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Cusp-electron production in collisions of open-shell He-like oxygen ions with atomic targets
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We report on double differential cross sections of cusp electrons obtained in MeV /u collisions of open-shell
He-like oxygen ions with helium. We use zero-degree electron spectroscopy and our double measurement tech-
nique, involving O (1s?) ground-state and O%*(1s?, 152s) mixed-state beams, to extract the cusp contribution
from only the excited O%+(1s2s) beam. Theoretical calculations based on the continuum distorted wave eikonal
initial state are in very good agreement with the measurements. The roles of the processes of electron capture
to the continuum, electron loss to the continuum, and electron loss to the continuum with simultaneous target
ionization, which contribute to the cusp peak, are discussed in detail.
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I. INTRODUCTION

Fast ion-atom collisions involving unpaired electrons have
proven to be a powerful tool for studying subtle dynamic
aspects of fundamental processes. Experimental results
from such systems not only submit theoretical collision
approximations and models to stringent tests but also pave
the way to the development of more advanced theories. Thus,
effects originating from the dynamics of spin symmetries,
hidden population mechanisms, electronic correlation [1-3],
and the stopping power in media [4] have been investigated.
Research fields that use atomic collision data, such as
astrophysical and laboratory plasmas [5—8], greatly benefit
from such advancements.

Collisions with pre-excited ions delivered by various types
of accelerators are often used for studies on fundamental
collision processes [9—14]. However, so far the processes of
target electron capture to the continuum (ECC) [15] and its
counterpart, projectile electron loss to the continuum (ELC)
[16], have not been examined in collisions with pre-excited
ions. The dynamics of these processes rely on the two-
center effects of the combined long-range Coulombic fields
of the projectile and the target [17]. Both processes result in
a characteristic cusp-shaped peak in the double differential
cross section (DDCS) electron spectra observed around zero
degrees with respect to the projectile beam, with emission
velocities close to the projectile velocity.
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The cusp-shaped peak has been successfully described by
continuum distorted wave (CDW) and continuum distorted
wave-eikonal initial state (CDW-EIS) theories [18]. During
the past decades, distorted theories have been thoroughly de-
veloped to explain interesting experimental results on cusp
electrons such as the production of cusp-shaped peaks from
neutral projectiles [19,20] and the role of the target subshells
in collisions with multielectronic targets [21,22]. In addition,
distorted wave theories have also been developed for near-
relativistic collisions involving heavy-ion projectiles. Thus,
the dynamics of ELC [23,24], ECC [25], and radiative ECC
[26,27] were detailed for this collision region.

Here, we report on a combined experimental and
theoretical study of cusp electrons produced in 24-MeV
collisions of open-shell O (1s2s) projectiles with He targets.
The experimental cusp DDCS electron spectra were obtained
by applying our double measurement technique, involving
a measurement with a mixed-state O°t(1s2, 1s2s) and a
measurement with a ground state O%* (1s?) beam. Theoretical
cusp DDCS results, obtained within the CDW-EIS framework,
are compared to the measurements, showing an overall good
agreement. Details involving the contributions of the ECC
and ELC processes from the different ion cores are discussed.

II. EXPERIMENT

To expose the most sensitive characteristic of cusp elec-
trons we performed measurements at zero degrees with
respect to the ion beam trajectory, applying the technique of
zero-degree Auger projectile spectroscopy (ZAPS) [28]. The

©2023 American Physical Society
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experiments were conducted at the NCSR “Demokritos” 5.5-
MYV tandem accelerator laboratory, utilizing our ZAPS setup
at the APAPES installation [29]. This setup has been described
in detail elsewhere [30,31] and only a short description of its
operation is given here.

The heart of our ZAPS setup is a hemispherical spec-
trograph, which consists of an electrostatic single-stage
hemispherical deflector analyzer (HDA) equipped with a
four-element injection lens and a two-dimensional position-
sensitive detector (PSD). The projectile beam interacts with
the gas target, formed by a doubly differentially pumped gas
cell. The electrons emitted within a polar angle 6,,x = 0.4°
with respect to the projectile velocity are focused by the
spectrograph entry lens, energetically analyzed by the HDA,
and imaged onto the PSD along the dispersion axis [32]. The
ion beam passes through the spectrograph to be collected
in a Faraday cup for normalization purposes. The setup is
magnetically shielded by using double p-metal shielding.

The measured electron DDCS is determined according to
the following formula [28]:

d’o; Nj
ppCs; = L7 _ . m
dQdE;  NjLyn AQAE; T 7

where N f is the number of electrons detected in channel j, Leg
is the effective length of the target gas cell, N; is the number
of ions collected in the Faraday cup, n is the target gas density,
A is the solid angle determined by the entry aperture of the
lens and the distance of the center of the target gas cell from
it, AE; is the energy step per channel in the spectrum, and
T is the analyzer transmission determined by the three 90%
transmission meshes. The overall efficiency n was obtained
by performing auxiliary in sifu measurements of elastically
scattered (binary encounter) electrons from bare ion beams,
resulting in an overall efficiency of n = (50 £ 5)% [33].

The measurement of the cusp continuum does not ne-
cessitate high resolution in energy measurements. Thus, we
operated the spectrograph in the low-resolution mode. Under
these conditions, an electron spectrum covers an energy range
of about 20% of the tuning energy. To cover the entire cusp
peak, several overlapping energy windows were recorded at
the appropriate tuning energies and then pieced together [22].

Background spectra, corresponding to measurements with-
out target gas, were also recorded and subtracted from the
spectra with the gas target. Then, the resulting spectra were
energy calibrated according to known energy vs channel cal-
ibration formulas, and the DDCSs were obtained according
to Eq. (1). Single-collision conditions were ensured by prop-
erly adjusting the target gas pressure. An overall absolute
uncertainty of about 15% is inherent in all our DDCS mea-
surements.

The dynamics of the cusp-scattered electrons resulting
from open-shell He-like atoms were experimentally investi-
gated by applying our double measurement technique [34]. In
this approach, in a few MeV /u collisions of He-like ions with
He or H, targets, the electron spectrum is measured twice, ex-
ploiting He-like beams with appreciably different (1s2, 152s)
configuration fractional content. He-like ion beams produced
in tandem Van de Graaff accelerators are in general delivered
in a mixture of 1s*> ground and 1s2s configurations [35]. In
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FIG. 1. KLL Auger spectra measured at zero degrees with
respect to the projectile velocity for collisions of 24-MeV
0% (1s2, 152s) with He gas targets. The red solid circles correspond
to a mixed-state beam with a high-value fraction, f,, = (23 & 4)%,

while the black solid squares correspond to a very low-value fraction,
fis2s < 2%, 1.e., to a practically pure ground-state beam.

more detail, the 1s2s configuration is delivered in the 1s2s Ig
and 152539 states. However, we do not examine them sepa-
rately here, since, as we show below, the 1s2s 1§ component
does not survive to the target area due to its small lifetime.
The fractions of the mixture depend on the stripping medium
(thin foil or gas) for up-charging the ion beam, as well as
the stripping energy. As a consequence, the He-like beam
content can be controlled, resulting in a high or low 1s2s
fraction when thin foils or gases are used for the up-charging,
respectively. Moreover, in the case of gases, an almost pure
ground state may be delivered for adequately low stripping
energies [36].

In Fig. 1, we present an example of the double
measurement technique, necessary for the reported cusp
study, where the 1s2s2/ KLL Auger spectra obtained in
collisions of 24-MeV 0% beams with He targets are
measured for two O%* (152, 152s) beams with notably different
(152, 1525) configuration fractional content. For this collision
energy, the 152s2p“P state results from the 1s2s73S state via
single-electron capture, while the 1s2p? 2D state results from
the 1s% IS state via transfer-excitation [37]. Under these con-
ditions, single differential cross sections can be obtained for
all the KLL states produced from He-like mixed-state beams
by applying our double measurement technique [34,37]. In
addition, the value of the fractions of the beam components,
necessary for the current cusp study, are also obtained
as [34,38]

Y,[*P] (L[°D] — Y1 [°D])

LEDIN[P] — ViDLl 1,2, (2

f 11523‘ 3=

where Y; is the normalized yield of the ®S*VL Auger
states, with i = 1 and 2 corresponding to each of the two
measurements having different fractions.

The fraction fiy, necessary for our cusp studies, is ob-
tained from the determination of the fraction f,3g, assuming
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that the 1s2s 'S and 1s2s°3S states are statistically produced
with a ratio of 1/3, and considering their survival percentage
to the experimental area according to their lifetimes. The
lifetimes of 1s2s'S and 1s2s3S states are 4.3 x 107 and
9.6 x 107 s, respectively [35]. By taking into account that
the velocity of the 24-MeV O+ beam is 1.7 x 107 m/s, and
the distance between the production area at the accelerator
tank and the target area is 26.4 m, we conclude that the initial
population of the 15253 state remains unaffected. However,
for the 1525 'S state, its initial population is reduced by about
a factor of 10, corresponding to the 1/30 of the population of
the 152s3S state, and thus can be safely neglected. Therefore,
for these experimental conditions, we may obtain the fj;
fraction from Eq. (2), since fiss = fiss3s. In this way, for the
spectra shown in Fig. 1, the high and low fj, fractions were
obtained as fis = (23 £4)% and fi, < 2%, respectively.
The latter is well within the experimental uncertainty, and thus
we may well consider this case as a pure ground-state beam.

III. THEORY

The experimental DDCSs are accompanied by corre-
sponding theoretical calculations based on the CDW-EIS
framework. CDW theories have been recently reviewed in
Ref. [39]. Briefly, CDW theories are perturbative approaches
where a target bound-electron wave function is distorted by
a projectile continuum factor, and then, in the case of ion-
ization, the ejected electron is described in the continuum
of both target and projectile. For this reason, they are also
referred to as two-center theories. In addition, we note that
an independent-electron approach was considered.

The extension of these CDW theories for electron emission
in collision systems involving dressed projectiles has been
addressed in Ref. [40]. In this case, the projectile potential
is considered as the sum of a long-range Coulombic potential
and a screened short-range potential. The screening function
that determines the short-range interaction depends on pa-
rameters already tabulated for a wide variety of ground-state
ions [41]. However, for the O (1s2s) excited state examined
here, there are no parameters tabulated elsewhere, so we have
calculated the corresponding potential. The projectile poten-
tial is then determined by the interaction of the target active
electron with the projectile nucleus and also its interaction
with the projectile electrons averaged over their electronic
distribution. As a final step, the total potential, resulting from
the sum of the above electronic repulsion and the nuclear
attraction, is rewritten in the form of a long-range term,
with an asymptotic net charge, and a short-range screened
potential.

The excited state 1s2s projectile orbitals were obtained
through Hartree-Fock wave functions proposed in Ref. [42].
This method can go beyond the determination of ground states
reported in Ref. [43] and allows for representing the lower
excited states of atoms and ions, having up to 18 electrons,
in an analytical form with an error close to the numerical
solution [42]. Then, each shell is described in terms of Slater
orbitals.

In addition, for dressed projectiles within the CDW-EIS
framework, a dynamic effective charge that was recently pro-
posed in Ref. [20] for the final-channel projectile continuum
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FIG. 2. Zero-degree DDCS of cusp electrons measured in col-
lisions of 24-MeV O°" with He gas targets. Red solid circles:
Mixed-state O (1s2, 152s) beam with fi,, = 23%. Black solid
squares: Ground-state O%* (1s%) beam.

factor is also considered here. By its use we may account
for collision dynamics where the projectile nuclear charge is
not fully screened by its bounded electrons [20,33], as is the
present case. The dynamic effective charge is defined using
the projectile form factor, and thus, since it depends on its
electronic configuration, it differs for the ground and excited
states. Thus, the excited projectiles are less screened or, in
other words, their potential is spatially more spread out.

According to the above considerations we have calcu-
lated the target ionization by ground-state or excited-state
projectile impact, particularly, the ECC process. Then, for
the ELC process, we reverse the collision system and then
transform the DDCS from the projectile reference frame to
the laboratory one [18]. Finally, the simultaneous ionization
of both collision partners is estimated by means of their
single-ionization DDCSs and total cross sections, as done in
Ref. [44].

IV. RESULTS AND DISCUSSION

In Fig. 2 we present the DDCS cusp measurements ob-
tained for collisions of He-like O®" beams with He targets,
which correspond to those performed for the KLL Auger
spectra shown in Fig. 1. We obtained the cusp peak for
the O%F(1s%, 1s2s) mixed-state beam with a fraction of
fis2s = (23 £ 4)% and for the almost pure ground-state beam
0%*(1s?). The maximum of the cusp peak corresponds to
the reduced projectile energy t, determined as 7, = MﬂpE,,
[28], where E, and M, are the Kkinetic energy and the
mass of the projectile, respectively, while m is the elec-
tron mass. The difference in the magnitude as well as the
shape of the two corresponding cusp peaks is evident and
is discussed below along with the corresponding theoretical
results.

The contributions of the ECC and ELC processes to the
DDCS cusp peak, obtained from CDW-EIS calculations for
collisions of 24-MeV 0°t(1s?) and 24-MeV O°*(1s2s) with
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FIG. 3. CDW-EIS calculations for zero-degree DDCS of cusp
electrons for collisions of (a) 24-MeV 0% (1s?) and (b) 24-MeV
0% (1s2s) with He gas targets. Black solid lines: ECC contribution.
Red short dashed line: ELC from the 1s electron. Blue dash-dotted
line: ELC from the 2s electron. Green short-dotted line: Total ELC
with simultaneous He target single ionization.

He targets, are shown in Fig. 3. There, it is clearly seen that
the ELC cross section from the 2s electron [ELC(2s)] is larger
by almost an order of magnitude compared to the ELC cross
section for the s electron [ELC(1s)] or the ECC cross sec-
tion for both configurations. In addition, the ELC from both
Is and 2s electrons with the simultaneous single ionization
of the He target (ELC-I) is also included in the CDW-EIS
calculations, showing a contribution almost equal to that of
the ELC(1s) and ELC(2s) cross sections for the ground and
excited projectile cases, respectively.

It is interesting to note that the ELC(1s) cross section for
the O%*(1s2s) configuration is smaller compared to that
of the O%*(1s?) configuration, even though the latter ac-
counts for two electrons and thus has to be divided by
2 for a fair comparison. This is attributed to the smaller
screening for the ls electron of the O (1s2s) configura-
tion, which leads to a different binding energy, as detailed
above. Moreover, the ECC process depends, although in
this case not strongly, on the projectile electronic configu-
ration through the projectile potential. However, it is worth
mentioning that the ECC cross section for the O°(1s2s)
configuration appears to be larger than that of the O (1s?)
one and more asymmetric. This might be related to the
larger volume covered by the electrons of the O (1s2s)
configuration that favors capture. A similar cusp enhance-
ment due to metastable projectiles has been reported in
Ref. [45]. Thus, the measured higher DDCS magnitude for
the mixed-state beam is primarily due to the contribution
of the larger ELC(2s) cross section. The enhanced con-
tribution of the ELC process is also qualitatively evident
from the shape of the low-energy cusp wing. The ECC
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FIG. 4. Zero-degree DDCS of cusp electrons for collisions of
24-MeV 0%t (1s2s) with He gas targets. Blue solid circles: Experi-
mental data obtained from the double measurement cusp data shown
in Fig. 2. Red line: Calculations based on the CDW-EIS theory.

process has a much more asymmetric distribution than the
ELC process [18]. Thus, for the case of the ground state,
where the ECC process is pronounced, the asymmetry of
the cusp peak is larger compared to the asymmetry of
the mixed-state beam, where the ELC(2s) cross section is
predominant.

In the double measurement technique and in the case
where one of the measurements corresponds to a pure 1s?
ground-state beam, then the electron DDCS spectra, corre-
sponding only to the open-shell 1s2s configuration, can be
straightforwardly obtained according to the following
formula:

d*o[1s2s] —"2“},3};‘“ — (1= f 1.@;)61}2[‘}22]
dQdE fisas '

In this study, special care was taken in order to satisfy these
conditions as evident from the DDCS cusp spectra presented
in Fig. 2. Thus, by applying Eq. (3) to the data of Fig. 2,
we obtained the DDCS cusp spectra corresponding only
to the open-shell O%*(1s2s) configuration. In Fig. 4 we
present the experimental result along with the calculations
of the CDW-EIS theory, already presented in Fig. 3(b) for
each process contribution separately. Although the cusp
calculations were averaged over the experimental polar angle
0, energy convolution with the experimental resolution was
not considered, since the latter is of the order of the energy
step of the calculations, i.e., AE/E >~ 1%. The experimental
uncertainties are primarily due to the uncertainty of the
determination of the fi,,, fraction.

It is evident that CDW-EIS calculations reproduce ade-
quately the wings of the cusp peak. The energy position of
the peak is given by a mathematical pole and, therefore, its
height is subjected to variations depending on the integration
process. The very nice agreement at the wings of the cusp peak
strongly indicates that well-established and sophisticated col-
lision theories such as CDW-EIS are further advanced when
tested against nontrivial collision systems. Thus, in our case,
the introduction of appropriate projectile screened potentials,

3)
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as well as the high-quality projectile wave functions for the
1s2s excited state, resulted in a very good agreement with
the cusp data, thus justifying these advancements. In addition,
these improvements in the CDW-EIS framework of collisions
with dressed projectiles exposed some interesting features
about the role of the ECC and ELC processes in the production
of cusp electrons, as detailed above.

V. CONCLUSIONS

In conclusion, we studied both experimentally and
theoretically the formation of cusp electron peaks resulting
from MeV/u collisions of open-shell He-like oxygen ions
0% (1s52s) with helium. The experimental data were obtained
after applying our double measurement technique, involving
0% (15?) ground-state and O%* (152, 152s) mixed-state beams.
CDW-EIS theoretical calculations for dressed ions, modified

to include appropriate potential screening and excited wave
functions, show a very good agreement with the DDCS
measurements. Moreover, CDW-EIS calculations expose the
roles of the ECC and ELC processes and their contributions
to the cusp peak.
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