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Emission spectra of fullerenes: Computational evidence for blackbody-like
radiation due to structural diversity and electronic similarity
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The spectral emission of hot C60 has been experimentally shown to be broad and continuous, in apparent
contradiction with the discrete and narrow absorption spectrum associated with the high symmetry of buck-
minsterfullerene. In the present work we computationally model the emission spectrum of isolated carbon
clusters, assuming a broad distribution of isomers that are likely populated under the experimental conditions.
The contributions of individual structures to the global spectrum correspond to the relaxation via recurrent
fluorescence and vibrational emission, electronic and vibrational structures being described by a simple but
efficient density-functional-based tight-binding scheme. The model predicts a blackbody-like emission spectrum
that is naturally broad and correctly accounts for the experimental measurements, except for a maximum that
is quantitatively shifted with respect to Wien’s displacement law. To quantify such differences, we introduce
an emissivity parameter ε as the ratio between the spectral emittance and the corresponding exact blackbody
spectrum; ε is numerically found to scale as (λT )−2 at leading order with increasing temperature T and for
wavelengths λ > 350 nm, and we provide a theoretical justification for this behavior. Our results are discussed
in the light of the astrophysical detection of interstellar fullerenes, as well as in combustion environments where
carbon clusters are relevant in the context of nascent soot particle formation.
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I. INTRODUCTION

The transition between bulklike continuous spectra and
discrete molecularlike spectra in finite atomic systems has
been a central issue in nanoscience for decades [1–3]. Ther-
mal emission, which falls into this class, is well described in
bulk materials based on quantum mechanical and statistical
arguments, which notably lead to the Planck and Stefan-
Boltzmann expressions for the blackbody spectrum and its
integrated power, respectively.

The emission spectra of carbon clusters and fullerenes
have received particular attention from various experimen-
tal groups, who reported blackbody-like emission spectra in
the visible wavelength range for C60 [4,5] and smaller car-
bon clusters [6,7], arising from different heating processes
that include laser desorption and laser-induced optical emis-
sion. More generally, the relaxation mechanisms of excited
carbon clusters in the gas phase have been investigated in
the past, with particular attention paid to thermionic emis-
sion in C60 [8–13], which was notably shown to also arise
upon single-photon absorption [14]. Recently, radiative cool-
ing was shown to be competitive with electron emission and
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fragmentation [15]. Models for radiative cooling based on the
Stefan-Boltzmann equation have been developed to account
for the observed dissociation behavior [16–18].

From these earlier efforts, it was clearly shown that radia-
tive emission in carbon clusters in the gas phase mainly stems
from electronic deexcitations rather than from the vibrational
modes [16,19], with some notable exceptions such as the C−

5
[20] and C−

7 [21] anionic clusters. The featureless thermal
emission spectra observed in hot fullerenes also contrast with
the much better resolved electronic absorption spectrum mea-
sured for C60 at around 1000 K by Kataura et al. [22].

Several models were designed to explain the radiative
cooling mechanisms in C60, taking into account both the time-
dependent relaxation processes and the spectral aspects of
emitted photons [23–25], the optical response of buckminster-
fullerene being typically treated based on a classical dielectric
framework. While the timescales for radiative cooling in-
ferred from these models generally agree with experimental
measurements, the predicted emission spectra remain well
resolved and differ sensitively from the broad blackbody-like
profile, as a result of the discrete nature of the absorption cross
section inherent to the dielectric model at low energies.

Two possible arguments were invoked to explain the con-
tinuous emission spectrum of buckminsterfullerene despite
having highly discrete absorption bands, both involving the
vibrational degrees of freedom either through the increasing
interactions between electronic and vibrational excitations
that enable forbidden transitions or through vibrational hot
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bands that cause line broadening [23,25,26]. Hansen et al. [27]
used tight-binding linear-response theory to estimate the cou-
pling between plasmons and normal vibrational modes in C60

buckminsterfullerene and found some slight smoothing in the
absorption spectrum with increasing temperature. However,
this work focused on rather high energies (5–30 eV) compared
to the range relevant for thermal emission (less than 5 eV).

Earlier attempts at explaining the emission spectrum of
C60 have assumed that the system resides solely in its most
stable geometry as buckminsterfullerene. However, as is of-
ten the case in finite systems, C60 can isomerize and melt
at sufficiently high temperature. Simulations by Kim and
Tománek [28] notably showed that C60 becomes floppy above
about 2000 K and isomerizes into branched carbon chains
through a so-called pretzel phase near 4000 K. Nonfullerene
60-atom carbon clusters have also been reported in ion mobil-
ity experiments for cationic [29,30] and anionic [31] species
produced by laser vaporization. Indirect evidence for non-
fullerene carbon clusters is also found in combustion science,
where the nature of nascent species bridging molecular com-
pounds and soot particles in flames has remained elusive
[32] and for which the accepted mechanisms [33–35] involve
graphenelike carbon clusters also known as flakes. In astro-
chemistry, the conclusive detection of C60, C60

+, and C70

fullerenes in several interstellar environments [36–39] also
suggests the presence of graphene flakes as intermediates
along the fullerene road [40–42]. However, in contrast with
ideal fullerenes, defective or even disordered carbon nanos-
tructures have seldom been investigated [43].

In the present work we argue that structural diversity, as the
result of the high temperatures reached under the experimental
conditions of thermal emission, can explain the experimen-
tally observed blackbody-like radiation from hot C60 through
the collective emission of a broad sample of isomers. This
idea has been explored in our previous works [26,44] and
independently by other authors [45]. The collective emission
stems from recurrent fluorescence (RF) taking place in indi-
vidual carbon clusters. Recurrent fluorescence, also known
as Poincaré fluorescence [46], has been identified in small
polycyclic aromatic hydrocarbons [47,48] as well as metallic
[49] and carbon [50,51] clusters. Our computational analysis
relies on a database of structures collected using appropriate
sampling methods [52] and for which the vibrational [53]
and electronic [54] excited states are also available. Besides
the broad spectral features, our model also reveals that the
maximum in the emission spectrum occurs at a frequency that
deviates from Wien’s displacement law. As an extension of
the bulk concept of emissivity, we quantify such deviations
by evaluating a temperature- and frequency-dependent ratio
ε between the calculated emission spectrum relative to the
Planck blackbody spectrum. Our model indicates that this
emissivity ε scales with wavelength λ and temperature T as
(λT )−2 for λ > 350 nm, at leading order in 1/λT , a result
recovered using simple theoretical arguments.

The article is organized as follows. In Sec. II we de-
scribe the computational approach used to determine the
emission spectra of carbon clusters from the knowledge of
their geometric and electronic features and establish the vari-
ous approximations underlying the calculations. The resulting
emission spectra at finite temperature are then presented in

Sec. III and rationalized using a simple analytical model. In
Sec. IV we introduce the emissivity and discuss its value and
dependence on both wavelength and temperature. Section V
provides some possible connections between the present work
and its implications in the fields of combustion science and
astrochemistry. Section VI summarizes the article.

II. METHOD

We consider the emission spectrum of a statistical sam-
ple of carbon cluster isomers, individually but independently
excited at a fixed internal energy corresponding to typical
temperatures in the range of 1500–3500 K, or a few tens of
eV for the present systems. The main emission process is
electronic radiative deexcitation because at internal energies
considered in this work, vibrational emission is negligible
compared to recurrent fluorescence [26].

To compute the recurrent fluorescence rate constants from
all electronic excited states of each conformer, we use the
optical spectra determined in our previous work [54] and
obtained using the self-consistent charge density-functional-
based tight-binding model [55] in its time-dependent version
[56]. The model used to calculate vibrational emission and
recurrent fluorescence rate constants, referred to as the
time-dependent density-functional-based tight–binding (TD-
DFTB) model in the present article, has been explained
in detail in our previous work [26]. Briefly, radiationless
transitions such as internal conversion, inverse internal con-
version, and intramolecular vibrational redistribution are so
fast compared to radiative transitions that the internal energy
is assumed to be statistically redistributed among all acces-
sible vibronic states between two such successive emission
transitions. This allows occupation probabilities of vibronic
states to be calculated in a microcanonical framework.

For any specific isomer, the recurrent fluorescence rate
constants Arec(νn, E ) associated with the transition n → 0
from electronic excited state n with energy hνn down to the
electronic ground state when the molecule has an internal en-
ergy E can be estimated from the microcanonical probability
p(hνn, E ) to occupy the nth electronic state as

Arec(νn, E ) = An p(hνn, E ), (1)

where An is the electronic fluorescence rate constant of the
n → 0 transition. Here stimulated emission is neglected be-
cause under the very low photon density relevant to the present
work, carbon clusters can be considered as isolated. The mi-
crocanonical probability can be expressed from the vibrational
density of states (VDOS) ρ

(n)
vib (E ) on the nth electronic state,

taking into account the different ways of distributing the ex-
cess energy into available electronic states:

Arec(νn, E ) = An
ρ

(n)
vib (E − hνn)∑

k ρ
(k)
vib (E − hνk )

. (2)

In the following, we approximate that, due to the large
size of the clusters, the vibrational densities of states are very
similar among electronic states in such a way that ρ

(n)
vib (E ) �

ρ
(0)
vib (E ) = ρvib(E ). The denominator of Eq. (2) is next
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rewritten by summing over available electronic states as

∑
k

ρvib(E − hνk ) �
∫ E/h

0
ρelec(hν)ρvib(E − hν)hdν, (3)

where we have denoted by ρelec the density of electronic
states, with ρelec(hν)dhν the number of electronic states lying
between hν and hν + hdν. The electronic fluorescence rate
constants An are obtained from the relation [57]

An = 2πe2ν3
n

meε0c3

fn

νn
, (4)

with e the elementary charge, me the electron mass, ε0 the
vacuum permittivity, c the velocity of light in vacuum, and
fn the electronic oscillator strength corresponding to n → 0
electronic transitions. In practice, to evaluate Eq. (2), we com-
pute the VDOS from the harmonic frequencies of each isomer
in the electronic ground state using the Beyer-Swinehart
counting algorithm [58].

The upper limit in the integral above is the internal en-
ergy E deposited in the isomer. Reasonable estimates for
this quantity can be inferred from the earlier work by Kim
and Tománek [28], who found that fullerenes remain sta-
ble (undissociated) up to temperatures in excess of 3400 K.
Temperatures and internal energies can be connected to one
another by considering the definition valid for microcanonical
systems

1

kBT
= 1

ρvib

∂ρvib

∂E
, (5)

which for the present 60-atom system yields E = 42 eV at
3400 K. At the lower temperatures of 1350 and 2400 K, the
corresponding maximum energies for C60 isomers are found
to be 12.5 and 27.5 eV, respectively. For C42 clusters, which
are expected to be not as stable as C60, only temperatures of
1350 and 2400 K will be considered, which correspond to
upper internal energies of 9 and 19 eV, respectively.

To account for a population of isomers relevant at such
high internal energies, we combine the emission spectra ob-
tained from individual isomers into a collective spectrum by
simple unweighted summation. The isomers themselves are
selected from databases collected in our earlier work [52],
using atomistic simulations and systematic sampling of the
potential energy surfaces for both C60 and C42, based on the
second generation reactive bond-order potential [59]. In this
work, it was also shown consistently with the results of Kim
and Tománek [28] that the structures of carbon clusters can
be classified into four main families essentially depending on
their aromatic content and overall shape: cages, which include
fullerenes; flakes, which can be defined as mostly planar
polycyclic aromatic compounds; pretzel-like structures, with
a more open character and long carbon chains; and branched
structures with terminating sp carbons (see Fig. 1).

Summing the individual spectra into an effective, collec-
tive emission spectrum amounts to neglecting the populations
expected at thermal equilibrium. However, the processes we
are modeling here are strongly out of equilibrium and, per-
haps more importantly, the electronic properties of the various
isomers are found to be rather uncorrelated to their bind-
ing energy (this feature can be indirectly seen in Fig. 7 in

FIG. 1. Typical C60 structures from the four carbon cluster fami-
lies considered in this work.

Appendix A). This weak dependence on the specific isomer
further allows us to ignore the contribution of isomerization
processes in kinetic competition with photon emission itself.
In addition to isomerization, we neglect in our modeling other
decay mechanisms such as thermionic emission as well as
atomic and molecular dissociation, for which the rate con-
stants are expected to be much lower than those involving
electronic transitions [60].

III. EMISSION SPECTRA: RESULTS FOR C60 AND C42

Four emission spectra were determined from the different
samples of isomers available for both C60 and C42 clusters,
corresponding to the four families of cages, flakes, pretzels,
and branched structures. Each sample contains 1000 struc-
tures and the raw spectra obtained from the numerical model
were further convoluted with a Gaussian broadening function
of 12.5 meV full width at half maximum. The combined ef-
fects of this parameter and the size of the sample are discussed
in Appendix B.

The spectra were determined at different internal energies,
corresponding for the various systems to different tempera-
tures through Eq. (5). The effects of temperature, size, and
structural family on the emission spectra are illustrated in
Figs. 2–4, respectively. The results obtained in Fig. 2 for the
cages sample of C60 at the temperatures of 1350, 2400, and
3400 K clearly illustrate the effects of structural diversity on
the emission spectrum. These spectra exhibit a blackbody-like
shape, which broadens and shifts to the blue as tempera-
ture increases. The specific contribution of vibrational bands
(highlighted by vertical arrows in Fig. 2) is only seen at low
energies compatible with the excitation of vibrational modes
and tends to decrease relative to the contribution of electronic
degrees of freedom at higher temperatures.

The spectra obtained at 1350 and 2400 K for C60 cages
are shown again in Fig. 3, now in comparison to the spectra
predicted for C42 cages. At the present numerical resolu-
tion and at fixed temperature, the normalized spectra are
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FIG. 2. Emission spectra obtained for C60 cage samples at three
temperatures. The spectra have been convoluted by a Gaussian
broadening function with a full width at half maximum of 12.5 meV
and normalized at their respective maxima. The vertical arrows high-
light the positions of the vibrational bands. The curves are the best
fits using a modified Planck function Aν5/(eβhν − 1) in which the
corresponding temperature is indicated. The inset shows the position
of the maximum in the spectrum as a function of temperature (red
squares). The black solid line is the corresponding linear fit, while the
green dashed line shows the predictions from Wien’s displacement
law model.

essentially similar between the two samples, with common
widths and positions of the maximum, the vibrational features
at low energies also being common to the two samples. More-
over, as shown in Fig. 4 for the case of C60, both the width and

FIG. 3. Emission spectra obtained for C60 and C42 cage samples,
at 1350 and 2400 K. The spectra have been convoluted by a Gaussian
broadening function with a full width at half maximum of 12.5 meV
and they are normalized by their respective integrals. The vertical
arrows highlight the positions of vibrational bands.

FIG. 4. Emission spectra obtained for C60 carbon clusters at
2400 K in their different structural families.

the maximum position display very minor dependences on the
structural type. Our model thus shows that statistical consid-
erations of the underlying structures that are responsible for
the emitted radiation suffice to produce a broad continuous
emission spectrum that depends on size and structural details
only marginally, though more sensitively on temperature.

Wien’s displacement law predicts that for a true blackbody
spectrum the maximum position νmax scales with (canonical)
temperature T such that νmax/T = 58.8 GHz K−1. From our
numerical simulations, we find indeed that νmax scales lin-
early with T but with a different slope equal to νmax/T �
101 GHz K−1, as shown in the inset of Fig. 2. Such a deviation
from Wien’s displacement law in our numerical results sug-
gests that the original Planck function for blackbody radiation,
from which the displacement law derives, cannot correctly
account for the presently obtained emission spectra. We have
attempted to adjust the numerical spectra using a generalized
Planck function

Bp(ν, T ) ∝ ν p

exp(hν/kBT ) − 1
, (6)

with p a parameter normally equal to 3 in the original Planck
model. The best fit to the calculated spectra is obtained for
p ≈ 5, the resulting functions being superimposed on the data
in Fig. 2. In the following section we attempt to rationalize
this behavior using simple theoretical arguments.

IV. A SIMPLE MODEL FOR THE SPECTRAL EMITTANCE

The spectral emittance of carbon clusters can be estimated
using reasonable approximations regarding the vibrational
and electronic densities of states. We assume that the emitted
photons mainly originate from recurrent fluorescence and pro-
ceed to evaluate the emittance Melec expressed as the product
between the RF rate constant Arec and the density of electronic
states over the sample ρelec as

Melec(ν, E ) = hν

S
Arec(ν, E )ρelec(ν), (7)
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(a) (b)

FIG. 5. Electronic densities of states obtained from TD-DFTB data for the four structural families of (a) C42 and (b) C60 cluster samples,
accumulated over 1000 isomers in each sample and using a bin size of 0.1 eV.

with S = 4π〈Rg〉2 the mean exposed area and 〈Rg〉 the mean
gyration radius.

To evaluate the RF rate constant, an explicit form is needed
for the vibrational density of states and a natural choice is
provided by performing a semiclassical approximation as [61]

ρvib(E ) ≈ a(E + Ez)s−1, (8)

with E the vibrational energy, Ez the zero-point energy,
s = 3N − 6 the number of vibrational degrees of freedom
of the N-atom system, and a a positive constant. In the fol-
lowing, we further exploit that s � 1 for both C42 (s = 120)
and C60 (s = 174), allowing us to assimilate s − 1 as s for
simplifying purposes. For the present harmonic systems, the
semiclassical approximation above is expected to be exact in
the limit of high internal energies. It predicts a linear relation
between internal energy and temperature as E + Ez � skBT .
Figure 9 in Appendix C compares this linear relation with
Eq. (5) and shows that it is accurate for internal energies above
approximately 20 eV for C60 and above approximately 15 eV
for C42.

The electronic contribution appearing in Eq. (3) can also
be approximated with simple functions, here using a linear
relation

ρelec(ν) ≈ Khν, (9)

with K a positive factor. Such a linear correspondence is
numerically justified by considering the actual densities of
electronic states obtained from the TD-DFTB data accumu-
lated over the samples for both C42 and C60, which are
represented in Fig. 5. As shown in this figure, in the relevant
range below 4 eV, the variations of ρelec with increasing en-
ergy show a weak dependence on the structural family and are
always approximately linear. The numerical values of K found
for the various samples of C42 and C60 are given in Table I.
They fall in the range of 25–80 eV−2 and increase with the
degree of disorder (the sp/sp2 fraction) in the cluster.

Using Eqs. (8) and (9), the RF rate constant of Eq. (2) can
be expressed as

Arec(ν, E ) = A(ν)

K

(
1 − hν

E+Ez

)s

∫ E
0 hν

(
1 − hν

E+Ez

)s
d (hν)

, (10)

with A(ν) the electronic fluorescence rate constant from the
electronic state with energy hν. The next step is to evaluate
the integral in the denominator. In this purpose we account for
that photon energies are much lower than the internal energy
and we perform a Taylor expansion in hν/(E + Ez ), leading
to (

1 − hν

E + Ez

)s

� exp

[
− shν

E + Ez
+ 1

2s

(
shν

E + Ez

)2
]
.

(11)

TABLE I. Linear rate of variation K of the electronic density of
states, and average quantities U = 〈 f (ν )/ν〉 and 〈Rg〉 over carbon
cluster samples for the four families of C42 and C60. Also included
are the values obtained from Eqs. (16) and (25) for the prefactor C(s)
and the total emissivity εtot associated with each sample.

Parameter Cages Flakes Pretzels Branched

C60

K (eV−2) 40 60 71 81
U (103 eV−1) 1.5 4.7 2.4 10.1
〈Rg〉 (Å) 3.60 5.16 4.21 6.39
C(s) (1050 eV3 s3/Å2) 4.9 7.4 5.7 10.4
εtot × 104 1.8 2.8 2.1 3.9

C42

K (eV−2) 25 42 40 39
U (103 eV−1) 1.8 3.9 2.4 9.0
〈Rg〉 (Å) 3.04 4.28 3.63 5.29
C(s) (1050 eV3 s3/Å2) 8.2 9.0 7.6 13.5
εtot × 104 3.1 3.4 2.9 5.1
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The integral in the denominator of Eq. (10) can thus be rewrit-
ten as∫ E

0
hν

(
1 − hν

E + Ez

)s

d (hν)

=
(

E + Ez

s

)2 ∫ sE/(E+Ez )

0
xe−xe−(1/2s)x2

dx. (12)

For the present systems, the upper integration limit sE/(E +
Ez ) exceeds 100 for all temperatures and sizes, providing as
our next approximation∫ sE/(E+Ez )

0
xe−xe−(1/2s)x2

dx �
∫ ∞

0
xe−xdx = 1 (13)

and leading to a RF rate constant given by

Arec(ν, E ) = A(ν)

K

(
s

E + Ez

)2(
1 − hν

E + Ez

)s

. (14)

The RF rate constant A(ν) also depends on the electronic
excited states involved through at least the prefactor An of
Eq. (4). It notably contains the ratio fn/νn for transitions
n → 0, whose numerical examination reveals that this quan-
tity does not depend strongly on either n or the specific isomer
considered (see Fig. 7 in Appendix A). We thus assume a
constant value for U = 〈 f (ν)/ν〉, which we take as the av-
erage over the 300 lowest excited states from the sample.

From Eqs. (4), (9), and (14), and invoking the linear re-
lation between internal energy and temperature arising from
the semiclassical approximation for ρvib(E ), the spectral emit-
tance then reads

Melec(ν, E ) = C
ν5

(kBT )2

(
1 − hν

E + Ez

)s

. (15)

The prefactor C depends on the details of the sample con-
sidered through the factor U and the mean gyration radius
〈Rg〉 as

C(s) = e2h3

2meε0c3

U

〈Rg〉2
(16)

and thus depends on the size s mainly through the radius of
gyration 〈Rg〉 and, more implicitly, on some structural details
of the sample. The values of these quantities obtained for the
various samples are given in Table I.

From Eq. (11), the emittance can be finally rewritten as

Melec(ν, E ) = Cβ2ν5 exp

(
−βhν + 1

2s
(βhν)2

)
, (17)

in which the ν5 behavior is recovered and β = 1/kBT . This
ν5 dependence of the emittance is understood as follows: (i)
A linear contribution comes from the spectral density of elec-
tronic states over the sample of isomers (Fig. 5); (ii) another
linear contribution comes from the energy hν of emitted pho-
tons (this contribution is also involved in the Planck function);
and (iii) a cubic dependence stemming from spontaneous
emission that itself decomposes into two contributions, one
linear dependence from the electric dipole transition moment
and a quadratic dependence from the spectral density of elec-
tromagnetic modes (also involved in the Planck function).

Another difference between the results presently obtained
for finite system samples and the blackbody emittance is sug-
gested by Eq. (17), which scales as 1/T 2 at low frequencies
hν 
 kBT . This behavior contrasts with the Rayleigh-Jeans
law in which the emittance scales linearly with temperature
and can be traced back to Eq. (3) expressing the sharing be-
tween electronic and vibrational energies in isolated systems.
Due to this contribution, low-lying electronic states become
depopulated in favor of higher states as temperature increases,
a depopulation effect that does not occur for photon modes,
which explains why the maximum in blackbody emission
spectra increases with temperature.

In the light of this simple model, the similarity between the
emission spectra obtained at the same temperature in Figs. 3
and 4 is explained by a combination of factors, namely, (i)
the overall behavior of the density of electronic states as a
function of energy is the same for all C60 and C42 families
(see Fig. 5); (ii) the electronic states are mainly populated
according to the internal energy of the isomers; and (iii) the
electronic dipole transition moments are essentially uncorre-
lated to the electronic states of their family (see Fig. 7 in
Appendix A). Thus, the influence of geometrical structure
of the various families resides in the vibrational contribution
of the emission spectra, which lies below 0.5 eV, and in the
gyration radius 〈Rg〉, albeit to a much lesser extent.

The difference between the thermal emission of carbon
clusters obtained in the present computational model and the
predictions from the standard Planck model for blackbody
radiation can be quantified by introducing a dimensionless
emissivity ratio ε defined for any canonical temperature
as [62]

ε(ν, T ) = Melec(ν, T )

M◦(ν, T )
, (18)

with Melec the spectral emittance resulting from the sample
of carbon clusters and expressed in Eq. (17). Here M◦ is the
blackbody spectral emittance expressed by the well-known
Planck function as

M◦(ν, T ) = 2πhν3

c2

1

exp
(

hν
kBT

) − 1
. (19)

Invoking the Planck model to describe the results obtained
here for systems under isolated conditions requires using the
proper thermodynamical definition of temperature, which is
provided by Eq. (5) or, in our semiclassical approximation, by
the simple linear relation E + Ez = skBT . The microcanon-
ical and canonical relations between energy and temperature
are known to agree well with one another except in the vicinity
of phase transitions [63].

A total emissivity ratio εtot that only depends on temper-
ature can likewise be defined by summing the corresponding
emissivities on frequency as

εtot =
∫ ∞

0 Melec(ν, T )dν∫ ∞
0 M◦(ν, T )dν

. (20)

The denominator is given by the Stefan-Boltzmann law and
reads ∫ ∞

0
M◦

elec(ν, T )dν = σT 4, (21)
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with σ = 2π5k4
B/15h3c2 the Stefan-Boltzmann constant.

In our model for finite systems, a temperature-dependent
emissivity parameter ε(ν, T ) can likewise be defined, using
Eq. (17) for the numerator, keeping the Planck function of
Eq. (19) as the denominator and using again the semiclassical
relation E + Ez = skBT to connect energies and temperatures
to each other. It can be straightforwardly shown that ε(ν, T )
depends on temperature and frequency only through the prod-
uct x = βhν:

ε(ν, T ) = C(s)c2

2πh

β2ν5

ν3

exp[−βhν − (βhν)2/2s]

exp(βhν) − 1

≈ γ (s)x2 exp(−x2/2s). (22)

Here we have further approximated the denominator in
the Planck function as exp(βhν), valid at leading order in
exp(−βhν), and we introduced a constant factor γ that only
depends on the sample and on size s through the quantity
C(s). This factor can be expressed as a simple function of εtot,
and we proceed by evaluating this other quantity. Integrating
Eq. (17) over frequencies, we obtain∫ ∞

0
Melec(ν, T )dν = C(s)β2

∫ ∞

0
ν5e−βhν−(1/2s)(βhν)2

dν

= C(s)

β4h6
χ (s), (23)

where we have introduced the integral χ (s) as

χ (s) =
∫ ∞

0
x5 exp

(
−x − x2

2s

)
dx, (24)

leading to our final expression for the total emissivity param-
eter as

εtot (s) = k4
B

σh6
χ (s)C(s). (25)

The values of εtot obtained for the various samples of struc-
tures are given in Table I, whereas χ (s) � 102 for C42 and
χ (s) � 107 for C60. Note that, unlike C(s), which depends on
the statistical details of the sample through the values of U and
〈Rg〉, χ only depends on cluster size N through s = 3N − 6.

Combining Eqs. (22) and (25), the emissivity parameter ε

is thus found to depend on temperature and frequency through

ε(ν, T ) = π4

15χ (s)
εtot (s)(βhν)2e−(βhν)2/2s = ε(βhν). (26)

This relation indicates that the emissivity should vary with
x = βhν as ε(x) ∝ x2 exp(−x2/2s). Figure 6, in which a
reduced emissivity ε(x) exp(x2/2s) is represented in double
logarithmic scale against x, confirms the expected quadratic
behavior.

For large enough βhν, the emissivity of carbon clusters
due to recurrent fluorescence can thus be well described by
our model and Eq. (26). Two physical ingredients were in-
strumental in establishing this relation, both involving the
statistical properties of the electronic excited states: (i) the
linear dependence of the electronic density of states with
increasing energy; and (ii) the approximate lack of correlation
between the electric dipole transition moment to the ground
state from a specific excited state with the energy of this

FIG. 6. Mean emissivities for the cage samples of C60

and C42 represented at different temperatures normalized by
exp[−(βhν )2/2s], shown as a function of the dimensionless quantity
βhν. The quadratic behavior is emphasized in the regime βhν > 2.

excited state. Another difference of the conventional Planck
model for blackbody radiation lies in the extra 1/T 2 scaling of
the emissivity found in our model. This factor stems from the
T 2 dependence in the number of accessible vibronic states and
conveys a depletion in the population of low-lying electronic
states as temperature increases.

Deviations to the generic behavior of Eq. (26) are found
for βhν < 2, a range in which the approximations made in
our derivation are no longer valid. In this regime, vibrational
bands are stronger than the continuum emission due to re-
current fluorescence. From the viewpoint of excited electrons,
the heat bath is provided by the available vibrational energy.
At sufficiently high temperature or for low excited electronic
states, βhν is small and the Gaussian term in Eq. (26) becomes
negligible, meaning that the heat bath is very large compared
to the emitting electronic state. As βhν decreases further, the
canonical framework becomes more appropriate to describe
the system and the Gaussian term in Eq. (26) appears as a
second-order correction accounting for the finite size of the
clusters.

According to our derivation, the emissivity ε(βhν) ob-
tained for the different samples and at various temperatures
fall onto a single curve that only depends on s through the
parameter χ (s) in Eq. (26). In practice, some residual vertical
shifts are found for both cluster sizes, indicating a minor but
additional temperature dependence of the prefactor εtot that
is ignored by our model. Such a discrepancy can be traced
back to the semiclassical approximation of Eq. (8), which is
found to be inadequate at energies below 10–15 eV depending
on system size. This is illustrated in Fig. 9 in Appendix C,
where the VDOSs obtained by counting exactly the known
vibrational modes of the sample are compared to their semi-
classically approximated forms. As a result, the temperature
obtained directly from the VDOS differs significantly from
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TABLE II. Total emissivity εtot (s) averaged over C60 and C42

cage carbon cluster families at different temperatures, as obtained
from our numerical samples.

εtot × 104

T (K) C60 C42

3400 10.6
2400 7.2 5.9
1350 3.0 2.4

the linear prediction of the semiclassical approximation at
low internal energies, as expected and as illustrated in Fig. 9.
Because of this additional temperature dependence not ac-
counted for by our simplified model, the total emissivities
should be corrected, and we provide in Table II the numerical
values of εtot predicted by our simulations for the cage sam-
ples of C42 and C60. The values reported in this table show
that, even though the analytical model leading to Eq. (22)
neglects some size dependence due to the approximate na-
ture of semiclassical densities of states at low energies, it
still provides correct orders of magnitude for the emissivity
parameter.

V. DISCUSSION

This work suggests that the carriers of thermal emission
from hot fullerenes excited by C60 desorption [4], collisions
with electrons [5], or photoabsorption [7] could be a large set
of carbon clusters structurally deviating from ideal fullerenes
but having an overall emissivity that scales quadratically
with frequency ν. These results have been obtained by con-
sidering carbon clusters as isolated systems, allowing us to
model radiative emission via recurrent fluorescence in the
microcanonical framework. As underlined by previous studies
[23,25], a blackbody-like emission requires carriers with con-
tinuum absorption spectrum, i.e., without absorption bands.
For the present samples of C42 and C60 carbon clusters, the
continuum absorption spectra stem from the equally continu-
ous electronic density of states ρelec over the sample obtained
from accumulating individual, well-resolved electronic ab-
sorption spectra at T = 0 but assuming no interaction between
electronic states or with the vibrational modes.

Our derivation considered only transitions n → 0 back
to the ground electronic state; however, intermediate state
transitions n → m are also possible. Assuming that all tran-
sition dipole moments associated with these intermediate
transitions are constant, it can be shown that these addi-
tional transitions favor the emission of high-energy photons
(blueshift) and increase the emissivity by about one order
of magnitude, as a result of the electronic density of states
increasing with energy (see Appendix D). However, this ap-
proximation turns out to be rather strong and cannot be
verified with the presently available data. Moreover, it still
neglects the further contribution of entire emission cascades,
which would necessarily produce lower-energy photons and
shift the emission spectra back to the red, requiring further
corrections to the emissivity that take into account the cooling
of the cluster along the relaxation pathway.

In the classical dielectric model [25], the absorption at low
energy has a ν2 dependence, similar to the emissivity found
here for a large set of carbon clusters at leading order in βhν

[see Eq. (26)]. However, in the dielectric model this depen-
dence is accounted for by the tail of the Lorentzian shape
absorption band associated with surface π -plasmon reso-
nance of buckminsterfullerene, leading to a T 6 dependence in
the total emitted power [25]. Our calculation reveals that,
while the absorption spectrum increases as ν2, the total emit-
ted power of a broad structural sample should increase as T 4

[see Eq. (23)], supporting the suggestion of a modified Stefan-
Boltzmann relation used earlier to model radiative cooling
in several experiments [4,16,19]. However, our simulations
show that this dependence is not valid for temperatures below
1500 K because of the quantum nature of vibrational modes.
In this regime, the temperature dependence of the total emitted
power should grow faster than T 4.

For the samples of C60 and C42 cages investigated here,
the total emissivity εtot is of the order of 10−4, which is
similar to values reported in several experimental investi-
gations [16,18,64,65]. The total emissivity has no explicit
dependence on temperature [see Eq. (20)], except indirectly
through the values of the parameters U and 〈Rg〉, which
might affect the samples themselves under thermodynamical
equilibrium conditions. As underlined by previous studies
[16,19], thermal emission is expected to be caused mainly
by electronic deexcitation. The present work also supports
this conclusion because the oscillator strengths of vibrational
normal modes are usually 2–3 orders of magnitude lower
than their electronic counterparts. In particular, if vibrational
emission were responsible for the thermal emission spectrum,
then εtot would be around 10−6–10−8, which is in contra-
diction with experimental results. Furthermore, the collective
vibrational emission spectrum of a large set of carbon clus-
ters cannot explain a blackbody-like emission in the visible
range [26,53].

The emissivity of small particles is usually considered to
have a bilinear dependence on their diameter d and on fre-
quency ν as ε(d, ν) ∼ νd [62]. However, the present results
from computational samples and TD-DFTB ingredients indi-
cate a different relation, scaling at leading order as ε(d, ν) ∼
ν2/d2.

The ν2 dependence found for the emissivity is relevant
to be further incorporated in astrophysical dust models of
carbon clusters emission induced by starlight photon absorp-
tion [66–68]. However, it could be even more appropriate
to simulate the emission spectrum resulting from the overall
radiative cooling of the clusters, especially considering their
close connection to very small grains or large carbonaceous
molecules being potentially exposed to transient heating under
interstellar medium conditions [69].

Laser-induced incandescence (LII) experiments could be
modeled in light of the present work to investigate fullerene
and soot formation in flames [32]. The experimental estima-
tion of the emissivity and its temperature and wavelength
dependences could confirm (or dispute) the approach em-
ployed in the present work. However, given the broad size
distribution in LII experiments [70], we believe that only the
order of magnitude of size carriers might be inferred from the
measurement of the total emissivity εtot.

062808-8



EMISSION SPECTRA OF FULLERENES: COMPUTATIONAL … PHYSICAL REVIEW A 107, 062808 (2023)

VI. CONCLUSION

In this work, it was suggested, based on a statistical model,
that blackbody-like emissions detected from a sample of hot
C60 molecules could be explained by emission from a col-
lective set of structurally diverse carbon clusters originating
from the isomerization of hot C60 rather than from individual
hot buckminsterfullerenes, as generally accepted so far. Indi-
vidually, carbon clusters emit a highly resolved molecularlike
spectrum, but it is the statistical average of these molecular
spectra over a sample that gives rise to a blackbody-like emis-
sion.

From a quantitative perspective, the emissivity of C60

or C42 samples was found to depend on temperature and
frequency as (ν/T )2 at leading order, the total emissivity
amounting to an order of magnitude of 10−4, with a minor
dependence on the details of the sample leading to a weak
size and structural dependence. The key assumptions needed
to reach this result were the approximately linear depen-
dence of the density of electronic states over each sample
(Fig. 5) and the lack of correlation between the transition
dipole intensity and the energy of the excited state (Fig. 7).
Although they were obtained assuming harmonic densities of
vibrational states, we believe the generic conclusions should
not be drastically affected by anharmonicities, even though
the role of intermediate electronic transitions would be worth
investigating further in the future.

The results obtained in this work are of potential relevance
in the context of interstellar astrochemistry, especially for dust
radiative emission and extinction models [66–68]. Recurrent
fluorescence from such small carbonaceous species (large
carbon clusters, large polycyclic aromatic hydrocarbonlike
species, or very small grains [71]) remains to be taken into
account in these models, and such an effort would clearly
benefit from extending and applying the present modeling.

Our computational approach has also revealed interesting
differences with other, well-established models. In particular,
the emissivity obtained here differs from the predictions of
classical electromagnetism theory, both for the frequency and
size dependences. With the aim of bridging the gap between
small carbon clusters and larger carbonaceous particles, it
would thus be interesting to consider other samples further,
allow for the effects of thermal dissociation and a broader
distribution of sizes, and disentangle the effects of system size
and the properties of electronic excited states and especially
their statistical distributions.
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APPENDIX A: ELECTRONIC DATA FOR C60 AND C42

CARBON CLUSTERS

The entire set of n → 0 transition dipole moments for C60

isomers obtained from TD-DFTB calculations are shown in
Fig. 7 for the four samples of structures available for C42

and C60. These scatter plots do not exhibit any particular

correlation between the binding energy and the set of cor-
responding excited-state energies, allowing us to treat the
quantity U = 〈 f (ν)/ν〉 as a sample-specific constant.

APPENDIX B: CONTINUUM EMISSION SPECTRUM
FROM INDIVIDUAL ISOMER CONTRIBUTIONS

In our approach, the emission spectrum is computed from
the accumulation over large numbers of contributions from
individual isomers in a sample. Each isomer itself contributes
as a sum of discrete contributions at frequencies essentially
matching the electronic excited states available for this isomer.
The continuous nature of the accumulated spectrum arises
from adding these many discrete contributions, but also by
convolution with a Gaussian broadening function. In this
Appendix we discuss both aspects, illustrating them on the
specific sample of C60 cages. Figures 8(a)–8(c) show several
emission spectra obtained at 3400 K for the same 1000-isomer
sample used to generate Fig. 2, but varying the Gaussian
broadening with full widths at half maximum of 2.5, 12.5,
and 25 meV. Here the continuous character is well established
in all cases, the narrowest broadening only producing some
limited noise in the spectrum.

The size of the sample also alters the accumulated emission
spectrum. Figures 8(d)–8(f) depict the spectra obtained using
limited samples of 100, 50, and 10 isomers of C60 cages,
respectively, keeping a 12.5 meV broadening in the Gaussian
convolution. Based on these results, the continuous character
of the spectrum is nearly established once 100 isomers are
included.

APPENDIX C: EXACT AND SEMICLASSICAL
VIBRATIONAL DENSITIES OF STATES
FOR C60 AND C42 CARBON CLUSTERS

In our simulations, the Beyer-Swinehart algorithm [58] is
used to exactly compute the vibrational density of states of
all carbon clusters, as a function of internal energy, from the
knowledge of individual vibrational frequencies. Averaging
the resulting densities of vibrational states over entire samples
leads to the curves shown in Fig. 9 for C60 pretzels and C42

cages, taken as representative examples. For comparison, the
semiclassical prediction of Eq. (8) obtained with an average
zero-point vibrational energy over the corresponding sample
is superimposed on the corresponding graphs. The semiclassi-
cal approximation is generally found to be valid above about
15 eV for C60 samples and above about 10 eV for C42 samples.

Figure 9 also shows the variations of the microcanonical
temperatures obtained from the calculated vibrational densi-
ties of states, following the definition of Eq. (5), for the two
samples considered. Deviations are again best seen at low en-
ergies, highlighting the range of validity of the semiclassical
approximation.

APPENDIX D: CONTRIBUTION OF INTERMEDIATE
ELECTRONIC TRANSITIONS

Our model only includes transitions n → 0 relaxing to the
ground electronic state. Transitions n → m leading to inter-
mediate electronic states are also possible, but their treatment
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FIG. 7. n → 0 transition moments fn/νn for the n < 300 lowest electronic transitions for all isomers of C60 considered in this work, sorted
in the four determined structural families, each of them containing 1000 isomers, as a function of the corresponding electronic energies. The
corresponding densities are also reported.

requires further approximations. We thus assume that the tran-
sition dipole moments associated with such transitions are the
same as the value for n → 0 transitions averaged over the
sample and are given in Table I for each structural family.

Allowing for photons to be emitted from higher-energy
states would naturally shift the emission spectrum to the blue
and increase the emissivity. To evaluate the new emittance
M(ν, E ), Eq. (7) can no longer be used because a given photon
ν can now originate from various electronic states k, relaxing
to states � in such a way that hν = hνk − hν�, where hνk and
hν� are the energies of these new states. The emittance is thus
rewritten as a double sum over all couples of states k and �

that precisely can produce such photons,

M(ν, E ) =
∑
k>�

hνk�Ak→�

S
pk (E )δ(hν − hνk�), (D1)

where we have assumed that the electronic energies νk are
labeled with k following an increasing order in energy and
where pk (E ) is the probability of occupying electronic state
k at total internal energy E and νk� = νk − ν�. Performing a
continuous approximation, from the knowledge of the elec-
tronic density of states ρelec(hν) = Khν, this probability can

be evaluated as

pk (E ) � β2

K
exp(−βhνk ), (D2)

in which the semiclassical relation between energy and tem-
perature was again used. Reexpressing the double discrete
sum of Eq. (D1) by a double continuous sum and inserting
the expression of pk (E ) above and a δ function, we get

M(ν, E ) � A(ν)hν

S

β2

K

×
∫ E

0
ρelec(x)ρelec(x + hν)e−βx−βhνdx. (D3)

The upper limit of the integral can be approximated to infinity,
which allows us to solve Eq. (D3) exactly, resulting in

M(ν, E ) = A(ν)

S

Khν

β
(2 + βhν) exp(−βhν). (D4)

Inserting the original expression of the emittance Melec defined
in Eq. (7) in the absence of intermediate transitions, we finally
obtain

M(ν, E ) = Melec(ν, E )
K

β2

2 + βhν

βhν
. (D5)
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FIG. 8. Emission spectra obtained for C60 cages at 3400 K, using
different widths for the Gaussian broadening or different sample
sizes: (a)–(c) 1000 isomers with widths of (a) 25, (b) 12.5, and
(c) 2.5 meV and (d) 100, (e) 50, and (f) 10 isomers but a constant
width of 12.5 meV, the result for the 1000-isomer sample being
superimposed as a red curve.

Similarly, a total emissivity εtot can be defined from the
integration of M over the entire frequency range, at fixed
temperature or total energy, as

εtot =
∫ ∞

0 M(ν, E )dν

σT 4
, (D6)

FIG. 9. Vibrational densities of states averaged over the whole
sample for (a) C60 pretzels and (b) C42 cages. The relation between
internal energy and temperature is obtained by averaging over the
whole sample for (a) C60 pretzels. Below 20 eV, the temperatures
computed from the exact VDOS and the semiclassical VDOS are
significantly different.

which, from Eq. (17), gives the relation∫ ∞

0
M(ν, E )dν = C(s)K

∫ ∞

0
ν5 βhν + 2

βhν
e−βhν−(1/2s)(βhν)2

dν

= C(s)

β4h6

K

β2
ξ (s), (D7)

with

ξ (s) =
∫ ∞

0
x4(x + 2) exp

(
−x − x2

2s

)
dx. (D8)

The total emissivity εtot is then found to be proportional to
the value εtot obtained for pure n → 0 transitions, with the
proportionality factor

εtot

εtot
(β ) = K

β2

ξ (s)

χ (s)
, (D9)

with ξ (s) equal to 151 for C60 and 144 for C42 and the values
of χ (s) already given in the main text.
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For the present systems, the values found for the total
emissivity of C60 isomers at 3400 K become 104 × εtot =
9.1, 21.3, 18.9, and 40.1 for the cages, flakes, pretzels, and
branched structures, respectively, or approximately one order
of magnitude higher than the values reported in Table I.

The above analysis indicates that intermediate transitions
could significantly increase the emission rate and total emis-
sivity, but this is a natural consequence of including more

emission channels. Furthermore, if intermediate transitions
are allowed, then so should be the further possible relax-
ations to even lower-energy states. Such emission cascades
would naturally produce lower-energy photons, but their con-
tribution to the emissivity is less clear because, due to the
repeated emission of photons, the temperature should de-
crease and the reference to the Planck model would become
ill-defined.
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