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Elastic scattering and rotational excitation of H2 by electron impact:
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We apply the adiabatic-nuclei molecular convergent close-coupling (MCCC) method to the study of elastic
scattering and rotational excitation of H2 by 0.01–20-eV electrons. Integral cross sections are presented for all
rotational transitions with |�N | � 2 and Ni = 0–31 within the v = 0 vibrational level and differential cross
sections for a selection of transitions. Agreement with the available measurements and previous calculations is
mostly excellent, depending on the transition and incident energy. We suggest possible reasons, and argue for
the accuracy of the MCCC data.
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I. INTRODUCTION

The problem of low-energy electron-impact rotational ex-
citation of H2 has been studied in great detail over the last
60 years due to its importance in low-temperature hydrogen
plasmas and gasses. Below 10 eV, rotational excitation com-
prises up to 20% of the total cross section, and below the
v = 0 → 1 threshold (≈0.5 eV) it is the dominant contribu-
tion to electron energy loss [1]. Accurate cross sections for the
rotational transitions of H2 are vital for modeling the emis-
sion spectra of astrophysical clouds [2] or for constructing
collisional-radiative (CR) models of fusion-relevant plasmas
[3]. Up to 0.5 eV, the N = 0 → 2 and 1 → 31 rotational
excitation cross sections are well known, with good agreement
between the results of electron swarm experiments, which
are reproduced by several calculations. At higher energies the
situation is less ideal, with substantial disagreement between
various measurements and calculations (and from the experi-
mental side only the N = 1 → 3 transition has been studied).
A complete summary of the previous work is given later in in
Sec. IV A.

The theoretical techniques applied to this problem have
utilized a variety of approximations to the treatment of cou-
pling between rovibrational levels, from the adiabatic-nuclei
(AN) approximation in which the coupling is neglected, to the
most accurate rovibrational close-coupling (RVCC) approach.
However, the common factor in all previous studies is the
use of model interaction potentials in place of coupling to
the closed electronically inelastic channels. The somewhat
arbitrary choice of model potentials can lead to differences
in the calculated cross sections far more significant than the
errors introduced by the AN approximation, particularly since
the greatest discrepancies are at energies more than ten times
the threshold energy, where the AN approximation is accurate
[4]. What is clearly missing from the literature are theoretical
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1In the present work we apply Hund’s angular-momentum coupling

case (b), where the rotational levels are specified by the quantum
number N .

studies of low-energy rotational excitation in which the cou-
pling to closed electronic channels is accounted for rigorously.
Although doing so while also coupling the electronic and
nuclear motions would be computationally exhausting, the
application of the AN approximation makes such an approach
feasible, provided one can solve the electronic scattering
problem accurately. In this paper we apply the molecular
convergent close-coupling (MCCC) method, which in recent
years has been shown to completely solve the electronic scat-
tering problem for H2 [5,6].

Over the past few years, the MCCC method has been
applied within the AN approximation to produce a com-
prehensive set of vibrationally resolved cross sections for
electrons scattering on H2 and its isotopologues [7–10]. Ap-
plication of the MCCC cross sections in a CR model for H2

showed them to be much more accurate than previously avail-
able data when comparing predicted and measured population
densities [11]. Recently, we have also applied the MCCC
method to the calculation of rotationally resolved cross sec-
tions for the X 1�+

g → d 3�u excitation in order to study
the polarization of Fulcher-α fluorescence [12], finding good
agreement with measured linear polarization fractions for the
Q(1), R(1), and Q(3) transitions. We now turn our attention to
rotationally resolved transitions within the X 1�+

g state, with
an initial focus on those in which the vibrational quantum
number does not change. Here we shall present integral and
differential cross sections for rotationally elastic scattering
and a number of rotational excitations, with comparison made
against the available theory and experiment in the literature.
The set of all rotational transitions within the X 1�+

g (v = 0)
state with |�N | � 2 are available online [13] (transitions
with |�N | > 2 have negligible cross sections by comparison).
Atomic units are used throughout this paper unless specified
otherwise.

II. THEORY

In this section we provide an overview of the theory
of molecular structure and rotationally resolved scattering
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applied in the present work. Further details can be found
in Ref. [14]. Although considerable simplifications can be
made to the theory in the case of transitions within a �

state (zero electronic orbital-angular-momentum projection �

on the internuclear axis), we present the theory here in the
most general case as a reference for future applications to
rotationally resolved scattering between electronic states of
nonzero �.

A. Molecular structure

We represent the rovibronic target states in the nonrela-
tivistic Born-Oppenheimer approximation, and utilize the LS
and Hund’s case (b) coupling schemes, which are appropriate
for light diatomics such as H2 [15]. A detailed description of
the diatomic structure and formation of the total molecular
wave functions in the present approximation scheme is given
in Ref. [15], and the results are simply stated here. The total
molecular state (neglecting nuclear spin) for a given electronic
state n, vibrational level v, total orbital angular momentum
(electronic and nuclear) N and its laboratory-frame projection
mN , and total parity π is given by

�
|�|tsms
nvNmN π (x1, x2, R) = X ms

s (σ1, σ2)�|�|ts
nvNmN π (r1, r2, R), (1)

where xi = (σi, ri ) are the electron spin and spatial coordi-
nates, R is the internuclear vector, and X ms

s is the two-electron
spin function (with total spin s and laboratory-frame projec-
tion ms):

X ms
s (σ1, σ2) =

∑
m1m2

Csms
1
2 m1,

1
2 m2

χm1 (σ1)χm2 (σ2), (2)

with C jm
j1m1, j2m2

being a Clebsch-Gordan coefficient. The spa-
tial wave function is given by

�
|�|ts
nvNmN π (r1, r2, R)

= 1√
2(1 + δ�,0)

[
�|�|ts

n (r1, r2; R)φ|�|
NmN

(R̂)νnvN (R)

+ π (−1)N+ρ�−|�|ts
n (r1, r2; R)φ−|�|

NmN
(R̂)νnvN (R)

]
.

(3)

Here, ��ts
n is the spatial wave function for the electronic state

n with parity t , spin s, and orbital-angular-momentum projec-
tion � (on the rotating internuclear axis), and νvnN and φ�

NmN

are respectively the vibrational and rotational wave functions.
Note that we define the index n such that it specifies the
electronic state up to the sign of � so that we can explicitly
distinguish the degenerate states �|�|

n and �−|�|
n . As can be

seen in Eq. (3), when � is nonzero the total molecular states
are formed by a linear combination of the |�| and −|�| wave
functions. The variable ρ is defined to be 1 for �− states and
0 otherwise.

In the MCCC method the electronic target space is rep-
resented by a set of pseudostates which diagonalize the
electronic Hamiltonian, as described in detail in Ref. [16]. The
vibrational wave functions are the solutions to the following

Schrödinger equation:

[
− 1

2μ

d2

dR2
+ N (N + 1) − �2

2μR2
+ εn(R)

]
νnvN (R)

= εnvNνnvN (R), (4)

which illustrates their dependence on the electronic and ro-
tational states via the electronic potential-energy curve εn

and the appearance of the rotational quantum number N in
the centrifugal term. The rotational wave functions are given
analytically by

φ�
NmN

(R̂) =
√

2N + 1

8π2
DN∗

mN ,�(R̂), (5)

where DN∗
mN ,� is a Wigner D function, and we adopt the con-

vention that R̂, when used as an argument to the Wigner
D function, is short for the set of Euler angles (α, β, γ )
representing the coordinate transformation that aligns the
laboratory-frame z axis with the internuclear axis.

In Hund’s case (b) we refer to different rotational levels by
the N quantum number, but since N also contains a contribu-
tion from �, it is not always indexed from 0. For example, �

states have N ranging from 1 upwards. In general, N � |�|.
For electronic states of nonzero spin s, each rotational level is
split into levels of different total angular momentum J , with
|N − s| � J � N + s. Under the present set of approxima-
tions, the levels of the same N but different J are degenerate,
and the spin-averaged cross sections we calculate here are
summed (averaged) over the final (initial) J . For singlet states
such as the X 1�+

g state of H2, the N and J quantum numbers
are equivalent; however, we use N at present for consistency
with future work involving triplet states.

For homonuclear diatomics such as H2 (and D2 and T2,
but not the mixed isotopologues HD, HT, and DT), the total
molecular wave function must be antisymmetric with respect
to nuclear permutation when the nuclei are fermions (e.g.,
protons or tritons) and symmetric for bosons (e.g., deuterons).
This requirement places a restriction on the allowed combi-
nations of nuclear spin I and total molecular parity π . Fur-
thermore, for the �± states (� = 0), the rotational quantum
number N is constrained to always be even, or always odd,
depending on the electronic symmetry and nuclear spin state.
For states with nonzero �, the rotational levels are split into
pairs of opposite parities ±π , and it is conventional to label
the states as �± (with � = �,�, and so on), where the �+
states have π=(−1)N and the �− states have π=(−1)N+1.
Hence, although the ± superscript on the � �= 0 states does
not carry the same physical meaning as for the � states (where
it relates to symmetry under inversion through a plane con-
taining the internuclear axis), the constraints placed on N and
π are the same. In Table I we summarize these constraints for
the different combinations of electronic symmetries, nuclear
spin states, and fermionic/bosonic nuclei. Since we assume
there is no ortho/para conversion in the collision, these rules
determine the allowed rotational transitions. For the simple
case of transitions within the X 1�+

g state of H2 in the present
study, we have that para-H2 must always have even rotational
levels, and ortho always odd.
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TABLE I. Constraints on the quantum number N and total
molecular parity π for homonuclear diatomics given the electronic
symmetry �±

t and either fermionic or bosonic nuclei in the ortho or
para nuclear spin configurations. Note that t refers to the electronic
parity.

Fermions Bosons

�±
t (−1)N π (−1)N π

Ortho (I = 1): �+
g − − + +

�−
g + − − +

�+
u + + − −

�−
u − + + −

Para (I = 0): �+
g + + − −

�−
g − + + −

�+
u − − + +

�−
u + − − +

B. Partial-wave expansion

The projectile wave function (plane wave) is expanded in
partial waves of well-defined orbital angular momentum L and
its projection mL on the laboratory-frame z axis:

|q〉 = 1

q

∑
LmL

iL|qLmL〉Y mL∗
L (q̂)

∣∣ 1
2 m

〉
, (6)

where q is the linear momentum (equivalently the wave vector
in atomic units where h̄ = 1), Y mL∗

L is a spherical harmonic,
m is the spin projection on the laboratory-frame z axis, and

|qLmL〉 are defined by

〈r|qLmL〉 =
√

2

π

1

r
uL(qr)Y mL

L (r̂), (7)

with uL being Riccati-Bessel functions for nondistorted plane
waves. We represent the asymptotic projectile-target states
in coupled-angular-momentum form by expanding in partial
waves of total-scattering-system orbital angular momentum
J , parity �, and spin S:

∣∣�|�|tsms
nvNmN π q

〉 = 1

q

∑
LmL

iL
∣∣�|�|tsms

nvNmN π

〉|qLmL〉Y mL∗
L (q̂)

∣∣ 1
2 m

〉
(8)

=
∑
J�S

∑
LmL

CJMJ
LmL,NmN

CSMS
1
2 m,sms

Y mL∗
L (q̂)

× |nvNπ qL : JMJ �SMS〉, (9)

where

|nvNπ qL : JMJ �SMS〉

= 1

q
iL

∑
mLmN mms

CJMJ
LmL,NmN

CSMS
1
2 m,sms

∣∣�|�|tsms
nvNmN π

〉∣∣qLmL
〉∣∣ 1

2 m
〉
.

(10)

The projections m, ms, mL, mN , MJ , and MS are all with
respect to the laboratory-frame z axis, and note that the target
variables |�|, t , and s are neglected on the left-hand side
of Eq. (10), as they are determined by the electronic-state
index n.

Following Eqs. (8) and (10), the scattering amplitude for
a transition fully resolved in angular-momentum and spin
sublevels is given by

Fn f v f Nf mN f π f m f ms f ,niviNimNi πimimsi
(q f , qi ) =

∑
S

CSMS
1
2 m f ,s f ms f

CSMS
1
2 mi,simsi

FS
n f v f Nf mN f π f ,niviNimNi πi

(q f , qi ), (11)

FS
n f v f Nf mN f π f ,niviNimNi πi

(q f , qi ) =
∑
J�

∑
L f Li
mL f

L̂i√
4π

CJMJ
L f mL f ,Nf mN f

CJMJ
Li0,NimNi

Y
mL f

L f
(q̂ f )FJ�S

n f v f Nf π f L f ,niviNiπiLi
(q f , qi ), (12)

where L̂ = √
2L + 1, and we have assumed the laboratory-

frame z axis is aligned with the incident beam. The laboratory-
frame partial-wave scattering amplitudes are defined by

FJ�S
n f v f Nf π f L f ,niviNiπiLi

(q f , qi )

= −(2π )2〈q f L f n f v f Nf π f ||T J�S ||niv f Niπi qiLi〉, (13)

where we have applied the Wigner-Eckart theorem [17] to
remove the dependence on MJ and MS . In the present work
the AN approximation is applied to the calculation of the
reduced partial-wave T -matrix elements in the right-hand side
of Eq. (13), and we expand on this in Sec. II C. However, the
expressions for the differential and integrated cross sections in
the following sections hold true regardless of the method by
which the partial-wave scattering amplitudes are obtained.

C. Adiabatic-nuclei approximation

We invoke the AN approximation to decouple the elec-
tronic, vibrational, and rotational degrees of freedom. At
present, we limit our study to transitions in which the vi-
brational quantum number v remains unchanged. Since the
vibrationally elastic cross sections are not much affected by
resonance effects, the error associated with neglecting cou-
pling between vibrational levels will not be substantial. Future
work can be directed towards the calculation of vibrationally
inelastic cross sections using the vibrational and electronic
close-coupling variation of the MCCC method recently devel-
oped by Scarlett et al. [18]. Based on previous comparisons
of AN and RVCC calculations [4], the error introduced by
neglecting the coupling between rotational levels is not im-
portant except at energies very close to threshold.
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With the electronic and nuclear motions decoupled, the
electronic scattering problem is solved most conveniently
in the body frame, in which the z axis is aligned with the
internuclear axis (and is hence no longer fixed in space). After
expanding the body-frame electronic scattering amplitudes
in partial waves with conserved-scattering-system total

electronic-angular-momentum projection �e, electronic
parity �e, projectile angular momentum L, and its projection
on the internuclear axis �L, the laboratory-frame partial-wave
amplitudes (13) can be expressed in terms of body-frame
partial-wave amplitudes by

FJ�S
n f v f Nf π f L f ,niviNiπiLi

(q f , qi ) = N̂ f N̂iiLi−L f√
2(1 + δ� f ,0)

√
2(1 + δ�i,0)

1

Ĵ 2

∫
dR νn f v f Nf (R) νniviNi (R),

×
∑
�e�e

∑
�L f �Li

[
CJ�e

L f �L f ,Nf |� f | C
J�e
Li�Li ,Ni|�i| F�e�eS

n f |� f |L f �L f ,ni|�i|Li�Li

(
qFN

f , qi, R
)

+ π f (−1)Nf +ρ f CJ�e
L f �L f ,Nf (−|� f |) CJ�e

Li�Li ,Ni|�i| F�e�eS
n f (−|� f |)L f �L f ,ni|�i|Li�Li

(
qFN

f , qi, R
)

+ πi(−1)Ni+ρi CJ�e
L f �L f ,Nf |� f | C

J�e
Li�Li ,Ni (−|�i|) F�e�eS

n f |� f |L f �L f ,ni (−|�i|)Li�Li

(
qFN

f , qi, R
)

+ π f πi(−1)Nf +Ni+ρ f +ρi CJ�e
L f �L f ,Nf (−|� f |) CJ�e

Li�Li ,Ni (−|�i|) F�e�eS
n f (−|� f |)L f �L f ,ni (−|�i|)Li�Li

(
qFN

f , qi, R
)]

,

(14)

where qFN
f is the fixed-nuclei outgoing momentum

corresponding to the R-dependent vertical electronic
excitation energy rather than the physical rovibrationally
resolved excitation energy. This variable is present in
Eq. (14) to indicate that the body-frame electronic scattering
amplitudes are on the energy shell within the fixed-nuclei
formalism but violate energy conservation when one considers
the rovibronic excitation energies. Morrison et al. [4]
discussed this issue at length and developed the first-order
nondegenerate adiabatic (FONDA) method, which uses
electronic scattering amplitudes which are “off shell” within
the fixed-nuclei picture but satisfy the physical energy
conservation requirement. Since off-shell amplitudes cannot
be obtained using the MCCC method, we do not adopt this
approach; however, these considerations are important only
near threshold energies. Furthermore, when defining the cross
sections in the following sections, we retain the physical
(rovibrationally resolved) q f in the flux factor, which ensures
the cross sections go to zero at the correct threshold.

As described in Ref. [16], the body-frame scattering am-
plitudes are obtained by solving the partial-wave coupled
Lippmann-Schwinger equations in prolate spheroidal coor-
dinates (for better target-structure accuracy) and converted
to spherical coordinates at each fixed internuclear separation
before the integration over R is performed in Eq. (14). In the

electronic body-frame scattering calculations, the degenerate
pairs of electronic states with nonzero � each appear as two
distinct states in the close-coupling expansion. The ampli-
tudes with different combinations of ±|� f | and ±|�i| appear
in the four separate terms in Eq. (14). This follows directly
from the definition of the total molecular states (3) as a linear
combination of the ±|�| electronic states. In the present work
we are concerned only with rotational transitions within the
X 1�+

g state of H2, and hence � f = �i = 0, and the above
simplifies considerably. However, we keep the theory here as
general as possible for future reference when further work
is directed towards studies of rotationally resolved, electroni-
cally inelastic scattering.

D. Differential cross sections

The spin-averaged differential cross section (DCS) re-
solved in rotational sublevels is given by

dσn f v f Nf mN f π f ,niviNimNi πi

d�

=
∑
S

2S + 1

2(2si + 1)

∑
L

ALS
n f v f Nf mN f π f ,niviNimNi πi

PL(cos θ ), (15)

where PL is a Legendre polynomial, and

ALS
n f v f Nf mN f π f ,niviNimNi πi

= q f

qi

(−1)mNi −mN f

(4π )2

∑
J�J ′�′

∑
L f L′

f

∑
LiL′

i

L̂ f L̂′
f L̂iL̂

′
iF

J�S
n f v f Nf π f L f ,niviNiπiLi

(q f , qi )F
J ′�′S∗

n f v f Nf π f L′
f ,niviNiπiL′

i
(q f , qi )

× C
JmNi
Li0,NimNi

C
J ′mNi

L′
i0,NimNi

CL0
L f (mNi −mN f ),L′

f (mN f −mNi )C
L0
L f 0,L′

f 0C
JmNi
L f (mNi −mN f ),Nf mN f

C
J ′mNi

L′
f (mNi −mN f ),Nf mN f

. (16)
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The DCS summed over mNf and averaged over mNi is given by a similar expression to Eq. (15), with

ALS
n f v f Nf π f ,niviNiπi

= q f

qi

(−1)Nf +Ni

N̂2
i (4π )2

∑
J�J ′�′

∑
L f L′

f

∑
LiL′

i

Ĵ 2Ĵ ′2L̂ f L̂′
f L̂iL̂

′
iF

J�S
n f v f Nf π f L f ,niviNiπiLi

(q f , qi )

× FJ ′�′S∗
n f v f Nf π f L′

f ,niviNiπiL′
i
(q f , qi )C

L0
L f 0,L′

f 0C
L0
Li0,L′

i0

{
L′

f Nf J ′

J L L f

}{
L′

i Ni J ′
J L Li

}
, (17)

where
{ j1 j2 j3

j4 j5 j6

}
are the Wigner 6 j symbols.

E. Integrated cross sections

After integrating the DCS over a solid angle only the L = 0 term of the Legendre expansion remains, and we obtain

σn f v f Nf π f mN f ,niviNiπimNi
=

∑
S

2S + 1

2(2si + 1)

q f

qi

1

4π

∑
J�J ′�′

∑
L f

∑
LiL′

i

L̂iL̂
′
iF

J�S
n f v f Nf π f L f ,niviNiπiLi

(q f , qi )F
J ′�′S∗

n f v f Nf π f L f ,niviNiπiL′
i
(q f , qi )

× C
JmNi
Li0,NimNi

C
J ′mNi

L′
i0,NimNi

C
JmNi
L f (mNi −mN f ),Nf mN f

C
J ′mNi
L f (mNi −mN f ),Nf mN f

(18)

for the spin-averaged integrated cross section (ICS) resolved in rotational sublevels, and

σn f nvNf π f ,niviNiπi =
∑
S

2S + 1

2(2si + 1)

q f

4πqiN̂2
i

∑
J�

∑
L f Li

Ĵ 2
∣∣FJ�S

n f v f Nf π f L f ,niviNiπiLi
(q f , qi )

∣∣2
(19)

for the ICS summed (averaged) over the final (initial) rotational sublevels.

F. Analytic Born completion

To accelerate the convergence of the calculated cross sections with respect to the maximum projectile angular momentum
L included in the partial-wave expansion, we employ the analytic Born completion (ABC) method. The energies considered in
the present work (up to 20 eV) can be several hundred times the rotationally inelastic threshold (0.044 eV), which leads to slow
partial-wave convergence of the inelastic DCS. The application of the ABC method to nonrotationally resolved scattering in
the MCCC method has been detailed previously [19]. In the present case, the rotationally resolved analytic Born amplitude is
expanded in partial waves as

F (AB)
n f v f Nf mN f π f ,niviNimNi πi

(Q) =
∑

λ

V λ
n f v f Nf π f ,niviNiπi

(Q)C
λ(mN f −mNi )

Nf (−mN f ),NimNi
Y

mN f −mNi

λ (Q̂), (20)

where

V λ
n f v f Nf π f ,niviNiπi

(Q) = −(2π )2N̂ f N̂iiλ(−1)mNi +|�i|√
2(1 + δ� f ,0)

√
2(1 + δ�i,0)

1

λ̂2

∫
dRνn f v f Nf (R) νniviNi (R)

[
V λ

n f Nf |� f |,niNi|�i|(Q, R)

+ π f (−1)Nf +ρ f V λ
n f Nf (−|� f |),niNi|�i|(Q, R) + πi(−1)Ni+ρiV λ

n f Nf |� f |,niNi (−|�i|)(Q, R)

+ π f πi(−1)Nf +Ni+ρ f +ρiV λ
n f Nf (−|� f |),niNi (−|�i|)(Q, R)

]
, (21)

and

V λ
n f Nf � f ,niNi�i

(Q, R)

= C
λ(� f −�i )
Nf � f ,Ni (−�i )

V λ
n f � f ,ni�i

(Q, R). (22)

Here, V λ
n f � f ,ni�i

are the body-frame electronic Born matrix
elements defined in Eq. (104) of Ref. [19], and Q = qi − q f
is the momentum-transfer vector. The Born DCS and ICS are
then given by

dσ
(AB)
n f v f Nf mN f π f ,niviNimNi πi

d�

= q f

qi

∣∣F (AB)
n f v f Nf mN f π f ,niviNimNi πi

(Q)
∣∣2

(23)

σ
(AB)
n f v f Nf mN f π f ,niviNimNi πi

= 2π

∫ dσ
(AB)
n f v f Nf mN f π f ,niviNimNi πi

d�
sin θdθ, (24)

where the scattering angle θ is related to the angle θQ̂ between

Q̂ and q̂i by

θQ̂ = arccos[(qi − q f cos θ )/Q]. (25)

The integration over θ in Eq. (24) is performed numerically.
The ABC procedure for the DCS is applied to the am-

plitude FS defined in Eq. (12), with the ABC amplitude
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defined as

FS (ABC)
n f v f Nf mN f π f ,niviNimNi πi

(q f , qi )

= FS
n f v f Nf mN f π f ,niviNimNi πi

(q f , qi )

− F (PWB)
n f v f Nf mN f π f ,niviNimNi πi

(q f , qi )

+ F (AB)
n f v f Nf mN f π f ,niviNimNi πi

(Q), (26)

where F (PWB) is the Born amplitude calculated using the
same projectile partial-wave expansion as F S [by replacing
the T -matrix elements used to obtain the body-frame partial-
wave amplitudes in Eq. (14) with the direct-only V -matrix
elements]. In order for F (AB) to be calculated in a way
which is consistent with the calculation of F (PWB) and FS ,
where the electronically elastic amplitudes assume q f = qi,
we must evaluate Q with the same assumption (i.e., by making
the approximation Q ≈ qiq̂ f − qi). Otherwise, the mismatch
between F (AB) and F (PWB) can create issues at small scat-
tering angles. Since we are presenting the theory in a way
which can be applied generally to transitions between any
electronic states, it is worth noting that for electronically in-
elastic scattering one should replace Q with the R-dependent
momentum-transfer vector calculated using the vertical ex-
citation energy [and hence move the spherical harmonic in
Eq. (20) inside the integration over R in Eq. (21)]. However,
since the electronic excitation energies are large compared to
the rovibrational energy spacings, the discrepancy between
F (AB) and F (PWB) for electronically inelastic scattering will
be negligible and this issue can be ignored.

The spin-weighted ABC DCS is given by

dσ
(ABC)
n f v f Nf mN f π f ,niviNimNi πi

d�

=
∑
S

2S + 1

2(2si + 1)

q f

qi

∣∣FS (ABC)
n f v f Nf mN f π f ,niviNimNi πi

(q f , qi )
∣∣2

,

(27)

and it is explicitly summed (averaged) over the final (initial)
rotational sublevels as required. The ABC ICS can be obtained
by integrating Eq. (27) over a solid angle, but it is sufficient to
apply the ABC procedure directly to the ICS using

σ
(ABC)
n f v f Nf π f ,niviNiπi

= σn f v f Nf π f ,niviNiπi − σ
(PWB)
n f v f Nf π f ,niviNiπi

+ σ
(AB)
n f v f Nf π f ,niviNiπi

, (28)

where, similarly to before, σ (PWB) is the Born ICS calculated
using the same projectile partial-wave expansion used in the
close-coupling calculations. In Fig. 1 we demonstrate the
application of the ABC technique to the N = 0 → 2 DCS at
1.0-eV incident energy (≈23 times the excitation threshold of
0.044 eV).

III. CALCULATION DETAILS

The electronic structure model we have adopted here is
nearly identical to what was used in Ref. [16] but with a
smaller number of correlation configurations constructed from
the 1s, 2s, 2p, 3d , and 4 f orbitals. (In Ref. [16] we added the

FIG. 1. Illustration of the analytical Born completion (ABC)
procedure applied to the 1.0-eV N = 0 → 2 DCS. In this case the
mN = 0 and 1 amplitudes FS are converged well with Lmax = 4, but
the mN = 2 amplitude is not, leading to oscillations in the DCS. The
oscillations are removed by applying the ABC procedure to account
for partial waves up to infinity.

3s, 3p, and 4d orbitals for greater accuracy at the larger values
of R spanned by the v > 0 vibrational wave functions.) In
the close-coupling expansion we keep the first 301 electronic
states out of the 465 generated using this model, correspond-
ing to those with excitation energies up to 100 eV from the
ground state. For the projectile partial-wave expansion we
use a maximum angular momentum of Lmax = 4, with the
ABC method applied to account for higher partial waves.
These parameters are sufficient to achieve convergence in the
electronically elastic ICS below the ionization threshold, as
confirmed by comparison with the convergence studies of
Savage [20]. While the rotationally elastic DCS do not suffer
from the oscillatory behavior seen in Fig. 1 when the partial-
wave expansion is unconverged, the absence of higher partial
waves leads to incorrect behavior at forward scattering angles.
The ABC procedure alone is unable to address this issue since
elastic scattering is dominated by the effects of target polar-
ization which are not accounted for in the first-order Born
approximation. Therefore, when computing the rotationally
elastic DCS, we top up the L � 4 amplitudes with approxi-
mate amplitudes calculated up to Lmax = 40 using a smaller
seven-state close-coupling expansion, which is sufficient to
account for 90% of the bound static dipole polarizability. This
procedure corrects the forward scattering elastic DCS.

The electronic scattering calculations were performed at
40 incident energies between 0.01 and 20 eV, each with 18
evenly spaced R points between 0.8 and 2.5 a0, covering the
span of the v = 0 vibrational wave function. Each calculation
took about one hour using 480 Intel Xeon Haswell E5-2690v3
2.6 GHz processor cores (20 nodes on the Pawsey Super-
computing Centre’s Magnus machine), for a total of about
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350,000 core hours spent on the electronic scattering calcu-
lations. The time spent on the subsequent AN calculations to
produce rovibrationally resolved cross sections is insignificant
by comparison.

IV. RESULTS

In this section, we present AN cross sections for rotational
transitions within the X 1�+

g (vi = 0) state of H2. There are 32
rotational levels N = 0 − 31 for which the v = 0 vibrational
wave function is bound, and hence there are 92 possible tran-
sitions with �N = 0,±2 (transitions with �N = ±4,±6, . . .

are possible but with much smaller cross sections). Data files
for the results presented here are available online [13].

A. Previous calculations and measurements

Rotationally elastic scattering and rotational excitation of
H2 by electron impact have been investigated previously in
great detail, both by theory and experiment. In Table II we
summarize the various theoretical and experimental studies
with which we compare our calculations and specify the meth-
ods applied in each. Some older work is omitted from the table
and our later comparisons where the results have already been
shown to be inaccurate (e.g., the 1956 calculations of Massey
and Ridley [21] were later shown to be inaccurate because
they included only s-wave scattering [22]).

Early rotational close-coupling (RCC) calculations were
performed in the late 1960s by Lane and Geltman [23] using
the rigid-rotator (RR) approximation (fixed internuclear sep-
aration) and a model interaction potential (MIP) to account
for target polarization. The effects of the exchange interac-
tion were excluded, and hence, as stated by the authors, the
molecule is represented by a rigid rotator with a polarizable
charge distribution. Once the problem has been simplified to
this point it is feasible to perform calculations with coupling
between rotational excitation channels, i.e., without invoking
the AN approximation. By contrast, a close-coupling calcula-
tion including rotational, vibrational, and electronic channel
couplings would be computationally prohibitive even by to-
day’s standards (although recent work suggests this will soon
change [18]). Subsequent work by Henry and Lane [22] em-
ployed the same approach but with the inclusion of exchange.
This addition proved to make a substantial difference in the
elastic and rotational excitation cross sections, and yielded
much better agreement with experiment compared to the pre-
vious work.

Numerous studies have been performed since the above,
up until the most recent calculations by Telega and Gianturco
[24] in 2005. Some have utilized RCC, or even RVCC, and
some have employed the AN approximation to neglect all
couplings. Morrison and co-workers [4,25–27] have spent
considerable time investigating the differences between RCC,
RVCC, and AN calculations, suggesting corrections to the AN
approximation such as the energy-modified adiabatic (EMA)
and FONDA methods. The common factor among almost all
previous calculations is the use of MIPs in place of a rigor-
ous account of coupling to the closed electronically inelastic
channels. In many cases the (somewhat arbitrary) choice of

TABLE II. A summary of the various studies applied previously
to electron-impact elastic scattering and rotational excitation of H2

referred to in the present work. The acronyms for the theoretical
methods are defined in the footnote to the table.

Reference Year Description

Calculations
Lane and Geltman [23] 1967 RCC, RR, MIP
Henry and Lane [22] 1969 RCC, RR, MIP
Hara [30] 1969 AN, MIP
Lane and Geltman [31] 1969 Same as Ref. [23]
Henry [32] 1970 RVCC, MIP
Henry and Chang [33] 1972 RVCC, FT, MIP
Morrison et al. [25] 1984 RCC/AN/EMA,

RR, MIP
Morrison and Saha [26] 1986 RVCC, MIP
Morrison et al. [27] 1987 RVCC, MIP
Trail et al. [34] 1990 VIBAV, MIP
Morrison et al. [4] 1991 FONDA, MIP
Telega et al. [35] 2004 RCC, MIP
Telega and Gianturco [24] 2005 RVCC, MIP

Experiment
Ehrhardt and Linder [36] 1968 Beam
Crompton et al. [37] 1969 Swarm
Gibson [38] 1970 Swarm
Linder and Schmidt [39] 1971 Beam
Wong and Schultz [40] 1974 Beam
Ferch et al. [41] 1980 Beam
Furst et al. [42] 1984 Beam
Jones [43] 1985 Beam
England et al. [28] 1988 Swarm
Subramanian and Kumar [44] 1985 Beam

RCC: Rotational close-coupling
RVCC: Rovibrational close-coupling
RR: Rigid-rotator approximation
MIP: Model interaction potential
AN: Adiabatic-nuclei approximation
FT: Frame transformation method
VIBAV: Vibrationally averaged interaction potential
EMA: Energy-modified adiabatic
FONDA: First-order nondegenerate adiabatic

polarization and exchange potentials can lead to drastically
different results between various calculations.

Several experiments were performed from the 1960s to
1980s. In Table II we have specified whether they are crossed-
beam experiments (where the DCS is directly measured and
integrated to produce the ICS) or swarm experiments (where
the ICS is inferred from the analysis of transport coefficients
derived from swarm data). As explained by England et al.
[28], the rotational excitation cross sections can be uniquely
derived from a swarm experiment only below the first vi-
brationally inelastic threshold at around 0.4 eV. Although
England et al. [28] do present results up to 15 eV, the cross
sections above 1.3 eV for N = 1 → 3, and above 0.4 eV for
N = 0 → 2, N = 2 → 4, and N = 3 → 5, are in fact taken
from calculations of Morrison et al. [27,29], and hence when
presenting their results in the following sections we restrict
them to energies corresponding to the actual measurements.
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FIG. 2. Integrated cross sections for rotationally, vibrationally,
and electronically elastic collisions with H2. Comparison is made
with the measurements of Linder and Schmidt [39], Ferch et al. [41],
Furst et al. [42], Jones [43], and Subramanian and Kumar [44].

The calculations of Morrison et al. [27,29] are presented sep-
arately as theoretical results.

B. Elastic scattering

In Fig. 2 we present the integrated cross section(s) for elas-
tic scattering on H2. In principle, the term elastic scattering
should refer only to transitions in which neither the rotational
or vibrational quantum numbers change. However, the limits
of energy resolution in experiments can make it challenging
to extract the pure elastic scattering cross sections, with some
authors instead presenting the vibrationally or electronically
elastic cross sections. To our knowledge, only Linder and
Schmidt [39] measured the rotationally elastic cross section.
Ferch et al. [41], Furst et al. [42], Jones [43], and Subramanian
and Kumar [44] measured the total cross section, which below
around 10 eV is equivalent to the electronically elastic cross
section. (The b 3�+

u excitation opens around 5 eV, but for
vi = 0 it makes an insignificant contribution to the total cross
section below 10 eV [45].)

Our calculation of the rotationally elastic cross section falls
within the error bars of Linder and Schmidt [39] but gener-
ally somewhat higher than the reported values, particularly at
0.3 eV. However, we note that at this energy the rotationally
and electronically elastic cross sections are essentially the
same, and our calculation of the latter is in good agreement
with Ferch et al. [41] between 0.1 and 1.0 eV. Below 0.1 eV
the measurements of Ferch et al. [41] are up to 20% larger than
the MCCC calculations. At present we have no explanation
for this except to say that we have verified convergence of
the elastic cross section, and any potential uncertainties in the
calculations due to numerical considerations cannot account
for this discrepancy. Above 1 eV there is excellent agreement
between the MCCC calculation of the electronically elastic
cross section and the remaining measurements. A handful
of measurements have been performed for the vibrationally
elastic cross section, e.g., Brunger et al. [46] and references

FIG. 3. Integrated cross section for rotationally elastic collisions
with H2. Comparison is made with the calculations of Henry and
Lane [22], Lane and Geltman [23], Morrison et al. [25], Morrison
and Saha [26], Trail et al. [34], Telega et al. [35], and Telega and
Gianturco [24], and the measurements of Linder and Schmidt [39].

therein; however, we neglect them in Fig. 3 to maintain read-
ability. We justify the omission by noting that the vibrationally
and electronically elastic cross sections differ by only a few
percent at most, there is already excellent agreement between
MCCC and experiment for the latter, and the most recent
vibrationally elastic measurements [46] come with error bars
large enough to overlap the rotationally and electronically
elastic cross sections. In Fig. 3 we compare the MCCC
calculations and the measurements of Linder and Schmidt
[39] for the rotationally elastic cross section with a number
of previous calculations. The results of Morrison and Saha
[26] and Trail et al. [34] are in good agreement with MCCC,
while Morrison et al. [25] agrees with MCCC around 3 eV but
is higher at lower energies, and Telega and Gianturco [24] is
systematically 10%–15% higher than MCCC. The remaining
calculations are in worse agreement with MCCC and predict
different qualitative behavior of the cross section.

In Fig. 4 we present the momentum-transfer cross section

σ mt =
∫

dσ elastic

d�
(1 − cos θ )d�, (29)

corresponding to each of the rotationally, vibrationally, and
electronically elastic cross sections presented in Fig. 2. The
difference between the three is smaller here than it is for the
elastic scattering cross sections, but there is still a discrepancy
of about 10% at the cross-section peak at around 2–3 eV,
which will naturally impact the calculation of transport and
rate coefficients. We compare with the swarm experiments
of Crompton et al. [37], Gibson [38], and England et al.
[28], which are in reasonable agreement with the vibrationally
and electronically elastic MCCC momentum-transfer cross
sections. Similarly to above, below 0.1 eV the MCCC cross
section is somewhat lower than experiment, but here the
discrepancy is at most 10%. We also include the cross sec-
tion taken from the Biagi dataset on the LXCat database
[47], which between 2 and 6 eV agrees with the MCCC
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FIG. 4. Momentum-transfer cross sections for rotationally, vi-
brationally, and electronically elastic collisions with H2. Comparison
is made with the swarm experiments of Crompton et al. [37], Gibson
[38], and England et al. [28], and data taken from the Biagi dataset
on LXCat [47].

rotationally elastic cross section and elsewhere agrees better
with the electronically elastic cross section. Several of the
authors referenced in Fig. 3 also calculated the momentum-
transfer cross section, but since the comparison with MCCC
is much the same as it is for the elastic scattering cross section,
we exclude them from Fig. 4 to maintain readability. In
Fig. 5 we present DCS for rotationally and vibrationally elas-
tic scattering, and compare with the calculations of Lane and
Geltman [31] and measurements of Linder and Schmidt [39]
(both rotationally elastic). Within the AN approximation, the
rotationally elastic cross section is independent of Ni, so the
MCCC calculations presented here are for N = 0 → 0, and
they are directly comparable to the N = 1 → 1 calculations of
Lane and Geltman [31]. There is excellent agreement between
the measurements and the MCCC calculations, aside from
some slight discrepancies at the lower energies, and in several
cases the experimental uncertainties are small enough that the
measurements sit right on top of the MCCC rotationally elas-
tic DCS without the error bars overlapping the vibrationally
elastic DCS, a satisfying indication of the accuracy in the
MCCC calculations. Note that we determined the uncertainty
in the elastic DCS of Linder and Schmidt [39] to be 8.7% by
combining (according to the Gauss error law) the three inde-
pendent sources of 5% errors identified in points II, IV, and
V of their discussion of errors. A detailed comparison of the
MCCC electronically elastic DCS with various calculations
and experiment can be found in the PhD thesis of Savage [20].

C. Rotational excitation

In Figs. 6 and 7 we present the N = 0 → 2 (para-H2) and
N = 1 → 3 (ortho-H2) cross sections and compare with the
large number of available calculations and measurements as
cited in the figures. At low energies the MCCC calculations
are in excellent agreement with the swarm measurements
of Crompton et al. [37] and England et al. [28] for the

FIG. 5. Differential cross sections for rotationally and vibra-
tionally elastic collisions with H2. Comparison is made with the
calculations of Lane and Geltman [31] and measurements of Linder
and Schmidt [39].

N = 0 → 2 transition and of England et al. [28] and Gibson
[38] for N = 1 → 3. Older swarm analysis was also per-
formed by Engelhardt and Phelps [48]; however, their results
are incompatible with the subsequent swarm studies cited
above, so we do not present them here. There have been no
beam measurements for the N = 0 → 2 transition, so above
0.5 eV it is up to theory alone to determine the cross section.
The greatest discrepancy between the various calculations is
at the cross-section peak at around 4–5 eV. Being 100 times
the threshold energy, one should expect the AN approximation
to perform well here, and indeed, Morrison et al. [4] showed
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FIG. 6. Integrated cross section for the N = 0 → 2 transition.
Comparison is made with the calculations of Henry and Lane [22],
Lane and Geltman [23], Morrison et al. [25], Morrison and Saha
[26], Morrison et al. [27], Hara [30], Trail et al. [34], Telega et al.
[35], Morrison et al. [4], and Telega and Gianturco [24], and the
measurements of Crompton et al. [37] and England et al. [28].

this to be the case by comparing AN and RVCC calculations
using identical potentials. Hence, we can only conclude that
the differences between each of the calculations are due to
the various choices of polarization and exchange potentials,
and with the MCCC calculation being the only one with an
exact account of exchange and coupling to closed electronic
channels, we can have confidence in its validity.

For the N = 1 → 3 transition there are beam measure-
ments up to 10 eV from Ehrhardt and Linder [36], and Linder
and Schmidt [39]. The MCCC cross section is in between the
two sets of measurements but in better agreement with the

FIG. 7. Integrated cross section for the N = 1 → 3 transition.
Comparison is made with the calculations of Henry and Lane [22],
Lane and Geltman [23], Hara [30], Morrison et al. [25,27], and Trail
et al. [34], and the measurements of England et al. [28], Ehrhardt and
Linder [36], Gibson [38], and Linder and Schmidt [39].

FIG. 8. Integrated cross section for the N = 2 → 4, 2 → 0,
3 → 5, and 3 → 1 transitions. Comparison is made with the calcu-
lations of Lane and Geltman [23], Telega and Gianturco [24], Telega
et al. [35], and Morrison [29], and the measurements of England et al.
[28].

latter from 2 to 10 eV. From 0.4 to 2 eV our agreement with
Linder and Schmidt [39] is worse, but the excellent agreement
between MCCC and nearly all other theories and the swarm
experiments at 0.4 eV suggests that Linder and Schmidt [39]
have overestimated the cross section here. Here we have used
an uncertainty of 10% for Linder and Schmidt [39], by com-
bining the 8.7% uncertainty in the elastic DCS with the 5%
uncertainty in the inelastic to elastic ratio specified in point I
of their discussion of errors for energies 1.5 eV and above.

In Fig. 8 we present cross sections for the N = 2 → 4,
2 → 0, 3 → 5, and 3 → 1 transitions, for which there are
far fewer previous results to compare to. Lane and Geltman
[23] calculated each of these cross sections, and the com-
parison with MCCC is the same for each as it was for the
N = 0 → 2 and N = 1 → 3 transitions—perfect agreement
at 20 eV but significant disagreement at lower energies due to
their neglect of exchange. England et al. [28] provided swarm
measurements of the N = 2 → 4 and 3 → 5 cross sections,
and as before they are in perfect agreement with MCCC. The
calculations of Morrison [29] were provided to England et al.
[28] as a private communication in order to extend the swarm
cross sections above 0.4 eV, and hence we present them here
as a calculation rather than experiment despite extracting them
from England et al.’s [28] recommended cross section. The
agreement between MCCC and Morrison [29] is good, aside
from a small discrepancy around the peak of the N = 2 → 4
cross section. The calculations of Telega et al. [35] and Tel-
ega and Gianturco [24] underestimate the N = 2 → 4 cross
section at low energies and overestimate around the peak.
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FIG. 9. Differential cross sections for the N = 0 → 2 transition.
Comparison is made with the calculations of Morrison et al. [25,4]
using the RCC, AN, EMA, and FONDA techniques, and the AN
calculation of Hara [30]. See Table II for acronym definitions.

In Fig. 9 we present DCS for the N = 0 → 2 excitation,
compared with the calculations of Morrison et al. [25,4] and
Hara [30]. For the N = 0 → 2 transition, Morrison et al.
[25,4] compared their RVCC calculation (the most accurate
treatment of the nuclear dynamics) with the AN approxima-
tion and the two modified adiabatic methods (EMA, FONDA)
they proposed. At 0.1 eV there is a noticeable difference be-
tween the RVCC and AN DCS at forwards scattering angles.
The AN approximation is typically applied with the additional
assumption of degeneracy between the rovibrational energies,
so that the same “on-shell” electronic scattering amplitudes
can be used for all rovibrational transitions (on-shell here
meaning that energy conservation is enforced at the level of
the electronic scattering calculations but then violated in the
AN calculations). The FONDA calculation of Morrison et al.
[25] removes this degeneracy by using “off-shell” electronic
amplitudes, and reproduces the RVCC DCS almost perfectly.
Therefore, discrepancy between the AN and RCC DCS at
0.1 eV is not related to coupling between rotational levels but
is rather a consequence of the violation of energy conservation
in the standard AN approach. The MCCC calculations are
qualitatively similar but systematically larger than Morrison
et al. [25] at 0.1, 1.5, and 6.0 eV, in line with the underesti-
mation of Morrison et al.’s [25] ICS for this transition seen
in Fig. 6. The calculations of Hara [30] at 4.5 and 10.0 eV
approach the same value as the MCCC DCS at forwards scat-

FIG. 10. Differential cross sections for the N = 1 → 3 transi-
tion. Comparison is made with the calculations of Henry and Lane
[22], Morrison et al. [27], Hara [30], and Lane and Geltman [31],
and the measurements of Linder and Schmidt [39], Jung et al. [49],
and Wong and Schultz [40].

tering, but they underestimate at 90 degrees and overestimate
at backwards scattering.

In Fig. 10 we present DCS for the N = 1 → 3 excitation,
compared with the calculations of Henry and Lane [22], Mor-
rison et al. [27], Hara [30], and Lane and Geltman [31], and
the measurements of Linder and Schmidt [39], Jung et al. [49],
and Wong and Schultz [40]. At 0.2 eV, the RVCC calcula-
tions of Morrison et al. [27] reproduce the forward-scattering
angular dependence of the DCS measured by Jung et al.
[49], while MCCC does not due to the breakdown of the AN

062804-11



LIAM H. SCARLETT et al. PHYSICAL REVIEW A 107, 062804 (2023)

FIG. 11. Differential cross sections for the N = 2 → 4 and
N = 3 → 5 transitions at 4.5 eV. Comparison is made with the
calculations of Henry and Lane [22].

approximation at near-threshold energies. However, the mag-
nitude of the MCCC DCS above 30 degrees is in somewhat
better agreement with the experiment. At 0.6 eV the mea-
surements agree better with Morrison et al. [27], though the
error bars are large enough to overlap the MCCC DCS, and
given that the MCCC ICS is in excellent agreement with the
swarm measurements in this energy region (see Fig. 7), it
is possible the beam measurements of Jung et al. [49] are
somewhat too high. The agreement between MCCC and the
Linder and Schmidt [39] DCS measurements follow what
was seen in Fig. 7 for the ICS—worse at low energies and
improving at higher energies, and again we suggest that the
beam measurements may be too high at lower energies given
the agreement between MCCC and the swarm experiments.
At 4.5 eV and above, the Linder and Schmidt [39] and MCCC
DCS are in good agreement between 60 and 120 degrees,
with the MCCC result being lower than the measurements at
smaller scattering angles. At 4.5 eV the calculation of Henry
and Lane [22] is in perfect agreement with MCCC, and the
measurements of Wong and Schultz [40] are in good agree-
ment with MCCC (perfect above 60 degrees), being somewhat
lower than Linder and Schmidt [39] below 70 degrees. Tak-
ing these facts into consideration, along with the excellent
agreement between MCCC and Linder and Schmidt [39] for
the rotationally elastic DCS, we suggest that the rotationally
inelastic measurements of Linder and Schmidt [39] may be
overestimated at smaller scattering angles and lower energies.
The remaining previous calculations in Fig. 10 are all in poor
agreement with MCCC and with experiment.

In Fig. 11 we present DCS for the N = 2 → 4 and 3 → 5
excitations at 4.5 eV, compared with the calculations of Henry
and Lane [22] (at 4.42 eV). There is good agreement between
the two calculations. No other calculations or measurements
have been performed for these transitions.

In Fig. 12 we present the entire set of cross sections with
|�N | � 2 and Ni = 0–31. The rotationally elastic cross sec-
tions are relatively insensitive to changes in Ni, while the
excitation cross sections (�N = 2) decrease with increasing
Ni and vice versa for deexcitation (�N = −2). The latter two
have a similar energy dependence above 1 eV but deviate
at lower energies, as the �N = 2 transitions have thresholds
not present in the �N = −2 transitions. Around the peak

FIG. 12. Integrated cross sections for excitation (�N = 2),
deexcitation (�N = −2), and elastic scattering (�N = 0), illustrat-
ing the dependance on the initial rotational level Ni.

of the cross sections it can be seen that the excitation and
deexcitation cross sections both converge to a similar curve
as Ni increases. This appears to be a result of the energy
spacings between rotational levels becoming more regular as
N increases, i.e., the energies fall more or less along a straight
line for higher N as shown in Fig. 13, reducing the dependence
of the inelastic cross sections on Ni.

V. CONCLUSIONS

We have performed calculations of elastic scattering and
rotational excitation of H2 by 0.01–20 eV electron impact us-
ing the adiabatic-nuclei molecular convergent close-coupling
(MCCC) method. Integral and differential cross sections have
been presented and compared with the available measure-
ments and previous calculations. Agreement between the
various theories is somewhat variable due to the use of model

FIG. 13. Energies of the rotational levels in the v = 0 vibrational
state of para- and ortho-H2. A straight line is fitted to the N > 14
energies to indicate the more regular spacings between the higher
levels.

062804-12



ELASTIC SCATTERING AND ROTATIONAL EXCITATION … PHYSICAL REVIEW A 107, 062804 (2023)

polarization and exchange potentials in the previous calcu-
lations, which introduces significant error, while the present
calculations solve the electronic component of the scattering
problem without approximation. This source of uncertainty in
the older calculations appears to be much more important than
the differences between the various approaches to modeling
the nuclear dynamics, which is what much of the previous
work has focused on.

Agreement between the present calculations and integral
cross sections derived from swarm experiments is excellent
where they are available, while agreement with beam experi-
ments is poorer at low energies. Above 4 eV we find overall
good agreement with the integral and differential cross sec-
tions from the beam measurements, but suggest that Linder
and Schmidt [39] may have overestimated the cross section
at scattering angles below 60 degrees. A measurement of the
4.5 eV N = 1 → 3 differential cross section by Wong and
Schultz [40] supports this assertion.

Some of the present cross sections have already been
utilized in a study of the cosmic-ray ionization rate in molec-
ular clouds [2], and we expect that they will be useful for
future modeling of low-temperature plasmas such as those
found in astrophysical environments or the edge, divertor, and

ion-source plasmas in fusion research. The results presented
here can be downloaded from the MCCC database [13].
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