonances
may shed light on many-body localization [40] and quantum
thermalization [39]. It has also been proposed as an entangling
operator for quantum computation and simulation [36–38].
However, coherent dipole-dipole energy exchange has not
been previously observed at the three-atom level.

In most recent work, the energies of Rydberg states
were manipulated via the dc Stark effect to fulfill a pre-
cise resonance condition. Here, we demonstrate controllable
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three-body energy exchange near a two-body Förster reso-
nance. This process, 2 × nD5/2 → (n − 2)F7/2 + (n + 2)P3/2,
is nearly resonant in rubidium near n = 43. We see strong
evidence of coherent excitation of three-atom entangled states
in zero applied field. The mechanism we study is particularly
robust, since it is insensitive to the precise value of the energy
defect.

We study the process proposed by Pohl and Berman
in Ref. [41]. Consider Rydberg excitation of three atoms
from a ground state, |g〉, to a target state, |d〉, via a res-
onant optical pulse. Near Förster resonance, two-particle
states |dd〉 are coupled to nearby product states, |p f 〉 and
| f p〉, and the energy defect �E = 2 × Ed − (Ep + E f ) ≈ 0.
An optical pulse can drive transitions between the three-
atom ground state |ggg〉 and a triply excited state, |M3〉,
through virtual levels whose populations follow the pulse
envelope. This entangled state has zero energy shift, and has
the form |M3〉 = c1|d p f 〉 + c2|df p〉 + c3|pdf 〉 + c4| f d p〉 +
c5|p f d〉 + c6| f pd〉, where ci are probability amplitudes.
Given appropriate values for the pair-state detuning, pulse
duration, and Rabi frequency, |M3〉 should be excited with
high probability [41].

Previous work has shown that when one excites 85Rb atoms
to nD5/2 Rydberg states (|d〉) near n = 43, a large fraction of
Rydberg atoms are detected in (n + 2)P (|p〉) and (n − 2)F
(| f 〉) states immediately after excitation [42–45]. We recently
developed a method to determine if the energy exchange is
two- or three-body in nature [45]. In the present paper, we use
this technique to establish control of excitation into the triply
excited states, |M3〉, as we vary excitation pulse duration or
Rabi frequency. We employ an optical rotary echo [46–50]
to prove coherence, and we find good agreement between
our data and the model of Ref. [41]. The coherent signal
remains very strong, even when exciting multiple excitation
domains with a spatially inhomogeneous laser, in a disordered
density distribution, and with uncontrolled mj . Therefore, ex-
citation of |M3〉 might be useful as a three-body entangling
operator in situations with less-than ideal control over ex-
perimental parameters. This is promising, because systems
with single-atom control are difficult to achieve. Examples of
technologies requiring three interacting atoms include Toffoli
and Fredkin gates [51,52] or quantum simulations of exotic
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FIG. 1. (a) Schematic of the experiment. Optical pulses are cre-
ated by amplitude modulating radio frequency (rf) signals driving
acousto-optic modulators (AOMs). The phase of the rf signal driving
the lower transition (LT) AOM is constant. At time t ′, the phase of
the rf signal driving the upper transition (UT) AOM is shifted by π .
(b) This flips the phase of the UT optical pulse, and the effective Rabi
frequency switches from � to −�, where � = �L�U /2�. (c) Side
view of the apparatus, illustrating state-selective field ionization.

spin Hamiltonians [53–55]. A Toffoli gate based on nonradia-
tive three-body energy transfer, rather than the usual dipole
blockade, was recently proposed [37].

II. EXPERIMENTAL PROCEDURE

Our setup is described elsewhere [45]. Briefly, we collect
ultracold 85Rb atoms in an optical dipole trap. We control
the ground-state atom density by turning off the dipole trap
beam and allowing the atoms to freely expand before they are
excited to Rydberg states [43]. We use a relatively low density:
ρ ∼ 5 × 1010 cm−3. We apply coincident pulses of duration
τ to drive the 5S1/2 → 6P3/2 → 42D5/2 transitions, with an
intermediate state detuning � = 50 MHz. Since τ � 2 µs,
the atoms are effectively frozen during Rydberg excitation.
The σ+ polarized lower transition beam is derived from a
MOGLabs external cavity diode laser. The π polarized up-
per transition beam is derived from a MOGLabs cateye laser
that is frequency stabilized to a pressure-tunable Fabry Pérot
cavity [56]. The beams are perpendicular to each other and
to the long axis of our dipole trap. Pulses are created by
amplitude modulating the radiofrequency (rf) signal driving
acousto-optic modulators (AOMs) in each beam, as shown in
Fig. 1(a).

We detect atoms using state-selective field ionization
(SSFI) spectroscopy, outlined in Fig. 1(c). A high voltage
ramp is applied to electrodes above and below the atom cloud,
50 ns after each excitation sequence. Atoms with different

FIG. 2. Sorted graphs for excitation to the 42D5/2 state with fixed
� = 1 MHz with (i) τ = 200 ns, (ii) τ = 500 ns, (iii) τ = 2000 ns,
and (iv) τ = 500 ns; phase flip at t ′ = 250 ns (see Fig. 3). These
graphs show the total number of excitations, NT , as a function of
the number in |p〉, NP. The false color indicates how many of each
{NP, NT } were detected. The green line is a fit from which we extract
the slope. Since there is less spread in {NP, NT } in panel (i), all values
have been divided by 2 to match the common false color scale.

binding energies will ionize at different electric fields, and the
liberated electrons are detected by a dual stage microchannel
plate detector. For each of 1001 shots of our experiment, we
use a pulse counter to record the number of excitations in each
of two independent timing gates. The P gate counts atoms in
44P3/2, or |p〉, while the T gate counts all Rydberg atoms.
From this data, we construct a sorted graph, or a 2D histogram
of the total number of excitations as a function of the number
in |p〉. We fit each sorted graph to a linear function. The slope
tells us how many additional Rydberg excitations are created
each time an atom is detected in |p〉. A small value of slope
indicates that the energy exchange is dominated a two-body
process, since one additional Rydberg atom (in | f 〉) is created
for each atom in |p〉. A large value of the slope indicates
the presence of three-atom entangled states of the type |M3〉,
because two additional Rydberg atoms (in |d〉 and | f 〉) are
created for each atom in |p〉 [45].

Example sorted graphs are shown in Fig. 2 for fixed Rabi
frequency � = �L�U /2� = 1 MHz. The green lines are the
least-squares linear fit to the data. In Figs. 2(i) through 2(iii),
the pulse duration, τ , is increased from 200 ns to 500 ns
to 2000 ns. The slope of the sorted graphs clearly increase
and then decrease. This suggests that the mechanism causing
energy exchange near Förster resonance is highly sensitive to
pulse duration.

III. RESULTS AND DISCUSSION

To explore further, we measured the slopes of the sorted
graphs as a function of τ for fixed � and as a function of �

for fixed τ . The results are shown as black diamonds in the
top two panels of Fig. 3. We also plot two other quantities: the
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FIG. 3. Slopes of the sorted graphs, Mandel Q, and mixing frac-
tion for atoms excited to the 42D5/2 state. In (a)–(c) � = 1 MHz,
and τ is varied. In (d)–(f) τ = 400 ns, and � is varied. The black
diamonds are for excitation with no upper transition phase flip. The
purple circles are for excitation with a phase flip at t ′ = τ/2. Error
bars are the one-sigma uncertainty resulting from a least-squares fit
to our raw data.

Mandel Q parameter and the mixing fraction. The Mandel Q
parameter represents the width of the distribution of number
of excitations. It is defined as Q = σ 2/N̄T − 1, where σ 2 is
the dispersion and N̄T is the mean number of total excitations.
The mixing fraction is defined as the fraction of Rydberg
excitations found in |p〉 and | f 〉 [57]. It indicates the fraction
of Rydberg excitation events that result in energy exchange
and increases monotonically with pulse duration and Rabi
frequency. In contrast, the slopes of the sorted graphs and the
Mandel Q parameter go through clear relative maxima.

To test the coherence of the process causing these
maxima, we implemented an optical rotary echo tech-
nique [43,46,47,49]. The sequence, shown schematically in
Figs. 1(a) and 1(b), is similar to rotary spin echo in nuclear
magnetic resonance [46]. At a variable time, t ′, within our
upper transition excitation pulse, we reverse the phase of the rf
signal driving an AOM. This reverses the sign of the excitation
Rabi frequency, �. Independent of the value of �, the system
should undergo reverse evolution and arrive back to its ground
state at a time 2t ′, unless some dephasing has occurred. The
plots of slope, Mandel Q, and mixing fraction using a phase
flip at half the pulse duration (t ′ = τ/2) are shown in Fig. 3 as
purple circles. A sorted graph with phase flip at τ/2 is shown
in Fig. 2(iv). In both Figs. 2 and 3, it is clear that, while the
phase flip does not significantly change the fraction of atoms
excited into product states, it dramatically reverses the evo-

FIG. 4. Slopes of the sorted graphs with no upper transition
phase flip from Fig. 3 (black diamonds) along with the results of a
Monte Carlo model (red triangles). The model accounts for the effect
of atom number fluctuations and nonunity detector efficiency on the
slopes. In (a), � = 1 MHz, and τ is varied and in (b) τ = 400 ns,
and � is varied.

lution into multiparticle states that lead to large slope and Q.
Thus, we conclude that the excitation of these multiply excited
states is coherent over most of the range of x-axis values.

To determine the nature of the multiply excited states,
we compare the measured values of the slopes of the sorted
graphs with the results of a Monte Carlo simulation. We
account for the effects of nonunity detector efficiency and
shot-to-shot fluctuations in excitation number on the slopes.
We assume each excitation event results in either one atom in
|d〉 or three atoms, one each in |p〉, |d〉, and | f 〉. The model
then predicts a value for the slope, given the Q value and
mixing fraction present in the experiment (see Ref. [45] or
the Appendix for details). Figure 4 shows the no-phase flip
data from Figs. 3(a) and 3(d), along with the predictions of
our Monte Carlo model. The peaks in our data are consistent
with the creation of triply excited states. In the case of a phase
flip at τ/2, there is no significant peak in the slope, as seen in
Fig. 3. In this case, triply excited states are not created with
high probability.

To determine if the peaks in Fig. 3 are due to excitation
of |M3〉, we implemented the model described in Ref. [41].
This model describes excitation in a three-atom basis, and
we modified it by adding always resonant hopping couplings
|d〉 ↔ | f 〉 and |d〉 ↔ |p〉. We numerically solved the time-
dependent Schrödinger equation (TDSE) for various coupling
strengths Vi, j (or distances ri, j), where {i, j} ∈ {1, 2, 3}. We
first placed the atoms on an equilateral triangle and calculated
the maximum probability to find the system in a state with one
atom each in |d〉, |p〉, and | f 〉 as τ was varied. The probability
to create triply excited states is a sharply peaked function of
the triangle’s side length, r, with a maximum value at rmax =
3.25 µm and full width at half maximum (FWHM) 1.07 µm
for � = 1 MHz. We then solved the TDSE, averaging over
random atom placements within the experimental distribution
of Rabi frequencies. We placed the atoms inside a shell of
radius rmax and width equal to the FWHM. This is the volume
inside of which the excitation of triply excited states will
be most probable. We recorded the probability to detect one
atom each in |d〉, |p〉, and | f 〉. For � = 1 MHz, there are, on
average, about eight atoms inside of the shell. We accounted
for the fact that there are N = (8

3

)
possible triples which could

be excited within this volume. Since each of these excitation
channels is independent and do not interfere, we multiplied
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FIG. 5. Calculated probability to excite a state with one atom
each in |d〉, |p〉, and | f 〉, using the model in Ref. [41]. The black
solid line is for no phase flip and the purple dashed line is for a phase
flip at t ′ = τ/2. (a) is for � = 1 MHz and (b) is for a pulse duration
of 400 ns.

the triple excitation probability by the appropriate value of N
for each Rabi frequency.

The results of the calculation are shown in Fig. 5. The black
curves are for no Rabi frequency inversion and the purple
dashed curves are for an inversion at t ′ = τ/2. It is notable
that the Rabi oscillation shows only moderate damping, de-
spite the fact that we average over many random placements in
an inhomogeneous intensity distribution. For no rotary echo,
the maximum probability occurs at approximately the same
pulse duration (panel a) as the data in Fig. 3(a), but at a larger
Rabi frequency [Fig. 3(b)] than the data in Fig. 3(d). For Rabi
frequency inversion at t ′ = τ/2, the calculated maxima occur
at even longer times [Fig. 3(a)] and higher Rabi frequencies
[Fig. 3(b)]. In Figs. 3(a) and 3(d), we don’t see strong evi-
dence of these peaks. Any disagreements between theory and
experiment have a common cause. Whenever we drive our
atoms strongly (long pulses or large Rabi frequency), excita-
tion of doubly excited states containing terms like |p f 〉 or | f p〉
dominates over the coherent excitation of |M3〉. We increase
the probability of exciting close pairs into unshifted branches
of the molecular potential curves [44,45,58]. Whenever this
happens, it causes the slope and Mandel Q to decrease.
Nonetheless, the agreement between the data in Fig. 3 and
the shapes of the calculated curves in Fig. 5 indicates that we
are exciting the entangled state |M3〉.

Interestingly, if we repeat the experiments described in
this paper when exciting to 43D5/2 states, we don’t see any
coherent features in our graphs of slope versus pulse duration
or Rabi frequency. Since the magnitude of the Förster defect
is much smaller for n = 43 than for n = 42 (−11 versus
−97 MHz), one would naively expect a higher probability to
excite |M3〉. However, this is not the case. The reason is that,
for n = 43, molecular potential branches cross zero at larger
separations, and with larger overlap with the asymptotic state
[45]. Therefore, atoms are readily excited into two-body states
featuring terms like |p f 〉 or | f p〉. The unfavorable molecular
potential curves dominate the dynamics, no matter our choice
of experimental parameters.

To further demonstrate the coherence of the evolution into
|M3〉, we vary the echo time, t ′, for fixed � = 1 MHz and
τ = 500 ns. Thus, we should excite |M3〉 for a time t ′ and
reverse the evolution for a time τ − t ′. The slopes of the sorted
graphs and the Mandel Q are shown in Fig. 6. The clear
relative minimum gives strong evidence of the reversibility

FIG. 6. Slopes of the sorted graphs (a) and Mandel Q (b) with
fixed � = 1 MHz and τ = 500 ns. The time, t ′, of the upper transi-
tion phase inversion is varied.

of the evolution. Note that in this graph, as in the previous
graphs, the Mandel Q closely follows the behavior of the
slopes of the sorted graphs. Excitation events may always
produce single |d〉 excitations or pairs of atoms in |p〉 and
| f 〉 (due to short-range molecular potential zero crossings).
However, as the probability to excite three-body entangled
states increases, the fluctuations in excitation number also
increase. This broadens the excitation number distributions.

IV. CONCLUSION

We have demonstrated coherent excitation of three-atom
entangled states near Förster resonance. This is the first ob-
servation of coherent dipole-dipole energy exchange beyond
two atoms. Coherence was proven using an optical rotary echo
technique. We used a Monte Carlo method to demonstrate that
coherent features in our data are consistent with the excitation
of triply excited states. Finally, we showed that our data is
well described by the model of Ref. [41]. The demonstrated
coherence of |M3〉 in a bulk gas suggests that this state might
find application in quantum technologies, in situations where
experimental conditions cannot be carefully controlled.
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APPENDIX: DETAILS OF THE MONTE
CARLO SIMULATION

The slopes of the sorted graphs provide information about
the mechanism behind dipole-dipole energy transfer into |p〉
and | f 〉. A lower value of the slope indicates that a two-body
mechanism causes the transfer (one additional Rydberg atom
for each atom in |p〉), while a larger value indicates that a
three-body mechanism is responsible (two additional Rydberg
atoms for each atom in |p〉). However, two factors make it
difficult to directly interpret the slopes: nonunity detector
efficiency and shot-to-shot fluctuations in the number of exci-
tation events. These effects can combine to change the number
of Rydberg excitations detected in the two counting gates for
a given true number of excitations created.

To model the impact of these factors on our slope data,
we use a Monte Carlo simulation. Each run of the program
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draws a random number of excitation events from a Gaussian
distribution, whose width is chosen to reproduce the experi-
mentally measured value of the Mandel Q parameter (or level
of excitation fluctuation). We randomly assign each excitation
event to either a single atom in the (target) |d〉 state or three
atoms, one each in |d〉, |p〉, and | f 〉. The probability to excite
a three-atom state is given by the experimentally measured
mixing fraction. After every excitation event, the program
decides if each Rydberg count is recorded, according to our
microchannel plate’s detector efficiency.

For each Monte Carlo point in Fig. 4, we run the simulation
5 × 107 times, and plot the total number of Rydberg excita-
tions as a function of the number in |p〉. We fit the simulated
sorted graph to a line and extract the slope, just as in the ex-
periment. Therefore, the Monte Carlo model predicts a value
of the slope, given a three-atom model for state mixing and
the experimentally measured mixing fraction and Mandel Q.
As shown in Fig. 4, the coherent features in our experimental
data are consistent with a three-atom model for excitation into
product states.
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