
PHYSICAL REVIEW A 107, 062615 (2023)

Complex structure and efficient characterization of multiphoton split states in integrated circuits
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Multiphoton split states, where each photon is in a different spatial mode, represent an essential resource for
various quantum applications, yet their efficient characterization remains an open problem. Here, we formulate
the general structure of their reduced spatial density matrices and identify the number of real and complex-valued
independent coefficients, which in particular completely determine the distinguishability of all photons. Then,
we show that this density matrix can be fully characterized by measuring correlations after photon interference
in a static integrated circuit, where the required number of outputs scales subquadratically versus the number
of photons. We present optimized circuit designs composed of segmented coupled waveguides, representing a
linear optical neural network, which minimize the reconstruction error and facilitate robustness to fabrication
deviations.
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I. INTRODUCTION

Multiphoton split states (MPSSs), where each photon is in
a different spatial mode of free-space beams, fibers, or waveg-
uides, represent an essential resource for fundamental tests
of quantum mechanics and various applications in quantum
simulations and computations [1]. For example, many photon
interference and distinguishability experiments are based on
MPSSs where each photon is injected from a different spatial
port [2–8]. Furthermore, photon boson sampling experiments
that can demonstrate quantum advantage commonly employ
PSS sources that provide multiple indistinguishable photons,
with each of the photons injected into a different port of a
linear optical network [9–14]. Remarkably, PSSs with more
than two photons were recently shown to possess a multipho-
ton collective phase beyond the real-valued pairwise photon
distinguishability measure, opening new degrees of freedom
for quantum information [4,15,16]. Therefore, the characteri-
zation of PSSs is of great importance from fundamental and
practical perspectives.

Importantly, the indistinguishability of all photons in
MPSSs cannot be inferred from the distinguishability of
constituent photon pairs, which demands characterization
based on multiphoton interference. Efficient protocols for wit-
nessing multiphoton indistinguishability were developed and
realized with reconfigurable multiport interferometers [7] un-
der the assumption of a specific density-matrix form, whereas
it remains an open problem for general states (see the discus-
sion in the Supplemental Material of Ref. [6]).

Beyond the quantification of indistinguishability, the mea-
surement of the full density matrix can provide comprehensive
information about the state, including the collective photon
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phase. This is typically done by a process called quantum
state tomography, in which the density matrix of the input
quantum state is reconstructed after a series of projection mea-
surements [17–19]. To fully reconstruct the density matrix,
the number of distinct measurements which are in the form of
multiphoton correlations should exceed the number of free pa-
rameters in the density matrix, which increases exponentially
with the number of photons [20]. To satisfy this requirement,
conventional tomography approaches are based on free-space
setups or integrated circuits that are reconfigured multiple
times [7,21,22], yet the reconfiguration can be a source of
experimental inaccuracies and can also make the character-
ization time-consuming for larger numbers of photons. On
the other hand, static tomography approaches have been sug-
gested [23–27] and realized experimentally [28,29], where
the measurements at the outputs of a fixed photonic circuit
enable the full-state reconstruction. However, such methods
have been developed for general states without taking into
account the specific structure of PSSs. An outstanding ques-
tion of how to perform optimal characterization of PSSs with
the minimum number of measurements and high robustness to
fabrication inaccuracy and measurement noise while using the
most compact and practical photonic circuit design remains.

In this work, we formulate the general properties of the
spatial density-matrix structure for the PSSs without any
assumptions. Then, we present a scalable approach for a
single-shot complete state measurement with a static inte-
grated photonic circuit, without the need for reconfigurability.
Specifically, we first theoretically derive the number of free
parameters and the structure of the reduced spatial density ma-
trix as a function of the number of photons. Furthermore, we
obtain the number of free real and imaginary parts, in which
the imaginary values of the density matrix are associated
with the multiphoton collective phases. To realize the state
tomography, we propose a multiport coupled waveguide array
that is segmented into multiple sections along the propagation

2469-9926/2023/107(6)/062615(9) 062615-1 ©2023 American Physical Society

https://orcid.org/0000-0002-3506-6638
https://orcid.org/0000-0002-5116-5425
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.062615&domain=pdf&date_stamp=2023-06-30
https://doi.org/10.1103/PhysRevA.107.062615


JIHUA ZHANG AND ANDREY A. SUKHORUKOV PHYSICAL REVIEW A 107, 062615 (2023)

N = 4(e)

0123 ρ1 ρ4,5 ρ9,10*ρ4,5 *ρ21,22
ρ15,16ρ15,16 *ρ9,10*ρ9,10 *ρ18,19*ρρ18,199

ρ2 ρ3 ρ24ρ6 ρ7 ρ8 ρ20 ρ23ρ11,12ρ11,12 *ρ13,14*ρ13,14
ρ17 ρ18,19ρ18,19ρ13,14ρ13,14 ρ21,22ρ21,22 *ρ11,12*ρ11,12 *ρ15,16 ρ*ρ15,16

0123 0132 0213 0231 0312 0321 1023 1032 1203 1230 1302 1320 2013 2031 2103 2130 2301 2310 3012 3021 3201 32103102 3120

(a)

1 2 3 4 5 6 7 8
Number of photons (N)

10
0

10
1

10
2

10
3

10
4

10
5

Total
Real part
Imaginary partPath 1:

Path 2:

Path N:

Photons

(b)

(c)
N = 2

ρ1 ρ201

10

01 10

ρ1ρ2

012 021 102 120

ρ1 ρ2 ρ3 ρ4,5 ρ6*ρ4,5

ρ1

ρ1

ρ1

ρ1

ρ1

*ρ4,5

*ρ4,5

*ρ4,5

*ρ4,5

*ρ4,5

ρ2

ρ2

ρ2

ρ2

ρ2

ρ3

ρ3

ρ3

ρ3

ρ3

ρ4,5

ρ4,5

ρ4,5

ρ4,5

ρ4,5

ρ6

ρ6

ρ6

ρ6

ρ6

201 210

012

021

102

120

201

210

N = 3(d)

ρi,j = ρi + iρj

ρi,j = ρi    iρj*

ρi,j = ρi + iρi jρ

ρi,j = ρi    iρii jρ*

N-photon split state

0

1

N-1

FIG. 1. (a) Schematic of the N-photon split state (NPSS) where each photon is located in a different spatial mode or path. (b) Number of
real, imaginary, and total independent parameters in the reduced spatial density matrix of NPSS as a function of the number of photons. The
structure of the reduced spatial density matrices for (c) 2PSSs and (d) 3PSSs. The elements without and with backgrounds are purely real and
complex valued, respectively. Note that only the nonzero elements of the full density matrix (dimension: NN × NN ) are shown. (e) First row
of the nonzero elements of the 4PSS density matrix. Other rows will have the same elements in different orders.

direction with the specially introduced local phase shifts
between adjacent sections. Such a configuration effectively
represents a photonic neural network (NN), where the waveg-
uide coupling and local phase shifts function as the weight
and bias, respectively. By optimizing the photonic circuit,
we identify the configurations allowing for the most effi-
cient tomography of two-, three-, and four-photon split states
with reduced sensitivity to measurement noise and fabrication
deviations. Different from previous reconfigurable platforms
which require multiple measurements with an exponential
increase in the number of photons, the proposed scheme can
realize the tomography in a single shot without reconfigura-
bility. When this scheme is compared with previous static
approaches developed for general states, the performance is
better, and the complexity of the photonic circuit is reduced.
This makes the proposed scheme scalable to larger photon
numbers.

This paper is organized as follows. In Sec. II, we formulate
the general structure of the reduced spatial density matrix for
PSSs after tracing out the internal spectral degree of freedom
and determine the numbers of independent real- and complex-
valued coefficients as a function of the number of photons.
In Sec. III, we introduce a circuit design based on coupled
waveguides, representing a linear artificial neural network,
and describe its application for split-state tomography. Then,
in Sec. IV, we present the circuit designs for two-, three-, and

four-photon split states, optimized for accurate state recon-
struction in the presence of measurement noise or fabrication
imperfections. Finally, we present the conclusions and outlook
in Sec. V

II. MULTIPHOTON SPLIT STATES AND THE SPATIAL
DENSITY MATRIX

We define a multiphoton split state formed by N photons
where each photon is located on a different spatial path, with
orthogonal states labeled by |0〉, |1〉, . . . , |N − 1〉, as shown
in Fig. 1(a). The frequency-dependent wave function of such
a PSS can be expressed as

|�〉 =
∫

dω0dω1 · · · dωN−1ψ (ω0, ω1, . . . , ωN−1)

× â†
0(ω0)â†

1(ω1) · · · â†
N−1(ωN−1)|0〉, (1)

where ψ (ω0, ω1, . . . , ωN−1) is the joint spatial and spectral
distribution of N photons. Note that |0〉 in Eq. (1) stands for
the photon vacuum state instead of the spatial mode of the first
path mentioned earlier.

We consider setups using commonly available single-
photon click detectors. The coincidences of signals from
several detectors then provide a measure of the pho-
ton correlations. While the photons might have different
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internal structures, such as frequency spectra, the conventional
detectors register the arrival time only within specific time
bins. Such detection and correlation measurements in pho-
tonic circuits do not distinguish the photons by their spectral
properties [22,30]. Also, experiments can realize multiphoton
interference that does not explicitly depend on the internal
structure of photons [4,16,28,29], and such transformations
are mathematically described by a unitary operator that mixes
different input ports but does not depend on frequency spectra
of photons [15,31]. In addition, the single-photon click detec-
tors cannot resolve the number of photons that arrived at the
detector.

For the case in which the experimental detectors do not
distinguish the photons by their spectrum, a PSS can be
characterized by a reduced density matrix, where the internal
spectrum degree of freedom of the photons is traced out via
integration. In the reduced spatial density matrix, which has
dimensions of NN × NN , each element is determined by [28]

ρs′
0,s

′
1,...,s

′
N−1;s0,s1,...,sN−1 = Tr

(
ρ̂ Ôs′

0,s
′
1,...,s

′
N−1;s0,s1,...,sN−1

)
, (2)

where ρ̂ = |�〉〈�| is the full density matrix and the N-photon
density-matrix projection operator is defined as

Ôs′
0,s

′
1,...,s

′
N−1;s0,s1,...,sN−1

= 1

N!

∫
dω0dω1 · · · dωN−1â†

s′
0
(ω0)â†

s′
1
(ω1)

× · · · â†
s′

N−1
(ωN−1)|0〉

×〈0|âs0 (ω0)âs1 (ω1) · · · âsN−1 (ωN−1). (3)

For a split state, the nonzero density-matrix elements
can be associated with only indices (s′

0, s′
1, . . . , s′

N−1)
and (s0, s1, . . . , sN−1), which are permutations in the set
(0, 1, . . . , N − 1) without repetitions. We also note that the
reduced density matrix is invariant under the simultaneous
exchange of indices s′

i ↔ s′
j and si ↔ s j for arbitrary i and

j since the photons are indistinguishable after the internal
spectrum degree of freedom is traced out. Using this prop-
erty, we can map all the elements to just the first row of
the density matrix with elements ρ0,1,...,N−1,s0s1···sN−1 , where
(s′

0, s′
1, . . . , s′

N−1) = (0, 1, . . . , N − 1). Therefore, the num-
ber of nonzero and independent elements of the spatial density
matrix is the number of permutations of (s0, s1, . . . , sN−1) in
the set (0, 1, . . . , N − 1) without repetition, which is N!. Note
that here we are considering un-normalized density matrices,
whose elements are proportional to correlations measured
over a specific time interval, as discussed in the following. A
conventional normalization with Tr(ρ̂) = 1 can be performed
only after a reconstruction by dividing all the matrix elements
by (ρ1N!). Importantly, whereas such a normalized matrix
will have the number of free parameters reduced by one,
i.e., N! − 1, all N! parameters need to be considered in the
tomographic reconstruction procedure since the normalization
factor is not known a priori.

Within this formulation, we can associate the appearance
of the collective multiphoton phase [15] with the presence
of complex-valued density-matrix elements. Since the order-
ing of |0〉〈s0|, |1〉〈s1|, . . . , |N − 1〉〈sN−1| does not affect the

values of density-matrix elements, we have

ρ0,1,...,N−1;s0,s1,...,sN−1 = ρq0,q1,...,qN−1;0,1,...,N−1

= ρ∗
0,1,...,N−1;q0,q1,...,qN−1

, (4)

where (s0, s1, . . . , sN−1) is reordered into (0, 1, . . . , N − 1)
and (q0, q1, . . . , qN−1) is the new order from
(0, 1, . . . , N − 1) after the same permutation operation.
When (q0, q1, . . . , qN−1) ≡ (s0, s1, . . . , sN−1), then it follows
from Eq. (4) that ρ0,1,...,N−1;s0,s1,...,sN−1 = ρ∗

0,1,...,N−1;s0,s1,...,sN−1
;

that is, this element is real valued. Let us denote the number of
such cases by AN . The remaining N! − AN elements will have
complex values and include (N! − AN )/2 complex-conjugate
pairs. Correspondingly, the numbers of independent real
and imaginary parts of the density matrix are (N! + AN )/2
and (N! − AN )/2, respectively, resulting in a total of N!
real-valued free parameters. We prove that AN satisfies the
recurrence relation AN = AN−1 + (N − 1)AN−2 for N � 3,
with A1 = 1 and A2 = 2; see Appendix A for the derivation.

We show in Fig. 1(b) the number of total, real, and imag-
inary independent parameters of the split-state density matrix
as a function of the number of photons. For N = (2, 3, 4),
there are (2, 6, 24) total, (2, 5, 17) real, and (0, 1, 7) imagi-
nary parameters. The corresponding structures of the reduced
density matrices are presented in Figs. 1(c)–1(e). We label
the independent real and imaginary coefficients with single
sequential indices. Figures 1(c) and 1(d) illustrate that one row
contains all the different elements, and we show just the first
row for a four-photon split state (4PSS) in Fig. 1(e) to save
space. Notably, the imaginary parts can appear only for three
or more photons (N � 3), in agreement with the properties of
the multiphoton collective phase [4,15,16].

We emphasize that the number of independent density-
matrix parameters for split states N! is much smaller than that
for the general states [28]. This allows for the efficient tomog-
raphy of split states by taking into account their structure, as
we discuss in the following.

III. INTEGRATED CIRCUIT FOR SPLIT-STATE
MEASUREMENTS

We now analyze how the characterization of split states
can be performed by adopting a static tomography approach
[23–29]. We consider an N-input-M-output waveguide cir-
cuit where the N input photons interfere, and the N-photon
correlations are measured between different combinations of
the M output ports, as schematically shown in Fig. 2(a). We
analyze the case of the commonly available click detectors
that do not distinguish the photons and do not resolve be-
tween single- and multiphoton events, such that one can count
only the cases when all N photons are detected at N distinct
output ports, with the corresponding number of different com-
binations CN

M [28]. To realize the state tomography without
reconfigurability, the number of different N-photon correla-
tion measurements at the output should exceed the number of
unknown density-matrix elements N!, that is,

CN
M = M!

N!(M − N )!
� N!. (5)

The required minimum number of waveguides M grows lin-
early up to five-photon states, Mmin = 2N − 1 for N � 5.
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FIG. 2. (a) Schematic of the proposed M-port coupled waveguide neural network for N-photon split state tomography, where the output
N-photon correlations enable the reconstruction of the input density matrix. (b) Required number of waveguides for different photon numbers.

For larger photon numbers, we obtain an exact quadratic
fitting as Mmin = �0.139N2 + 1.174N − 0.387	 for N � 30
[see Fig. 2(b)]. We confirm the quadratic scalability at high
photon numbers using Stirling’s approximation, which pro-
vides the asymptotic estimate M > (N/e)2 
 0.135N2 for
N � 1.

For comparison, if the detectors can resolve the number
of photons, the number of different measurable N-photon
correlations is determined as combinations with repetitions
CN

M+N−1. By substituting this expression in the left-hand side
of the inequality in Eq. (5), we find that Mmin = N for N � 5
and Mmin = �0.139N2 + 0.168N + 0.636	 for N � 25. We
see that a smaller number of output waveguides may be
required in the case of photon-number-resolving detectors,
although the scaling is similarly subquadratic as that for sim-
ple click detectors. We consider the click detectors in the
following, whereas our approach could be applied in the future
to optimize photonic circuits for number-resolving detectors
when they become widely available.

Since no structure tunability is required, there is a large
design freedom of the input-to-output transformation based on
integrated waveguide circuits. We demonstrate the general ap-
proach of split-state tomography for the realization based on
arrays of straight coupled waveguides [32–34] where the un-
desirable bending losses are absent since higher transmission
is critical for the observation of multiphoton interference [35].
Furthermore, the continuous interwaveguide coupling along
the propagation direction can make the circuit more compact
than the commonly used scheme of cascaded Mach-Zehnder
interferometers [12,36] while allowing for the realization of
various quantum logic operations [37].

The proposed waveguide circuit is sketched inside the
central frame in Fig. 2(a). It consists of M waveguides
whose optical modes are coupled to the nearest neighbors
with the constant coupling coefficient κ . The waveguides
are segmented into S sections with lengths (L1, L2, . . . , LS ).
We consider the presence of tailored phase shifts ϕi, j at the
interfaces between adjacent sections, noting that such local-
ized shifts were demonstrated experimentally [38] and their
incorporation was predicted to allow arbitrary unitary trans-
formations [33,39]. In addition, the design based on straight
and identical waveguides ensures that there is no mismatch in
the photon propagation lengths and dispersion, and the circuit

is expected to better preserve the degree of photon indistin-
guishability during their interference compared to cascaded
interferometers [40]. By design, the losses are expected to be
similar for all waveguides, and we assume in the following
that the output multiphoton correlations are above the noise
level [35], which can be satisfied experimentally for at least
N = 5 photons [40]. Essentially, the configuration in Fig. 2(a)
represents a linear artificial neural network [41] with S − 1
hidden layers, where each hidden layer has M neurons. The
waveguide couplings in each section function as the weights,
and the local phase shifts play roles similar to the bias.

The overall linear system transformation of the multi-
photon state, provided that the losses are negligible, can be
determined by a classical or one-photon unitary transfer ma-
trix,

U = WS BS−1 WS−1 · · · B2 W2 B1 W1 . (6)

Here, W j = exp(iCLj ), calculated through the matrix expo-
nent, is the weight matrix of layer j, where the coupling
matrix elements are Cn,m = κδn,m±1. The bias matrix acting
on the jth hidden layer is B j = exp(i	 j ), where the expo-
nent is applied elementwise to the phase-shift matrix 	 j =
diag(ϕ1, j, ϕ2, j, . . . , ϕM, j ). The M × M unitary matrix U can
be flexibly tuned by varying the lengths of sections and local
phase shifts.

For an N-photon split state, where the photons are coupled
to specific N ports at the input, its transformation is governed
by the N-in-M-out matrix Ur , which contains N columns of
U corresponding to the selected inputs. The density matrix of
the state at the output is ρ̂out = [⊗N

n=1Ur] ρ̂ [⊗N
n=1Ur]†, which

has an extended dimension of MN × MN . Then, we calculate
the output N-photon correlations, which correspond to the
diagonal terms of ρ̂out and depend on the transfer matrix Ur

and all the elements of the input density matrix ρ̂. The mag-
nitudes of output N-photon correlations can be represented by
a vector 

 whose length is equal to different combinations
CN

M = M!/[N!(M − N )!]. The correlations can be expressed
through the independent elements of the input density matrix
arranged in a vector 
ρfree of length N! [28,29],



 = T 
ρfree , (7)
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where the matrix T is determined by Ur and the structure of
the split-state density matrix.

Finally, we can reconstruct the input density matrix based
on the measured N-photon correlations as


ρfree = T+ 

 , (8)

where T+ is the pseudoinverse of T.
It is essential to optimize the integrated circuit to re-

duce the reconstruction sensitivity to noise and measurement
errors. Mathematically, this is achieved by minimizing the
condition number of the matrix T, defined as the ratio of
the transformation’s maximum and minimum singular values
σmax(T)/σmin(T) [42]. For our structure design, we perform
numerical optimization of the waveguide section lengths and
the local phase shifts based on the Nelder-Mead simplex direct
search algorithm realized using the FMINSEARCH function in
MATLAB.

IV. RESULTS AND DISCUSSION

We performed extensive simulations of coupled-waveguide
neural networks and found that the tomography of split states
with a photon number of at least up to four can be efficiently
performed in structures in which all sections have the same
length, all waveguides have the same propagation constants
and thus zero detunings, and all the near-neighbor waveguide
couplings are equal to each other. These conditions make the
photonic circuit design and fabrication simpler, where all the
waveguides have the same widths and the spacings between
them are identical. We show in the following that optimization
of the local phase shifts and the total waveguide length L
allows us to reach low condition numbers, corresponding to
low sensitivity to noise during the reconstruction. To simplify
the notations, we consider the scaling of the waveguide length
in the units of κ−1, such that the coupling coefficient is nor-
malized to 1.

We first analyze the tomography of 2PSSs. We choose the
minimum required number of M = 3 waveguides according
to Eq. (5) and Fig. 2(b), select the first and third waveguides
as the input ports, and consider a circuit structure with one
hidden layer (S = 2), as sketched in Fig. 3(a). We perform
the optimization for different waveguide lengths and show
the best condition number values in Fig. 3(b). We can see
that the condition number reaches a minimum value of 
2.3
when the waveguide length is longer than 0.84. This optimized
condition number is smaller than the previously reported val-
ues for tomography of general two-photon states [26,28]. The
corresponding optimized phase shifts at the hidden layer are
shown in Fig. 3(c), where we assign zero to one of the phases
since the global phase does not affect the output correlations.
Interestingly, all three phase shifts are zero for a waveguide
length shorter than 0.84, which effectively corresponds to the
absence of a hidden layer. For longer waveguides, the mini-
mum value of the condition number is achieved for circuits
with an optimal hidden layer. For comparison, Fig. 3(d) shows
the condition number for a structure without a hidden layer.
We see that the circuit can allow for optimal performance over
a broad range of structure lengths, offering more flexibility in
integrating with other photonic components.
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ture of three coupled waveguides with one hidden layer. Optimized
(b) condition number and (c) phase shifts at the hidden layer as a
function of the total waveguide length. (d) Condition number for a
structure without a hidden layer vs the waveguide length.

Next, we investigate the 3PSS tomography. Then, we use
Eq. (5) to determine the required number of waveguides as
M = 5 and choose the first, third, and fifth waveguides as
the input ports; see an illustration in Fig. 4(a). We check
that without hidden layers, the condition number is very
high, which would prevent state reconstruction. The condition
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number dependences on the structure length with the opti-
mized one or two hidden layers are presented in Fig. 4(b).
Overall, for a certain length, more hidden layers can provide
lower condition numbers because there are more tuning pa-
rameters. The smallest condition numbers are 
4.1 at L = 2.5
and 
3.9 at L = 3 for one and two hidden layers, respectively.
These values are much smaller than the ones for gen-
eral three-photon states [43]. The corresponding optimized
phase shifts are ϕ j,1 = (0, 1.083, 1.167, 0.973, 5.509) for one
hidden layer and ϕ j,1 = (0, 4.248, 3.808, 1.442, 5.098) and
ϕ j,2 = (0, 1.844, 1.948, 2.988, 4.155) for two hidden layers.

We confirm the practicality of the designs by quantifying
the tolerance of the optimal structures for 3PSS tomography
to variations of the phase shifts due to potential fabrication
errors. Figures 4(c) and 4(d) show the normalized probability
density of the condition number values for random deviations
of the phase shifts from the optimal values in different
variation ranges. The white numbers are the average
condition numbers for different variation magnitudes. At
small deviations, the structure with two hidden layers
performs better with the smaller condition number. In the
case of phase-shift variations of 0.04 π or larger, the structure
with one hidden layer is better. This is because there are fewer
phase shifts, and the performance is more robust to their
variations. Overall, the condition numbers are smaller than 7,
even when the phase shifts vary from the optimized values by
a magnitude up to 0.1π . This confirms the high fabrication
tolerance of the circuits. Next, we numerically demonstrate
the density-matrix reconstruction of 3PSSs. As an example,
we consider the 3PSS composed of photons with uncorrelated
frequency spectra, defined by the wave function |�〉 =∫

dω0dω1dω2φ0(ω0)φ1(ω1)φ2(ω2)â†
0(ω0)â†

1(ω1)â†
2(ω2)|0〉,

where φ j (ω) represents the spectral wave function of one
photon in the jth spatial path. In simulations, we assume
the pairwise spectral overlaps are 〈φ0|φ1〉 = 0.7e−iπ/3,
〈φ1|φ2〉 = 0.65, and 〈φ2|φ0〉 = 0.6, which define all the
spatial density-matrix elements and the three-photon
collective phase of −π/3 as formulated in Appendix B. The
real and imaginary parts of the density matrix of this state are
presented in Figs. 5(a) and 5(b), respectively. Figures 5(c) and
5(e) show the predicted three-photon correlation probabilities
at the output of the optimized circuits with one and two
hidden layers, respectively. We see that the correlations are
different for each structure. Based on the output correlations,
one can reconstruct the input density matrix. In order to
verify the low sensitivity to the measurement noise, we
apply a Gaussian noise to the correlations and use them to
reconstruct the input density matrix. We quantify the quality
of the tomography procedure by the fidelity between the
reconstructed (ρrec) and input (ρth) density matrices, defined
as Tr(

√√
ρthρrec

√
ρth ). Figures 5(d) and 5(f) show the

corresponding statistical distributions of the reconstruction
fidelity for 5000 simulations when a Gaussian noise with a
standard deviation of 5% is added to the predicted correlation
probabilities. We find that the fidelity stays above 0.95 for
both one- and two-hidden-layer structures, with average
values of 
0.99. We also confirm similarly high fidelity for
different 3PSSs, including those with zero collective phase.
These results indicate the high accuracy of the tomographic
reconstruction of split states in the presence of measurement
noise.
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FIG. 5. Three-photon reconstruction fidelity in the presence of
measurement noise. (a) Real and (b) imaginary parts of the density
matrix for an input three-photon split state with a collective phase of
−π/3. (c) and (e) The predicted three-photon correlation probabili-
ties after passing through the optimized waveguide network. (d) and
(f) The statistical distribution of the density-matrix-reconstruction
fidelity for 5000 simulations when a Gaussian noise with a standard
deviation of 5% is added to the output correlations. Results corre-
spond to the structures with (c) and (d) one and (e) and (f) two hidden
layers.

The proposed approach and its high tolerance of
fabrication errors and shot noise are also applicable to a
larger number of photons. For example, we numerically
designed a circuit with N = 4, M = 7, S = 3, and L = 3 for
the tomography of a 4PSS with an optimized condition
number of 16.3464 for the hidden-layer phase shifts
ϕ j,1 = (0, 1.126, 0.306, 4.331, 4.990, 1.633, 2.419) and
ϕ j,2 = (0, 1.212, 1.998, 2.246, 0.371, 6.002, 0.894).

The designed circuits can be realized experimentally based
on different integrated photonic platforms with established
fabrication techniques. The localized phase shifts in coupled
segmented waveguides were achieved through femtosecond-
laser writing in silica [38], and phase control using voids
inside the waveguide was shown in silicon photonic circuits
[44]. The practical difficulty lies in the preparation of high-
quality multiphoton states and processing of correlation mea-
surements, with the latter task scaling exponentially with N .
State-of-the-art experiments have reached up to five pho-
tons with reconfigurable multiport interferometers [40]. Since
our method uses a static circuit, one can measure all N!
multiphoton correlations simultaneously, offering a speedup
compared with the previous reconfigurable setups, and
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therefore, our approach is expected to perform well for up to
five and potentially larger numbers of photons.

V. CONCLUSION

To conclude, we formulated the general structure of the
spatial density matrix for multiphoton split states, which
are an important resource for various quantum applications
and whose resource-efficient characterization is a sought-after
capability. We then proposed a coupled waveguide array form-
ing a photonic neural network for the quantum tomography of
such states with low sensitivity to noise and high tolerance of
fabrication errors. The state measurement can be performed
using a static photonic circuit, and this approach is scalable to
high photon numbers.

We anticipate that the proposed platform, enabling simple
and robust characterization of such commonly used quantum
states, will stimulate further developments and applications of
quantum optical circuits, such as characterizing the indistin-
guishability of multiple photons and multiphoton collective
phases. In particular, since our scheme does not require re-
configurability, it is especially suitable for integration with
on-chip superconducting nanowire single-photon detectors
operating at cryogenic temperatures to facilitate plug-and-
play split-state measurements. Furthermore, the theoretical
methodology can be extended to split states where photons are
separated not only in spatial ports but also in other degrees of
freedom, such as polarization and orbital angular momentum.

The simulation data underlying the results presented in this
paper may be obtained from the authors upon request.
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APPENDIX A: NUMBER OF REAL AND IMAGINARY
FREE PARAMETERS IN THE DENSITY MATRICES

OF SPLIT STATES

As derived in the main text, the number of nonzero ele-
ments in the reduced density matrix of an N-photon split state
equals the distinct projection operators in the form of Eq. (3),
and it is N!. The numbers of real and imaginary parts are
determined by the numbers of nonzero distinct (Ô + ÔH.c.)/2
and (Ô − ÔH.c.)/2, respectively, where H.c. stands for the
Hermitian conjugate [28]. To perform the counting, we define
by AN the number of cases when Ô = ÔH.c., such that the
related imaginary parts are zero. AN is essentially the number
of permutations in the symmetric group of N elements which
are autoinverse to themselves. Next, we derive the recurrence
relation for AN as a function of N . Let us consider the value of
sN−1. When sN−1 = N − 1, the number of cases where Ô =
ÔH.c. is AN−1. When sN−1 = ñ for ñ = (0, 1, . . . , N − 2), the
condition Ô = ÔH.c. can be satisfied only when sñ = N − 1.
In this case, the number of cases where Ô = ÔH.c. becomes
AN−2. Since ñ can take N − 1 values, the total number is
(N − 1)AN−2. Therefore, we obtain the relation

AN = AN−1 + (N − 1)AN−2, N � 3, (A1)

and the values for one- and two-photon states are A1 = 1 and
A2 = 2.

APPENDIX B: THE SPATIAL SPLIT-STATE DENSITY MATRIX FOR PHOTONS
WITH UNCORRELATED FREQUENCY SPECTRA

Although our approach is applicable to arbitrary multiphoton split states, here, we discuss an example with states composed
of photons with uncorrelated frequency spectra. Specifically, we consider a pure N-photon state

|�〉 =
∫

dω0 dω1, . . . , dωN−1ψ (ω0, ω1, . . . , ωN−1)â†
0(ω0)â†

1(ω1) · · · â†
N−1(ωN−1)|0〉, (B1)

with the frequency-dependent wave function featuring no correlations between the individual spectra of photons,

ψ (ω0, ω1, . . . , ωN−1) = φ0(ω0)φ1(ω1) · · · φN−1(ωN−1) . (B2)

Here, φ j (ω j ) is an individual spectral wave function of the photon coupled to spatial mode number j.
We calculate the N! nonzero elements of the first row of the reduced density matrix for the N-photon split state as

ρ0,1,...,N−1;s0,s1,...,sN−1 = Tr(ρ̂ Ô0,1,...,N−1;s0,s1,...,sN−1 )

= 1

N!

∫
dω0dω1 · · · dωN−1φ

∗
0 (ω0)φ∗

1 (ω1) · · · φ∗
N−1(ωN−1)φs0 (ω0)φs1 (ω1) · · · φsN−1 (ωN−1)

= 1

N!
I0,s0 I1,s1 · · · IN−1,sN−1 ,

(B3)

where (s0, s1, . . . , sN−1) are permutations in the set (0, 1, . . . , N − 1) without repetition and we define the spectral overlaps
between different photon pairs or the distinguishability function as

Ii, j = 〈φi|φ j〉 =
∫

dωφ∗
i (ω)φ j (ω) = ri je

iθi j , (B4)

with the normalization I j, j = 1.
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For an N = 3 photon case, we have

ρ0,1,2;0,1,2 = 1

6
, ρ0,1,2;0,2,1 = 1

6
|I1,2|2 = 1

6
r2

12,

ρ0,1,2;1,0,2 = 1

6
|I0,1|2 = 1

6
r2

01, ρ0,1,2;2,1,0 = 1

6
|I2,0|2 = 1

6
r2

20,

ρ0,1,2;1,2,0 = 1

6
I0,1I1,2I2,0 = 1

6
r01r12r20eiθ012 ,

ρ0,1,2;2,0,1 = 1

6
I∗
0,1I∗

1,2I∗
2,0 = 1

6
r01r12r20e−iθ012 ,

(B5)

where θ012 = θ01 + θ12 + θ20 is the three-photon collective phase. Note that the definitions of the distinguishability function Ii, j

and collective phase here are the same as the ones defined in Ref. [15]. Correspondingly, the six free parameters in Fig. 1(d) are

ρ1 = ρ0,1,2;0,1,2, ρ2 = ρ0,1,2;0,2,1, ρ3 = ρ0,1,2;1,0,2 ,

ρ4 = Re(ρ0,1,2;1,2,0), ρ5 = Im(ρ0,1,2;1,2,0), ρ6 = ρ0,1,2;2,1,0 .
(B6)
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