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Protecting classical-quantum signals in free-space optical channels
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Due to turbulence and tracking errors, free-space optical channels involving mobile transceivers are charac-
terized by a signal’s partial loss or complete erasure. This work presents an error-correction protocol capable
of protecting a signal passing through such channels by encoding it with an ancillary entangled bipartite state.
Beyond its ability to offer protection under realistic channel conditions, our protocol has the ability to transmit
both a quantum state and a classical symbol using the same encoded state. We show how the protocol can
improve the fidelity of transmitted coherent states over a wide range of losses and erasure probabilities relative
to nonencoded direct transmission. In addition, the use of ancillary non-Gaussian entangled bipartite states in
the signal encoding is considered, showing how this can increase performance. Finally, we briefly discuss the
application of our protocol to the transmission of more complex input states, such as multimode entangled states.
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I. INTRODUCTION

Building a global quantum network is a major technolog-
ical challenge [1]. Any quantum technology that relies on
mature hardware may provide a practical path forward. Con-
tinuous variable (CV) quantum communications, which can
be implemented using off-the-shelf components, is one such
technology [2–4]. In this technology, quantum information
is extracted using homodyne or heterodyne measurements:
detection techniques previously developed to extract classi-
cal information encoded via coherent communications [5–7].
Interestingly, CV quantum and coherent communications can
coexist using the same signal [8–13], and we study this in-
teresting coexistence of classical and quantum information
here. Our main contribution will be the introduction of a
combined classical-quantum encoding protocol that accom-
modates a wide range of partial loss and erasure conditions
in the channel. As we discuss later, such conditions are those
anticipated for practical free-space optical channels, where at
least one of the transceivers is mobile.

Optical free-space communications provide the basis for
long-range communications, both classical [14] and quan-
tum [4], through horizontal channels on the ground [2,4]
or more general channels to (or sometimes between) fly-
ing objects such as drones [15], aircraft [16], or satellites
[17–19]. However, beam deformation and wandering induced
by the turbulent atmosphere can have detrimental conse-
quences [20–23]. If at least one of the transceivers is mobile
and untethered, then further misalignment of the optical beam
introduced by transceiver motion (e.g., jitter) must also be
considered [24,25]. Any error-correction protocol that can al-
leviate such combined effects would be useful for a pragmatic
communication deployment.

In the context of quantum information alone, previous
works have analyzed and experimentally demonstrated how

error correction of the pure erasure channel (total loss in
a channel) can be achieved by introducing ancillary modes
transmitted through independent channels [26–30]. Unlike
these previous works, however, we present a protocol capable
of error correction under more realistic conditions and accom-
modating combined classical-quantum information encoding.
The realistic channel conditions we consider encompass a
range of loss conditions across the independent channels, not
just simple erasures. As we shall see, careful monitoring of the
channel losses via separate bright classical reference signals
provides the feedback mechanism to protect a three-mode-
encoded classical-quantum signal under our realistic channel
conditions.

Our specific contributions in this work can be summarized
as follows: (i) We develop a three-channel error-correction
protocol capable of correcting any amount of loss on one
mode of a three-mode quantum state while allowing some
loss on the other modes, demonstrating how to optimize sig-
nal recovery. (ii) We show that transmitted coherent states
exhibit a substantial improvement in fidelity over direct state
transmission using one channel under our protocol. (iii) We
demonstrate how the transmission of classical symbols can
be embedded into the protocol by adding a displacement
operation. Following a modulation scheme that defines the
symbols, the displacement characteristics needed to achieve
communications with a specific bit-error rate are quantified.
(iv) We show how non-Gaussian states used as entangled
ancillary states within the protocol can further increase the
fidelity of transmitted states. (v) We investigate whether the
trends found for coherent states also apply to the distribution
of entanglement by the protocol, discussing how care must be
taken in interpreting the transmission of different input states.

This work is organized as follows. In Sec. II, the protocol is
introduced. Section III presents simulation results of the state
transmission via the protocol. The usefulness of non-Gaussian

2469-9926/2023/107(6)/062616(13) 062616-1 ©2023 American Physical Society

https://orcid.org/0000-0001-7367-8195
https://orcid.org/0000-0003-3457-4451
https://orcid.org/0000-0003-1729-3076
https://orcid.org/0000-0001-9672-5601
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.062616&domain=pdf&date_stamp=2023-06-30
https://doi.org/10.1103/PhysRevA.107.062616


E. VILLASEÑOR et al. PHYSICAL REVIEW A 107, 062616 (2023)

FIG. 1. The protocol to transmit a quantum state and a classical symbol concurrently. The protocol protects a single-mode quantum state
against erasures by combining it with an entangled bipartite state |ψAB〉. A classical symbol is encoded using the displacement operation
applied in mode 2. Bob monitors the channels via the LOs. The syndrome measurement corresponds to a dual homodyne measurement. Using
the syndrome result, a correction is applied to mode 1′ to recover the original quantum state. Dashed lines represent the transmission of classical
information required to optimize the protocol. Turbulence simulations were obtained via phase screen simulations (b). Here, rt and rd represent
aperture radii, and L is the distance between transceivers.

operations is presented in Sec. IV. Potential modifications to
the protocol are discussed in Sec. V, as are discussions on the
use of alternate input states to the protocol. Our conclusions
are drawn in Sec. VI.

II. THE PROTOCOL

In Fig. 1(a), our protocol is presented. The protocol con-
sists of the concurrent transmission of a classical symbol and
a quantum state embedded into an error-correction protocol.
The error-correction code is first described, followed by the
transmission and recovery of the classical symbol via the
protocol.

The following steps are followed to perform error cor-
rection in the protocol. (i) Alice initially possesses the
single-mode quantum state |φs〉, the “quantum signal” state to
be error corrected in mode 1◦, alongside an entangled bipartite
state |ψAB〉 in modes 2◦ and 3◦. (ii) The state |φs〉 is combined
with mode 2◦ of the state |ψAB〉 using a balanced beam splitter
(BS), shown as BS1, to create a three-mode encoded state.
(iii) The three modes of the encoded state are transmitted via
the three fluctuating channels (acting independently on the
three modes). The loss applied to each mode is characterized
by the transmissivity coefficient Tj with j = 1, 2, 3. A local
oscillator (LO) is transmitted from Alice to Bob through each
channel (a bright classical beam of known amplitude multi-
plexed with each mode). (iv) Bob receives the three modes, 1,
2, and 3. (v) Bob obtains Tj information on the channels by
monitoring the three LOs. (vi) Bob uses a second BS (BS2),
on modes 1 and 2 to decode the state. (vii) Applying a third BS
(BS3), dual homodyne measurements are then performed on
modes 2′ and 3′ (referred to as the syndrome measurements
x̃ and p̃). (viii) Bob uses his channel information, combined

with the syndrome measurements, to determine the optimal
corrective displacement D̂corr that is applied to mode 1′ to
obtain the output state |φout〉 of the protocol. If error correc-
tion was successful then, |φout〉 will deviate only marginally
from |φs〉.

A critical protocol component is the classical computing
required to apply the correction D̂corr. This classical compu-
tation can be thought of as an algorithm that takes as inputs
the measured Tj in each channel; the syndrome measurements
x̃ and p̃; and the (premeasured) excess noise in each channel;
and determines the optimal value of the gain g in D̂corr that
will be applied to mode 1′ so to optimize the fidelity between
|φout〉 and |φs〉. The details of this optimization procedure are
nontrivial and are explained in detail below. However, suffice
it to say this procedure can be implemented in software a
priori. In the following, we will utilize one particular quantum
information formalism to illustrate how the needed calcula-
tions within the software can be implemented.

The simulation results that appear later will be based on
two steps: (i) the derivation of the analytical expressions for
the transformations of quantum states in each step of Fig. 1(a);
and (ii) the numerical simulations to determine the probability
distributions for the transmissivity of each channel (based on
models of the phase screens indicated in Fig. 1(b) required as
input to the analytical expressions.

A. State transformation

A previous result [31] demonstrates that the outcome state
of CV quantum teleportation can be elegantly computed using
the characteristic function (CF) formalism. In this work, we
present a similar result.

062616-2



PROTECTING CLASSICAL-QUANTUM SIGNALS IN … PHYSICAL REVIEW A 107, 062616 (2023)

For any n-mode quantum state ρ̂, its CF is defined as

χ (λ1, λ2, . . . , λn) = Tr{ρ̂D̂(λ1)D̂(λ2) . . . D̂(λn)}, (1)

where λi ∈ C, and D̂ is the displacement operator

D̂(λ j ) = eλ j â
†
j −λ∗

j â j , (2)

where â j and â†
j are, respectively, the annihilation and creation

operators of mode j, and ∗ represents the complex conju-
gate. Using the CF formalism, linear optics operations can
be expressed by simply transforming the CF arguments while
leaving the functions unchanged. The effect of a loss-noise
channel, with transmissivity Tj and excess noise ε on a single-
mode quantum state, corresponds to the transformation of its
CF as

χ (λ)
channel−−−→ χ (

√
Tjλ)χ |0〉(

√
1 − Tj + ελ), (3)

where χ |0〉 is the CF of the vacuum state.
The full derivation of the CF of |ψout〉 is presented in

Appendix A. Given the CF of the quantum signal, χ s(λ1),
and the CF of the entangled state, χAB(λ2, λ3), the CF of the
output state corresponds to

χout (λ) = χ s((T+ + g̃T−)λ) (4)

×χAB((T− + g̃T+)λ,
√

T3g̃λ∗)

×χ |0〉(
√

(1 + ε)(2g̃2 + 1) + 2g2(1 − η2) − T ′λ),

(5)

with

T+ =
√

T1 + √
T2

2
; T− =

√
T1 − √

T2

2
;

T ′ = T1

2
(1 + g̃)2 + T2

2
(1 − g̃)2 + T3g̃2. (6)

Here, g̃ = gη, with η2 the efficiency of the homodyne mea-
surements. The gain parameter when applying D̂corr, g,
corresponds to a free parameter Bob can select at will (see
Appendix A for more detail). Error correction in the protocol
works when Bob selects the appropriate value of g based on
the knowledge he obtains by monitoring the channels. By
selecting the appropriate value of g, the output state can be
made independent of the loss affecting one of the three modes
in the encoded state. The ideal scenario occurs when two of
the three modes are unaffected by the loss. In this scenario,
g can always be selected to nullify the loss effects in the
remaining mode. For more insight, some idealized scenarios
with specific g values are discussed in the Appendix B.

Transmission of classical symbols. The only additional re-
quirements for transmitting classical symbols are an agreed
digital modulation scheme between Alice and Bob and an
extra displacement operation D̂(	). During the first step in
the error correction, the operation D̂(	) is used by Alice to
encode a symbol on mode 2◦ of |ψ〉AB immediately after it
has been prepared. Following a predetermined digital mod-
ulation scheme, the symbol corresponds to one or multiple
classical bits. Bob automatically recovers the symbol from the
syndrome measurement results values x̃ and p̃. Note, we adopt
h̄ = 2; and 	, x̃, and p̃ are dimensionless (the variance of the
vacuum noise is one).

TABLE I. Free-space communications parameters.

λ (nm) rt (cm) C2
n ([m]−2/3) l0 (mm) L0 (m)

1550 2.5 2.47 × 10−13 7.5 1.57

B. Transmissivity calculations

The technique used here to model turbulence via phase
screen simulations has been detailed extensively in our pre-
vious works, with experimental validation over a horizontal
free-space channel of 1.5 km [32]. The simulation methodol-
ogy in this work follows our previous works; details can be
seen in [32,33].

Our phase screen simulations allow us to find the probabil-
ity density function (PDF) of the transmissivity in the channel
for any given communications setup. Henceforth, we refer to
this PDF as P . The dominant parameters of a communication
setup are the propagation distance L, the wavelength of the
light used λ, the beam waist at the transmitter rt , and the size
of the receiving aperture rd. These parameters will be fixed to
be values shown in Table I (except for L and rd). For focus,
we assume a horizontal channel in the results we show here;
however, other configurations can be easily accommodated
via small changes in the simulations [32]. A total of 10 uni-
formly distributed phase screens are used, and the grid size of
complex numbers is 1500×1500. Figure 2 shows the resulting
transmissivities from our calculations.

Beyond turbulence, other real-world system issues can af-
fect the channel transmissivity. Most notable are the pointing
and tracking errors between the transmitter and receiver that
create a jitter and/or deterministic offsets of the beam di-
rection [24,25]. In our channel model, we will account for
these effects by the addition of erasures into the PDF of
the transmissivity. That is, for each optical beam sent from
the transmitter to the receiver, we consider that there is a
probability pe of it entirely missing the receiver (correspond-
ing to Tj = 0). In other words, for a given communications
setup (e.g., the transceiver apertures, propagation distance,
and wavelength) with corresponding PDF P , and an erasure
probability pe, the values of Tj are now given by the following

FIG. 2. Transmissivities obtained from the model of the free-
space channel following the parameters in Table I. The shaded area
represents the standard deviation of the curves.
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modified PDF:

Tj =
{

Tj ∼ P with probability(1 − pe),

0 with probabilitype,
(7)

where X ∼ Y indicates that a random variable X is drawn
from distribution Y . This channel model represents a good
approximation to the real-world channel of interest to us, a
channel where erasure probability is high.1 Also, extending
the channel model via a new probability pe to parametrize the
additional loss caused by transceiver movement and offsets
allows us to compare better with previous related work.

III. SIMULATIONS

Here, we first outline the CFs of the main quantum re-
sources we use and make clear how we determine the fidelity,
the key metric we use. We then discuss the performance of
the quantum and classical communication under the protocol,
detailing how the optimization of g is determined for each
simulation run.

A. Quantum resources

The quantum signal is a coherent state |α〉, whose CF is

χ |α〉(λ) = exp

[
−|λ|2

2
+ (λα∗ − λ∗α)

]
. (8)

The two-mode squeezed vacuum (TMSV) state |ψAB〉 used in
the encoding has a CF,

χTMSV(λA, λB) = exp
[− 1

2 (|λ′
A|2 + |λ′

B|2)
]
. (9)

In deriving this, the following transformation has been used
[34]:

ŜAB(�)D̂(λA)D̂(λB)Ŝ†
AB(�) = D̂(λ′

A)D̂(λ′
B),

λ′
j = cosh(r)λ j + eiφ sinh(r)λ∗

k , j, k = {A, B}, j 
= k

(10)

with ŜAB the two-mode squeezing operator, and with � = reiφ .
Without loss of generality, the value φ = π is set. Finally, the
CF of the vacuum state |0〉 that appears in Eq. (5) is

χ |0〉(λ) = exp

[
−|λ|2

2

]
. (11)

Fidelity is used as the metric of the effectiveness of the
protocol. The fidelity represents the closeness between the
quantum signal |ψs〉 and the output state |ψout〉. In the CF
formalism, the fidelity is computed as

Fα = 1

π

∫
d2λ χ s(λ)χout (−λ). (12)

1In channels where P indicates a small probability for T ∼ 0, and
where pe ∼ 0, we find that no improvement from the protocol is
likely, the transmission may as well be just direct. If a priori known
that pe = 0, we have a Gaussian channel, and the introduction of
non-Gaussian states or measurements into the protocol is needed if
any advantage is to be forthcoming.

The fidelity as defined in Eq. (12) will depend on each input
state’s value α. Therefore, the mean fidelity over an ensemble
of coherent states must be considered. The following Gaussian
distribution specifies the ensemble:

Pα (α) = 1

σαπ
exp

[
−|α|2

σα

]
, (13)

with σα the variance. Therefore, the fidelity over the ensemble
of coherent states will be used, defined as

F =
∫

dα2Pα (α)Fα. (14)

Ideally, we would like to compute the fidelity considering
a uniform distribution of coherent states (corresponding to
σα → ∞); however, this would be analytically intractable. An
approximation to a uninform distribution can be obtained by
setting a large enough variance, σα = 10 (a value we adopt
through this work). For reference, the so-called classical limit
Fclass = 0.52 sets the baseline where fidelities of transmission
below this value could be obtained using purely classical
communications [35].

Using Eq. (5) with Eq. (14) it becomes possible to find
an analytical expression of the fidelity for the ensemble of
coherent states. This expression is provided in Appendix C,
Eq. (C1). Additionally, the fidelity for direct transmission
for the ensemble of coherent states Fdir is also presented in
Appendix C, Eq. (C3).

B. Transmission of quantum states

After Bob has received the three modes, he can use the
information gained by monitoring the channels to apply the
correction D̂corr to reduce his state to the output state given by
Eq. (4). Of course, if any a priori information about the chan-
nels could have been known, one would use the best channel
instead of transmitting an encoded state via three channels.
Nonetheless, the fact that the channels behave stochastically
makes it impossible to select the best channel. In effect, we
emphasize that the usefulness of this error-correction scheme
hinges on the stochastic behaviors of the channel. In principle,
error correction is not restricted to stochastic loss, a similar
scheme could be used to correct other types of errors, such as
displacements [28].

In the following calculations, a homodyne measurement
efficiency of η2 = 0.9 is set unless specified otherwise. Fluc-
tuations of the free-space channel produce several effects
contributing to the excess noise [21,22]. We have modeled
the excess noise in our simulation as ε = εph + εdet. Here,
εph is related to noise introduced by the displacement used
in the encoding (see [12,13]) and will be modified by the
transmissivity of the channel. The other term εdet is detector
excess noise, which we set to εdet = 0.013 [22]. As an exam-
ple, for T = 0.5, we have ε = 0.018. When computing the
fidelity, every protocol realization involves a different sample
of the values Tj . Thus, the parameter g must be optimized for
each protocol realization, as shown in Fig. 3. The following
procedure was followed to compute the mean fidelities. First,
using the numerical simulations described in Sec. II B, 30 000
samples of Tj were obtained for a given propagation distance.
Next, fidelity was obtained for a specific realization of the
channels using three sampled values of Tj in Eq. (C1).
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FIG. 3. Fidelity as a function of g, each curve corresponds to a
specific set of values of [T1, T2, T3]. The dots mark the value of g =
gopt corresponding to the maximum fidelity, and each label denotes
the values of the set [T1, T2, T3] corresponding to the adjacent curve.

All possible transmissivity occurrences must be accounted
for to compare the protocol’s effectiveness to direct transmis-
sion. For direct transmission, the total fidelity is calculated as

Fdir
total = (1 − pe )Fdir + peF|0〉. (15)

The results comparing the mean total fidelity between the
protocol and direct transmission are shown in Fig. 4. The
results indicate that the protocol improves the transmission
fidelity for values of pe up to 0.35. The advantage provided
by the protocol decreases as the distance increases. For values
pe > 0.35, it is observed that the protocol does not provide
any advantage for the rd values shown.

C. Transfer of classical symbols

While classical signals can of course be carried by the low-
amplitude quantum states used for quantum key distribution
(QKD), this is not optimal due to the low signal-to-noise ratio.
The aim here (and in previous works) has been to find the
best way to combine low-amplitude “quantum” signals with
higher-amplitude “classical” signals in the most efficient way.
Previous works have explored the coexistence of CV quantum
and classical information to perform CV quantum key distri-
bution alongside the transmission of classical symbols [8–13].
In these works, the receiving party extracts the symbol when
measuring the quantum state transmitted via the quantum
channel because the symbol is encoded into the quantum state.
On the other hand, in our protocol, the symbol is encoded
in the ancillary quantum system. Therefore, in our protocol,
the symbol is obtained without collapsing the quantum state,
a scenario that could prove advantageous in cases where
the receiver wishes to relay or store the quantum state for
later use.

Now we analyze the bit-error rates when classical symbols
are transmitted. An error during the transmission of classical
information corresponds to Bob misidentifying the symbol
sent initially by Alice. The excess noise added to the system
increases the variance of the syndrome measurements. Thus,
if the noise is too high, there is a probability that the syndrome
measurements appear on a different partition from the one

FIG. 4. Total fidelity for different values of erasure rate. Solid
lines represent transmission via the protocol, and dashed lines cor-
respond to direct transmission. The ancilla entangled state uses a
squeezing value of r = 10 dB.

Alice meant to encode. The error probability can be directly
quantified by the ratio between the variance of the syndrome
measurements σs and the magnitude of the displacement used
during the classical encoding |	|. For a given value of |	|, a
larger σs means a higher bit-error rate (BER). Alternatively,
a more significant displacement can also be used to increase
the distance between partitions and offset the effects of σs,
increasing the signal-to-noise ratio (SNR).

If all the states used during the protocol are Gaussian, then
the measurement results will follow a Gaussian distribution
[36]. Solving the integration in Eq. (A12) in Appendix A, we
see that the syndrome measurements have the mean values
given by

μx̃ = 1√
2
ηT+Re(	), μp̃ = 1√

2
ηT+Im(	). (16)

The variance σs depends on the specific values Tj , the amount
of squeezing r, and the size of the ensemble of states being
transmitted using the protocol σα . The expression of σs is
presented in Appendix D.

Once we have determined the moments of the syndrome
measurements, we can compute the BER. For simplicity, we
assume the classical information consists of single bits en-
coded in binary phase-shift keying [5]. In this case, the BER

062616-5



E. VILLASEÑOR et al. PHYSICAL REVIEW A 107, 062616 (2023)

FIG. 5. Mean magnitude of the displacement, in shot-noise units,
required to keep the error rate below 10−9 when the transmissivity is
zero on mode 1. A squeezing value r = 10 dB is considered in the
TMSV state.

of the protocol will be

BER = 1

2
erfc

(
ηT+|	|√

2σ 2
s

)
. (17)

A value of interest is the size of the displacement required
to maintain the BER to a tolerable level. For a BER of 10−9,
we see in Fig. 5 the mean values of |	| required for the special
case when T1 = 0 in mode 1 (or similarly mode 2). If instead
mode 3 possesses T3 = 0, the displacement requirements are
approximately half of the values shown.

IV. ENHANCEMENT VIA NON-GAUSSIAN OPERATIONS

Non-Gaussian states represent a key element in CV quan-
tum information, and there has been great interest in their use
to enhance quantum communications protocols [37–42]. Par-
ticularly, in CV quantum teleportation, certain non-Gaussian
operations have shown to enhance the fidelities of transmitted
states [34,43–45]. Thus, asking if the same holds for this
protocol is natural.

One viable experimental way to construct non-Gaussian
states shown in Fig. 6, where a mode of a TMSV is com-
bined with a BS with transmissivity Tκ with a M photon
Fock state, and a photon discriminating detector is used to
detect N photons. In the following, we consider a photon
subtraction (PS), setting M = 0, N = 1; photon addition (PA)

FIG. 6. Non-Gaussian operations used to generate a non-
Gaussian resource state. The operations are applied on a single mode
of a TMSV state.

FIG. 7. Fidelities obtained for a loss channel for the different
non-Gaussian states. In each case, the squeezing of the TMSV state
before the non-Gaussian operation is fixed at a value r = 4.7 dB.

with M = 1, N = 0; and photon catalysis (PC) setting M = 1,

N = 1. We also consider the successive application of the PS
and PA operations, PS-PA (order reversed in PA-PS). All the
operations are applied in mode 3◦ of the initial TMSV state as
the first step in our protocol.

Aside from applying non-Gaussian operations on a TMSV,
an additional non-Gaussian entangled state is considered. This
state is prepared at the start of the protocol by the application
of the two-mode squeezing operation to a Bell state, the state
known as the squeezed Bell (SB) state, given by

|ψSB〉 = [cos2(ϑ ) + sin2(ϑ )]−1/2

× ŜAB(�)[cos(ϑ )|00〉 + sin(ϑ )|11〉]. (18)

The implementation of the non-Gaussian states is achieved
by replacing |ψAB〉 in Fig. 1 with the corresponding non-
Gaussian state. The CF of each non-Gaussian state must be
computed first and used in Eq. (5), where the non-Gaussian
CF replaces χAB. The CF of the states used in this work
have been calculated in previous works [44], and are listed
in Appendix E for completeness.

In the CF of each non-Gaussian state, a free parameter
exists corresponding to the transmissivity of the beam splitter
involved in each operation. This free parameter is optimized
to maximize the fidelity of transmission. In the case of the
SB state, the ϑ free parameter is optimized. For the PS-PA
and PA-PS, the exact value of Tκ is used in both succes-
sive non-Gaussian operations. Finally, it is assumed that a
quantum memory is available at the transmitter, such that the
non-Gaussian states can be prepared and stored to be used on
demand during the protocol.2

The results are presented in Fig. 7. To simplify the analy-
sis, we evaluate the fidelities for a simplified channel, where
P = δ(Tj − T ′) in Eq. (7), the excess noise is set as ε = 0, and
η = 1. Of all the non-Gaussian resources used, only two states
represent an enhancement over the TMSV squeezed state: the

2Non-Gaussian operations have a nonunity success probability.
Without a quantum memory, this success probability would need to
be accounted for in the resulting fidelities.
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PA-PS and the SB states. Moreover, the gain in fidelity is only
observed when the squeezing in the entangled states is low,
around r = 4.7 dB. As the squeezing increases, the fidelities
obtained by the non-Gaussian states get closer to the ones
obtained by the TMSV state, for a value of r = 10 dB, the
difference in fidelity is of the order of 10−2. We point out an
agreement between the two non-Gaussian resources that rep-
resent an enhancement between the protocol presented here
and CV quantum teleportation [44]. Moreover, when mode 3
is erased, the fidelities obtained using the non-Gaussian states
are equal to the ones obtained when the TMSV state is used.

Now, we address how the use of non-Gaussian states af-
fects classical encoding. When non-Gaussian states are used,
the syndrome measurement results follow a non-Gaussian
PDF. Numerical integration over this non-Gaussian PDF in-
dicates that the values of |	| required to keep low BER are
considerably higher when the non-Gaussian states are used.
Approximately 80% larger |	| is required in the SB and
PA-PS states when mode 1 is erased.3

V. DISCUSSION

Here, we discuss our new results concerning previous
similar work, some alternative encoding schemes, and some
additional input states.

A. Relation to other work

Other works [26-30] have previously looked at similar
encoding schemes. In [26,27], a three-mode encoding scheme
was studied in the context of a quantum state sharing scheme.
Although not aimed at the communication scenario, the na-
ture of this scheme was similar to the encoding required for
an erasure channel in the communication context. In [29],
a four-mode encoding scheme used to transfer two coherent
input states over an erasure channel was investigated. In [30],
a three-mode encoding scheme similar to that used in the
context of state sharing was analyzed for the communication
scenario, with extensions to include non-Gaussian operations.
This latter work was again only in the scenario of an erasure
channel. Channel errors beyond a simple erasure were consid-
ered in [28], namely, a displacement error.

The results presented here represent outcomes different
from all these previous works in several aspects. First, we
consider a channel model more appropriate to that antici-
pated for free-space atmospheric communications in which
one transceiver is untethered. Simulations of this channel are
then used to analyze a modified protocol deployed over a
three-mode channel. The key modification in the protocol is
an optimization phase in which the transmissivity measured
for each channel is used as an input. This allows for encoding
and decoding in the more general case where transmissivities
in all channels are nonzero. Importantly, our protocol leads
to improved results relative to the situation where any loss

3A case where the application of the PA-PS operation is applied
to mode 2◦ instead of mode 3◦ during the preparation of the non-
Gaussian state was also tested. The results showed no difference in
the displacement requirements between the two cases.

is simply considered a complete erasure. Second, we have
included additional displacements within the encoding phase
to include classical signaling. Third, we have investigated
non-Gaussian operations within the modified protocol.

B. Alternative encodings and postselection

Thus far, we have considered combined classical-quantum
communication embedded in the same signal. However, other
possibilities exist. For example, the reference pulses could
embed classical information: simple on-off keying being one
scenario. In this scenario, the lack of any LO sent in a channel
could indicate a zero and its presence, a one. In this case, the
quantum signal would not need an additional displacement,
but the tradeoff would be that the quantum information rate
would be reduced. Exactly how much reduction would occur
would depend on the coherence time of the channel and the
pulse rate of the source, but for anticipated timescales of order
1 ms and available pulse rates of 100 MHz, this reduction
would be minimal (since the channel is stable for thousands
of sent LOs, these can be reused). This tradeoff of a reduced
quantum information rate would have the benefit of a reduc-
tion in the excess noise of ≈0.02 and would yield an increase
of fidelity (≈0.05). An added benefit would be a reduction
of the complexity of deployment (one less displacement op-
eration) and potential power savings (fewer LOs sent). On-off
keying could also be applied to the quantum signals (with a
vacuum detection being mapped to a zero). However, such
schemes would need a modified digital modulation scheme
(to avoid “on” signals which have small displacements).

Our results presented here have utilized an averaging over
all channel conditions. In practice, postselection could be uti-
lized to select the channels such that, at most only one presents
an erasure. Again, a tradeoff in performance vs throughput
would be in play here. Postselection would be most beneficial
under high erasure error rates. For example, postselecting to
allow at most a single erasure at an error rate pe = 0.3 would
have the benefit of the fidelity being increased by ≈0.15, at a
reduction in throughput of 0.8.

C. Entanglement distribution

We are also interested in evaluating the protocol’s effec-
tiveness in distributing entangled states. Considering an input
TMSV state, |ψ in

MN〉 with squeezing rMN, we can evaluate
the fidelity with the state obtained after mode M has been
transmitted via the protocol. Although not shown, our results
show that there are scenarios where an advantage over di-
rect transmission can be found similar to before. For equal
squeezing values in the states |ψAB〉 and |ψ in

MN〉, we observe
the use of the protocol does present an advantage over direct
transmission.

Ideally, for entangled input states, we would like to test
the protocol’s effectiveness using an application of quan-
tum communications, such as entanglement distribution.
However, using only fidelity can be an incomplete metric
of the transmission of quantum information, especially for
entangled states [46]. Entanglement distribution is perhaps
better measured by computing the reverse coherent informa-
tion (RCI) of the channel, as it represents a lower bound on
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FIG. 8. RCI obtained using the protocol (solid lines), and by
direct transmission (dashed lines) over a fixed loss channel with
a probability of erasure pe. The values ε = 0 and η = 1 are used.
The curve with pe = 0 corresponds to the two-way assisted quantum
capacity of the pure-loss channel (the repeaterless bound) [49]. A
maximally entangled TMSV is considered as |ψAB〉.

the distillable entanglement [47]. The RCI is defined as

R = S(ρN) − S(ρMN), (19)

with S(·) the von Neumann entropy, and ρMN a maximally
entangled TMSV state (rMN → ∞), where mode M has been
transmitted via the channel using the protocol.

For our protocol, an upper bound on the RCI can be found
using the fact that the entropy is concave,

S(ρMN) �
∑

k

pkS(ρk ), (20)

where the index k iterates over all possible erasure com-
binations on three modes (no erasure, erasure on mode 1,
erasure on mode 2, and so forth), ρk is the corresponding state
after error correction for combination k, and pk the proba-
bility of each combination. In the combinations when error
correction is not possible, e.g., erasures on modes 1 and 2,
ρk = TrM[ρ in

MN]. Using the upper bounds of the RCI as a new
metric, we are interested in comparing the protocol with direct
transmission. Direct transmission, in this case, corresponds to
transmitting mode M (of the state |ψMN〉) via the channel. For
simplicity, we compute the upper bounds of the RCI for the
same channel used to compute the results presented in Fig. 7.

Since loss is the dominant noise source for optical quantum
communication, a fundamental tradeoff exists between loss
and distance for any optical quantum communication proto-
col [48]. The RCI gives an achievable lower bound on the
distillable entanglement [47]. The quantum capacity of the
pure-loss channel is equal to the RCI in this case and gives the
fundamental limit for point-to-point quantum communication,
− log2 (1 − T ), where T is the transmissivity [49]. This limit
is known as the repeaterless bound and is achievable by some
optimal protocol for the pure-loss channel. Since loss is the
dominant noise source, the repeaterless bound makes a good
upper bound to the achievable rate of our protocol.

The resulting upper bounds of RCI are presented in Fig. 8.
The results show that the upper bound on the RCI obtained
from the protocol and direct transmission is virtually equal

for values T ′ close to 1; as T ′ decreases in value, the protocol
stops presenting an advantage, and the RCI becomes lower
than the one obtained by direct transmission. The lack of an
advantage by the protocol in this simulation can be understood
by the fact that loss in the ancilla modes (modes 2′ and 3′)
in the protocol propagates to the final state. Thus, while the
transmission of coherent states can be effectively enhanced
by using the protocol presented here, we warn that this may
not be the case for applications that are dependent on the
distribution of entangled states.

VI. CONCLUSIONS

In this work, an error-correction protocol was introduced.
Aimed at deployment over realistic free-space optical chan-
nels where at least one transceiver is untethered, the protocol
was designed to encompass both classical and quantum in-
formation on the encoded signal. We showed, relative to
nonencoded direct transmission, that the protocol improves
the fidelity of transmitted coherent states over a wide range
of losses and erasure probabilities. In addition, using ancillary
non-Gaussian entangled bipartite states in the signal encoding
further increased the fidelity of transmission. Variants on a
theme for the protocol were discussed, including its appli-
cation to the transmission of components of a multimode
entangled state. Our results demonstrate that signal loss in
atmospheric channels can be compensated for significantly at
the price of additional implementation complexity.

Approved for Public Release; distribution is unlimited;
No. 23-0238.

ACKNOWLEDGMENTS

We thank Z. Wang for the valuable discussions. The
Australian Government supported this research through the
Australian Research Council’s Linkage Projects funding
scheme (Project No. LP200100601). The views expressed
herein are those of the authors and are not necessarily those of
the Australian Government or the Australian Research Coun-
cil.

APPENDIX A: OUTPUT STATE CF DERIVATION

We will derive the CF of the output quantum state obtained
by the protocol. To do so, we follow the diagram presented
in Fig. 1. As the first step, consider the application of a
displacement operation on mode 2 of a bipartite state ρ̂AB:

ρ ′ = D̂(	)ρ̂ABD̂†(	). (A1)

Then the CF of the state ρ ′ is

χρ ′ (λ1, λ2) = Tr[D̂(	)ρ̂ABD̂†(	)D̂(λ1)D̂(λ2)]. (A2)

Using the following properties of the displacement operator,

D̂(α)D̂(β ) = e(αβ∗−α∗β )/2D̂(α + β ),

D̂†(α)D̂(β )D̂(α) = e(α∗β−αβ∗ )D̂(β ), (A3)

the CF of ρ̂ ′ is then

χρ̂ ′ (λ1, λ2) = Tr[e(	∗λ2−	λ∗
2 )D̂(λ1)D̂(λ2)ρ̂AB]

= χAB(λ1, λ2)D	(λ2), (A4)
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where we defined the function D	(λ) = e(	∗λ−	λ∗ ) and χAB
is the CF of ρ̂AB. Now the CF of the initial state at the start
of the protocol, considering the displacement applied to the
entangled state, is

χ s(λ1)χAB(λ2, λ3)D	(λ2). (A5)

The effect of BS1 acting on modes 1 and 3 can be described
as a change in variables, such as

χ s

(
λ1 + λ2√

2

)
χAB

(
λ1 − λ2√

2
, λ3

)
D	

(
λ1 − λ2√

2

)
. (A6)

After that, the effect of the loss acting independently on every
channel transforms the CF to

χ s

(√
T1λ1 + √

T2λ2√
2

)
χAB

(√
T1λ1 − √

T2λ2√
2

,
√

T3λ3

)

× D	

(√
T1λ1 − √

T2λ2√
2

)
χ |0〉(T

∗
1 λ1)χ |0〉(T

∗
2 λ2)

× χ |0〉(T
∗

3 λ3), (A7)

with T ∗
j = √

1 + ε − Tj . Thereafter, BS2 is applied by Bob
on modes 1′ and 2′:

χ s

(√
T1(λ1 + λ2) + √

T2(λ1 − λ2)

2

)

× χAB

(√
T1(λ1 + λ2) − √

T2(λ1 − λ2)

2
,
√

T3λ3

)

× D	

(√
T1(λ1 + λ2) − √

T2(λ1 − λ2)

2

)

× χ |0〉

(
T ∗

1 (λ1 + λ2)√
2

)
χ |0〉

(
T ∗

2 (λ1 − λ2)√
2

)
χ |0〉(T

∗
3 λ3).

(A8)

Finally, to perform a dual homodyne measurement, BS3 is
applied, transforming the state. The efficiency of the homo-
dyne measurements can be modeled by considering a BS with
transmissivity η2, with an extra vacuum mode placed before
the detectors. Then the CF of the state before homodyne
measurements is

χBS3(λ1, λ2, λ3)

= χ ′
BS3(λ1, λ2,λ3)D	

(
λ1T− + (λ2 + λ3)√

2
ηT+

)
, (A9)

where

χ ′
BS3(λ1, λ2, λ3)

= χ s

(
λ1T+ + λ2 + λ3√

2
ηT−

)

× χAB

(
λ1T− + (λ2 + λ3)√

2
ηT+,

√
T3η(λ2 − λ3)√

2

)

× χ |0〉

[
T ∗

1

(
λ1√

2
+ η

λ2 + λ3

2

)]

× χ |0〉

[
T ∗

2

(
λ1√

2
− η

λ2 + λ3

2

)]

× χ |0〉

(
T ∗

3 η
λ2 − λ3√

2

)
χ |0〉(

√
1 − η2λ1)

× χ |0〉(
√

1 − η2λ2). (A10)

It is convenient to express the measurement results in
the phase-space representation by transforming the complex
arguments into two real numbers, x j = λ j + λ∗

j and p j =
i(λ∗

j − λ j ). Then the homodyne measurements are represented
by integrating the measured modes

χm(x, p) = P (x̃, p̃)−1

(2π )2

∫
dx2d p3χBS3(x, p, x2, 0, 0, p3)

× e−ix̃p3+i p̃x2 , (A11)

with P̃ (x̃, p̃) the PDF of any pair of measurement results,
given by

P̃ (x̃, p̃) = 1

(2π )2

∫
dx2d p3χBS3(0, 0, x2, 0, 0, p3)

× e−ix̃p3+i p̃x2 . (A12)

Expanding the terms in D	, we have

D	

(
x1T− + x2√

2
ηT+, p1T− + p3√

2
ηT+

)

= exp[−ix1T−Im(	) + ip1T−Re(	)]

× exp

[
−ix2

ηT+Im(	)√
2

+ ip3η
T+Re(	)√

2

]
. (A13)

Inserting this expression into Eq. (A12) and manipulating
the terms, it becomes clear that the mean of the syndrome
measurement results is displaced following Eqs. (16).

The additional exponential term in Eq. (A11) indicates
that the state after the measurement requires a corrective
displacement to be recovered. This corrective displacement
must also account for the additional displacement induced
by the displacement 	. The corrective displacement can be
implemented via

D̂corr (x̃, p̃) = exp[−ip(
√

2x̃′g + T−Re(	))

+ ix(
√

2 p̃′g + T−Im(	))], (A14)

with

x̃′ = x̃ − μx̃, p̃′ = p̃ + μp̃, (A15)

where μx̄( p̄) is defined in Eq. (16). Here, the correction in-
cludes a factor of

√
2 to compensate for the global factor that

appears in the arguments of χBS3 in Eq. (A9).
Finally, since the output CF will depend on a specific set of

measurement results, the mean over all possible measurement
outcomes, weighted by their corresponding probability, must
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be considered, that is

χout (x, p) =
∫

dx̃ d p̃P (x̃, p̃)χm(x, p)D̂corr (x̃, p̃)

= 1

(2π )2

∫
dx̃ d p̃ dx2d p3χ

′
BS3(x, p, x2, 0, 0, p3)

× eix̃′(p3−
√

2pg)−i p̃′(x2−
√

2xg). (A16)

At this point, the definition of the Dirac delta function
1

2π

∫∫
eiβx−iβα f (α)dβ dα = ∫

δ(x − α) f (α)dα can be used
twice to obtain

χout (x, p) =
∫

dx2d p3δ(p3 −
√

2p)δ(x2 −
√

2x)

× χ ′
BS3(x, p, x2, 0, 0, p3). (A17)

Removing the integrands using the properties of the δ func-
tion, Eq. (5) presented above is recovered.

APPENDIX B: SPECIFIC EXAMPLES
OF ERROR CORRECTION

To further understand the error correction, we outline the
following three cases, corresponding to different values of g.

1. g = 0

χ s(T+λ)χAB(T−λ, 0)χ |0〉

(√
1 + ε − T1 + T2

2
λ

)
. (B1)

In this case, the resulting state is independent of the value of
T3. Moreover, the excess noise in channels 2′ and 3′ does not
propagate to the output state. However, when T1 
=T2 imperfect
destructive interference in BS2 will translate to additional
excess noise introduced by the entangled state, which will
be proportional to the squeezing of the state. When T1 = T2,
the resulting state is equivalent to the one obtained if the
signal state were to be transmitted directly through the channel
without using the protocol.

2. g = 1
η

χ s(
√

T1λ)χAB(
√

T1λ,
√

T3λ
∗)

× χ |0〉

⎛
⎝

√
3 + 3ε + 2

(
1

η2
− 1

)
− 2T1 − T3λ

⎞
⎠. (B2)

The resulting state will be independent of the value of T2.
Unlike the previous case, the resulting state is affected by the
loss and excess noise affecting modes 2′ and 3′. Consider the
case when T1 = T3, then it becomes clear that the vacuum con-
tribution appears in the output state three times. On an ideal
scenario, with T1 = T3 = 1, the quantum signal can be fully
recovered in the limit V → ∞ as in this limit χAB(λ, λ∗) → 1
[see Eq. (9)] [30].

3. g = − 1
η

χ s(
√

T2λ)χAB(−√
T2λ,−√

T3λ
∗)

× χ |0〉

⎡
⎣

√
3 + 3ε + 2

(
1

η2
− 1

)
− 2T2 − T3λ

⎤
⎦. (B3)

In this case, the resulting state is independent of T1. Similarly
to the previous case, the loss and excess noise from the ancil-
lary entangled state propagates to the output state.

APPENDIX C: FIDELITY OF TRANSMISSION

To compute the fidelity between the states |φin〉 and |φout〉
first the CF of χout is obtained using Eq. (5). Next, an analyti-
cal expression for a single-input coherent state can be obtained
by solving the integration in Eq. (12). Finally, this fidelity is
averaged over the ensemble of coherent states by solving the
integral in Eq. (14). The expression obtained is

F = 2

2σα (T+ + g̃T− − 1)2 + c1 + 1
, (C1)

with

c1 = V
(
(T− + g̃T+)2 + T3g̃2)

− 2
√

V 2 − 1(T− + g̃T+)
√

T3g̃ + (T+ + g̃T−)2

+ (1 + ε)(2g̃2 + 1) + g2(1 − η2) − T ′. (C2)

Additionally, the analytical expression for the fidelity of
direct transmission can be obtained by following the same
procedure as above, where the CF of the state transmitted
directly through the channel replaces χout. The expression
obtained is

F̄DT = 2

2σα (
√

T − 1)2 + 2
, (C3)

where T is the transmissivity of the channel.

APPENDIX D: DERIVATION OF THE SNR
OF THE MEASUREMENT RESULTS

The SNR ratio of the syndrome measurement is used to
calculate the bit-error rate of the encoded classical communi-
cations. To find the SNR, we need to find the variance of the
syndrome measurement results σs. If all the states involved
in the protocol are Gaussian, then solving the integration in
Eq. (A12), we observe that P̃ corresponds to a Gaussian
distribution

P̃ (x̃, p̃) = 1

2σsπ
exp

[
− x̃′2 + p̃′2

2σ 2
s

]
, (D1)

where

σ 2
s = η2(T 2

−σα + c2) + 1 (D2)

with

c2 =V

(
T 2

+
2

+ T3

2

)
−

√
V 2 − 1(T+

√
T 3)

+ T 2
−
2

+
(

ε − T ′

2

)
. (D3)
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APPENDIX E: CF OF NON-GAUSSIAN STATES

1. Photon addition, photon subtraction, and photon catalysis

In the following, we apply the procedures of [33] for determining CFs. The unnormalized CF of the state resulting from the
application of the non-Gaussian operation to a mode of the TMSV state after it has been transmitted through the channel is

χ ′
PS(ξA, ξB) = Tκ − 1

Tκ

exp

[
−|ξB|2

2

]
∂2

∂ξB∂ξ ∗
B

(
exp

[ |ξB|2
2

]
f (ξA, ξB,

√
Tκ )

)
, (E1)

where

f (ξA, ξB,
√

Tκ ) =
∫

dξ 2

π (1 − Tκ )
χTMSV(ξA, ξ ) exp

[
1 + Tκ

2(Tκ − 1)
(|ξ |2 + |ξB|2) +

√
Tκ

Tκ − 1
(ξBξ ∗ + ξ ∗

Bξ )

]
. (E2)

Similarly, the unnormalized CF, after the PA operator is applied, is

χ ′
PA(ξA, ξB) = (Tκ − 1) exp

[ |ξB|2
2

]
∂2

∂ξB∂ξ ∗
B

(
exp

[
−|ξB|2

2

]
f (ξA, ξB,

√
Tκ )

)
. (E3)

When the PC operator is applied, the unnormalized CF is

χ ′
PC(ξA, ξB) = q2 exp

[ |ξB|2
2

]
∂2

∂ξB∂ξ ∗
B

{
exp[−|ξB|2]

∂2

∂ξB∂ξ ∗
B

(
exp

[ |ξB|2
2

]
f (ξA, ξB,

√
Tκ )

)}

− q exp

[ |ξB|2
2

]
∂

∂ξB

{
exp [−|ξB|2]

∂

∂ξ ∗
B

(
exp

[ |ξB|2
2

]
f (ξA, ξB,

√
Tκ )

)}

− q exp

[ |ξB|2
2

]
∂

∂ξ ∗
B

{
exp [−|ξB|2]

∂

∂ξB

(
exp

[ |ξB|2
2

]
f (ξA, ξB,

√
Tκ )

)}
+ f (ξA, ξB,

√
Tκ ), (E4)

where q = Tκ−1
Tκ

.
For the sequential use of the PS and PA operators, the operations PS-PA and PA-PS, we consider the two non-Gaussian

operations to use the same beam-splitter transmissivity Tκ . For PS-PA, the unnormalized CF is

χ ′
PS−PA(ξA, ξB) = q2 exp

[ |ξB|2
2

]
∂2

∂ξB∂ξ ∗
B

{
exp[−|ξB|2]

∂2

∂ξB∂ξ ∗
B

(
exp

[ |ξB|2
2

]
f (ξA, ξB, Tκ )

)}
. (E5)

The unnormalized CF for PA-PS is

χ ′
PA-PS(ξA, ξB) = (Tκ − 1)2 exp

[
−|ξB|2

2

]
∂2

∂ξB∂ξ ∗
B

{
exp [|ξB|2]

∂2

∂ξB∂ξ ∗
B

(
exp

[
−|ξB|2

2

]
f (ξA, ξB, Tκ )

)}
. (E6)

2. Squeezed Bell-type states

The normalized CF of an SB state is [43]

χSB(ξA, ξB) = [cos2(ϑ ) + sin2(ϑ )]−1/2 exp
[− 1

2 (|ξ ′
A|2 + |ξ ′

B|2)
][

cos2(ϑ ) + 2 cos(ϑ ) sin(ϑ )

× Re{ξ ′
Aξ ′

B} + sin2(ϑ )(1 − |ξ ′
A|2)(1 − |ξ ′

B|2)
]
, (E7)

where Re{z} is the real part of z and the transformation given by Eq. (10) is used.
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