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In a practical continuous-variable quantum-key-distribution (CVQKD) system, it is vital to accurately evaluate
and then compensate for the phase drifts of the signals, so that the involved system can achieve better perfor-
mance and stability. In this paper, based on the long short-term memory network (LSTM) model, an automatic
phase compensation approach of the CVQKD system is proposed. The LSTM model is first trained to predict
the phase drift value of the quantum signal relative to the local oscillator over time. Then, the predicted phase
drift value can be used by Alice to reconstruct her data. Finally, Alice and Bob can obtain the raw key, so
that the CVQKD system can achieve enhancements in terms of performance and stability. The experimental
results indicate that the proposed LSTM-based automatic phase compensation algorithm can accurately predict
the phase drift value and perform phase compensation instead of real-time phase drift measurement, which
improves the performance of the CVQKD system without requiring any additional quantum resources and extra
experimental hardware.
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I. INTRODUCTION

The quantum key distribution (QKD) enables two distant
partners (Alice and Bob) to exchange a cryptographic key
by transmitting nonorthogonal quantum states in the pres-
ence of an eavesdropper [1,2]. After receiving the quantum
state, Alice and Bob perform postprocessing to generate
the final key. Generally, two implementation methods of
the discrete-variable quantum key distribution [3,4] and the
continuous-variable quantum key distribution [5,6] are em-
ployed to distribute the secret key. Recently, both theoretical
[7–16]and experimental [17–27] studies on continuous-
variable quantum-key-distribution (CVQKD) systems have
been extensively investigated. Among them, the well-known
protocol of the CVQKD system, i.e., the Gaussian-modulated
coherent state (GMCS) protocol, has been successfully
demonstrated in both laboratory [28,29] and field tests
[30,31]. For practical application of the GMCS protocol pur-
pose, it is urgently necessary to adopt strategies to enhance the
performance and stability of the GMCS protocol [32–37].

In order to make the practical GMCS QKD system operate
stably for a long time, it must be resistant to the fluctuation of
signal, birefringence, and phase drift caused by environmental
variations in optical fiber. For the impact of signal fluctuations
on the system, a support vector regression model is proposed
to predict the intensity of the local signal and perform the
feedback control [38]. For the case of the phase drift of the
fiber CVQKD system, the general method is to use a strong
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reference signal sent by Alice, which carries a well-known
phase. Bob performs heterodyne or homodyne detection of the
reference signal, and then he can determine the deviation from
the reference phase. The measured drift is used to readjust the
phase of the quantum signal accordingly [39,40]. However,
a strong reference signal will increase the complexity of the
CVQKD system. Especially, under low signal-to-noise ratio
(SNR) situations, the attempt to compensate for the phase drift
with stronger optical signals compared with the quantum sig-
nals would compromise the practical security of the CVQKD
system [39]. In addition, the main challenge in a CVQKD
system with a real local oscillator is that Bob must compensate
efficiently for the phase drift between two different lasers in
order to perform CVQKD with a tolerable noise level [41–44].

In this paper, we propose a method utilizing a long short-
term memory (LSTM) model to compensate for the phase
drift in CVQKD systems due to that LSTM can well solve the
long-term dependency problem of the general recurrent neu-
ral network in predicting time series. Particularly, the LSTM
model is first trained to predict the evolution of phase drifts
over time in a CVQKD system, and then the predicted phase
values are used to compensate for the phase drift so that the
secret key can be obtained by Alice and Bob. The experi-
mental results show that the proposed LSTM model has high
prediction and compensation accuracy, which significantly
optimizes the performance of the CVQKD system and further
makes the secret key rate greatly improved. More importantly,
this method no longer requires real-time phase calculation, so
the system overhead is reduced and, even at low SNR, phase
compensation can be performed simply and efficiently.

The structure of this paper is as follows. In Sec. II, we
investigate an LSTM model to compensate the phase drift.
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FIG. 1. Schematic diagram of the internal structure of an LSTM block

In Sec. III, we detail the source of the data and leverage
a machine-learning algorithm to estimate the phase drift in
CVQKD systems, further using these predictions for phase
compensation. Then, the performance optimization of the
LSTM-based phase compensation method for the involved
CVQKD system is analyzed in Sec. IV. Finally, conclusions
are drawn in Sec. V.

II. LEARNING FOR AUTOMATIC PHASE
COMPENSATION IN THE CVQKD SYSTEM

To implement automatic phase compensation, we first need
to train the LSTM model to predict the phase drift of the
CVQKD system. The internal structure of an LSTM block is
shown in Fig. 1. The cell state is responsible for conveying
relevant information in the sequence chain. To be specific, the
particular information is added to or removed from the cell
state by different gates, i.e., the forget gate, the input gate,
and the output gate. Gates are different neural networks that
include sigmoid and tanh activation functions, where sigmoid
takes values between 0 and 1 and helps with updating or
forgetting data. As a result, the LSTM network enables one to
combine the information from the previous LSTM block and
the current input together to generate a newly predicted value
[45–47]. Hereinafter, the updating mechanism of the cell state
is briefly described.

The forget gate is responsible for selectively retaining or
discarding the type of information from the previous cell state.
It reads the previous output ht−1, and the current input xt goes
through the synapses with certain weights Wf and biases b f

and then does a nonlinear mapping of the sigmoid activation
function. The output value ft of the forget gate can be calcu-
lated by

ft = σ (Wf [ht−1, xt ] + b f ), (1)

where σ denotes the sigmoid activation function. Afterwards,
the input gate determines how much new data should be taken
into the current cell state. The calculation of the input gate can
be expressed by

it = σ (Wi[ht−1, xt ] + bi ). (2)

Meanwhile, the new candidate values C̃t can be obtained by
employing the hyperbolic tangent (tanh) activation function,
which can be calculated by

C̃t = tanh (WC[ht−1, xt ] + bC ). (3)

Then, with the values of the input gate and the cell candidate
C̃t , the previous cell state Ct−1 can be updated to the current
cell state Ct by linearly combining the input gate and the forget
gate. This process can be formulated by

Ct = ft � Ct−1 + it � C̃t , (4)

where � denotes the Hadamard product. The final step is to
decide the output values ht , which can be complemented by
the forget gate. The cell state Ct is passed to the tanh activation
function and multiplied by the output of the sigmoid, and then
the information that the current hidden state ht should carry is
obtained. This process is given by

ot = σ (Wo[ht−1, xt ] + bo),

ht = ot � tanh (Ct ). (5)

After the model finishes training, we need to evaluate the
accuracy of the algorithm in predicting future data. Here, we
use the mean square error (MSE) as a performance metric of
the model, which is defined as

MSE = 1

N

N∑
i=1

(Yi − Y ′
i )2, (6)

where N is the number of samples, Yi is the measured real
value, and Y ′

i represents the value, which is predicted by using
the LSTM model.

III. INTEGRATING THE LSTM MODEL FOR PHASE
COMPENSATION IN THE CVQKD SYSTEM

The proposed LSTM model can be used to predict the
phase drift of the GMCS CVQKD system by learning from
the historic data.
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FIG. 2. The experimental setup for obtaining the training data. AM is the amplitude modulator, BS is the beam splitter, PBS is the
polarization beam splitter, PM is the phase modulator, ATT is the adjustable attenuator, and CWDM means the coarse wavelength division
multiplexing.

A. Preparation of historic data

In order to make the LSTM model capable of phase predic-
tion, we first need to obtain the training data of the evolution
of the phase drift. The experimental setup of the GMCS QKD
system used for collecting the training data is presented in
Fig. 2. At Alice’s side, the continuous-wave (CW) laser with
the center wavelength of 1550 nm is transformed into a pulse
by using the amplitude modulators (AM). The pulse is then
divided into two parts, the local oscillator (LO) and the signal
(Sig) through the beam splitter (BS). In the signal path, the
signal pulse passes through the Faraday mirror, the original
polarization state of the pulse is rotated by 90◦, and the signal
pulse finally returns to the polarization beam splitter (PBS).
By using the time-multiplexing and polarization-multiplexing
techniques, the quantum signal will be sent to Bob through a
fiber link together with a LO signal. At Bob’s side, in order to
develop the Mach-Zehnder interference structure, the signal
pulse needs to go through the short arm and the LO pulse
needs to go through the long arm. Finally, we use a shot-noise-
limited homodyne detector to detect the LO pulse and the
signal pulse. In addition, we use a coherent laser with a center
wavelength of 1310 nm as the clock synchronization signal,
and the clock synchronization signal is integrated through a
coarse wavelength division multiplexer (CWDM).

Now we describe the process of collecting training data for
the LSTM model to predict the evolution of the phase drift.
As shown in Fig. 2, we first let the system run for a while
to get some phase drift angle values as the historic data. To
be specific, Alice sends the signal pulse carrying information
and the LO pulse, which are transmitted through the quan-
tum channel to Bob. Then Bob uses a homodyne detector to
measure the quadrature component x or p of the received data
and estimate the phase drift by the postprocessing module. We
collected 1500 values of the phase drift, which are divided into
the training set, the verification set, and the testing set with the
lengths of 1191, 15, and 298, respectively.

B. Using the LSTM model to predict the phase
drift of the system

After the LSTM is learned, we can use it to predict the
phase drift value at the current and future time. Based on
the aforementioned discussions, we use the collected data
to train the LSTM network to obtain a predictive model.

Experimentally, we design an LSTM network, which consists
of three LSTM layers and four full-connection layers. The
number of hidden neurons in the LSTM layers is 100, and the
input size and the output size are both 1. After the optimiza-
tion procedure, we choose the initial learning rate as 0.01, the
batch size is set to 64, and the above training is iterated 1000
epochs in total. To illustrate the performance of our proposed
LSTM model, the variation of training loss and validation loss
during the training process is shown in Fig. 3. As shown,
the losses in the training and validation sets drop rapidly and
eventually stabilize at very low levels, which means that the
constructed model has been well trained.

Moreover, in order to further clarify the prediction perfor-
mance of the proposed LSTM model, we respectively draw
the variations of phase estimation results in different cases,
as shown in Figs. 4(a)–4(d). Figures 4(a) and 4(b) are the
prediction results using the training set and the testing set
when the frame length of the system in order to obtain values
of the phase drift is 2000 points. Figures 4(c) and 4(d) are the
results using the training set and the testing set when the frame
length is 3000 points (after 4 h of operation). The results show
that the predicted data via the predictive model are similar
to the practical measured values. Moreover, when measuring
per 2000 points, we calculated that the prediction MSE of the

FIG. 3. Loss function value during the training of the LSTM.
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FIG. 4. The variations of prediction results of the phase drift. Panel (a) shows the performance of the LSTM model with the testing set
when the phase value is measured in a 2000-point frame length, and panel (b) shows the performance of the LSTM model with the training set
at the same measurement length. Panel (c) shows the performance of the LSTM model with the testing set when the phase value is measured
in a 3000-point frame length, and panel (d) shows the performance of the LSTM model with the training set at the same measurement length.
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FIG. 5. Schematic setup of the phase compensation module.

training data is 2.91 × 10−5, and the MSE of the testing data is
1.06 × 10−4. As for measuring per 3000 points, the prediction
MSE of the training data is 3.96 × 10−5, and the MSE of the
testing data is 1.26 × 10−4.

It should be noted that, with the changes of environment,
the proposed model will be updated to better predict the next
time period with an off-line updating mechanism, and the
latest monitoring data will be input into the training set to
update the neural network model. Particularly, when drastic
changes occur in the environment, resulting in a large average
error of the data of the previous and the later time steps, we
will update the training data set with the newly measured
phase value, retrain, and predict.

C. Learning to compensate the phase drift

In the previous subsections, we have applied the LSTM
model for phase prediction. Here, we further use the predicted
values for the compensation of the CVQKD system, thereby
ensuring the stable operation of the involved CVQKD system
and optimizing the system performance. This process is sim-
ple and can decrease the system overhead. Figure 5 shows the
schematic setup of the automatic phase compensation module.
The process consists of the following two steps: First, Bob
obtains the predicted values of the phase drifts in the CVQKD
system via the LSTM model, and then he sends such predicted
values to Alice, which can be used by Alice to reconstruct
her data. This approach can guarantee the practical security of
the involved system, but requires neither extra experimental
hardware nor additional quantum resources. Moreover, it can
avoid the problem that the increase of inaccuracy of phase
compensation at low SNR can inevitably result in a higher
level of the excess noise. The effect of the proposed approach
on improving the performance of the CVQKD system is dis-
cussed in detail in the next section.

IV. THE PERFORMANCE OPTIMIZATION USING THE
LSTM-BASED AUTOMATIC PHASE COMPENSATION

To evaluate the performance of the automatic phase com-
pensation module in improving the performance of the
CVQKD system, the secret key rate of the involved system
needs to be analyzed.

The compensation accuracy is directly related to the esti-
mation accuracy of the phase drift; therefore, the prediction
accuracy of the model is very important. To demonstrate
clearly the effect of the predictive model, it is vital to evaluate
the excess noise εphase, induced by the phase drifts of the
involved system. Assuming that the modulation variance is

VA, the phase noise due to the inaccuracy of the phase com-
pensation can be given by

εphase =
(

1

κ
− 1

)
(VA + ε0), (7)

where ε0 is the excess noise of the system, and κ =
(E [cos �θ ])2, with �θ = θ ′ − θ (θ is the real value of the
phase drift of the system and θ ′ represents the value of the
phase drift given by the phase compensation algorithm).

When the phase noise �θ is small, we obtain

κ = (E [1 − (�θ )2/2])2 =
(

1 − 1

2
Vp

)2

, (8)

where Vp is the variance of the remaining phase noise. The
impact of the phase noise on the system can be measured by
the parameter κ . When κ is smaller, it means that the phase
noise is larger [40].

In the CVQKD system, the relationship between Alice and
Bob is given by

y = tx + z, (9)

where x and y are two correlated vectors x = {x1, x2, . . . , xN }
and y = {y1, y2, . . . , yN }, shared by Alice and Bob (N depicts
the sum of the number of the received pulses). t = √

ηT is
related to the transmittance of the quantum channel, and z
is the noise term whose variance σ 2 = ηT ε0 + N0 + Vel fol-
lows a central normal distribution. The involved N0 is the
variance of the shot noise, η represents the efficiency of the
homodyne detector, T is the transmittance of the quantum
channel, and Vel is the electronic noise of the detector. More-
over, when we evaluate the secret key rate of the CVQKD
system, all parameters should be expressed in shot noise units.

In the case of considering the phase noise in the system,
T ′ = κT , t ′ = √

ηT ′ = √
ηκT , and the total excess noise is

ε, namely, ε = εphase + ε0. Hence, the variance of the excess
noise σ ′2 can be written as

σ ′2 = ηT ′ε + N0 + Vel

= ηT [(1 − κ )VA + ε0] + N0 + Vel. (10)

Then, the information shared by Alice and Bob and the
maximum amount of information available to the eaves-
dropper can be calculated. According to Refs. [48,49], the
equation used to calculate the key rate between Alice and
Bob is

K = n

N
[βIAB − χBE − �(n)], (11)

where n = N − m, n represents the data volume length used
for generating the final key, m represents the data volume
length used for the parameter estimation procedure, and β ∈
(0, 1) is the efficiency of reverse reconciliation. IAB is the
Shannon mutual information between Alice and Bob. χBE

represents the maximum amount of information that Eve can
obtain, limited by the number of Holevos. In addition, �(n)
is related to confidentiality enhancement, which is a linear
function of n.
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By calculating Bob’s measured variance VB and conditional
variance VB|A, we can obtain the mutual information IAB as

IAB = 1

2
log2

VB

VB|A
= 1

2
log2

V + χtot

1 + χtot
. (12)

Here, V = VA + 1, the total noise referred to the channel input
can be expressed as χtot = χline + χh/T ′, in which χline =
(1/T ′) − 1 + ε and χh = [(1 + Vel )/η] − 1 represents a ho-
modyne detection added noise referred to Bob’s input.

The maximum information obtain by Eve from Bob, χBE ,
can be expressed as

χBE = S(ρE ) −
∫

dmB p(mB)S
(
ρ

mB
E

)
, (13)

where mB represents the measurement result of Bob, p(mB)
represents the probability density of the measurement, ρ

mB
E

represents the state of Eve under Bob’s measurement condi-
tions, and S(ρ) is the von Neumann entropy of the quantum
state ρ.

Since Bob’s measurement can purify the system ρAEFG and
Eve’s eavesdropping can purify the system ρAB1 , for Gaussian-
modulated coherent states, S(ρmB

AFG) does not depend on Bob’s
measurement mB, so χBE takes the form

χBE = S(ρAB1 ) − S
(
ρ

mB
AFG

)
=

2∑
i=1

G

(
λi − 1

2

)
−

5∑
i=3

G

(
λi − 1

2

)
, (14)

among which G(x) = (x + 1) log2(x + 1) − x log2 x. λ1,2 are
the symplectic eigenvalues of the covariance matrix γAB1 that
characterize the quantum state ρAB1 . λ3,4,5 are the symplectic
eigenvalues of the covariance matrix γ

mB
AFG that characterize

the quantum state ρ
mB
AFG.

By taking the finite-size effect into account [48,49], the
covariance matrix ρAB1 of the Gaussian modulation protocol
can be expressed in the following form:

AB =
⎡
⎣ (VA + 1)II2

√
T ′

min

(
V 2

A + 2VA
)
σz√

T ′
min

(
V 2

A + 2VA
)
σz [T ′

min(VA + εmax) + 1]II2

⎤
⎦,

(15)
where the matrices II2 = [ 1 0

0 1 ] and σz = [ 1 0
0 −1 ]. T ′

min

is the minimum value of transmittance, and εmax represents the
maximum value of the excess noise. They can be calculated by

T ′
min = (t ′

min)2,

εmax = σ ′2
max − 1

T ′ . (16)

When m is large enough, t ′
min and σmax can be approximately

calculated by

t ′
min ≈

√
T ′ − zεPE/2

√
1 + T ′ε

mVA
,

sigma′
max ≈ 1 + T ′ε + zεPE/2

(1 + T ′ε)
√

2√
m

,

(17)
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FIG. 6. Secret key rate of the CVQKD system in different cases.
The curves from top to bottom represent the secret key rates in the
perfect situation (dotted green line, κ = 1), in the situations with our
proposed approach based on the LSTM model (solid gray line, κ =
0.999 89 and dot-dashed red line, κ = 0.999 87), and in the practical
situation without compensation (dashed blue line, κ = 0.917 38),
respectively. The parameters are fixed in simulation to the values
VA = 4, η = 0.95, ε = 0.02 (in shot noise units) β = 0.926, and
Vel = 0.001 (in shot noise units)

where zεPE/2 can be computed as

1 − 1

2
erf

(
zεPE/2√

2

)
= 1

2
εPE, (18)

and the error function erf(·) is defined by

erf (x) = 2π−1/2
∫ x

0
e−t2

dt . (19)

Hence, symplectic eigenvalues λi are given by

λ2
1,2 = 1

2 [A ±
√

A2 − 4B],

λ2
3,4 = 1

2 [C ±
√

C2 − 4D],

λ5 = 1,

(20)

with the following parameters:

A = (VA + 1)2−2T ′
min

(
V 2

A + 2VA
)+[T ′

min(VA + εmax) + 1]2,

B = [(T ′
minεmax + 1)(VA + 1) − T ′

minVA]2,

C = A(1 − η + Vel )/η+(VA + 1)
√

B + T ′
min(VA + εmax) + 1

ηT ′
min(VA + εmax)+1 + vel

,

D =
√

B[VA + 1 + √
B(1 − η + Vel )/η]

ηT ′
min(VA + εmax) + 1 + vel

. (21)

To show how the proposed phase compensation pro-
cedure improves the performance of the CVQKD system,
we compare the key rates under different conditions. The
secret key rate K can be regarded as the function K =
K (VA, T, η,Vel, N0) and we obtain the relationship between
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the secret key rate of the system and the transmission distance
in Fig. 6. We plot the secret key rates under the perfect
situation, i.e., κ = 1 and the cases with the proposed ap-
proach based on the LSTM model (when the phase values
are measures at intervals of 2000 points and 3000 points),
i.e., κ = 0.999 89 and κ = 0.999 87. To more clearly show the
performance of the proposed method, we plot the secret key
rate of the system without the phase compensation procedure
as a comparison, i.e., κ = 0.917 38. It can be observed that
the two key rate curves with the proposed approach based on
the LSTM model almost coincide with the curve of perfect
compensation, but without the proposed method, the key rate
deviates significantly and the security transmission distance
that Alice and Bob actually share is reduced. The results illus-
trate that the proposed method performs well and can greatly
improve the final key rate and the transmission distance. It is
worth noting that, due to the use of prediction data for com-
pensation, this approach not only breaks the limitation that
real-time phase drift angle measurement cannot be performed
at low SNR but also reduces the overhead of the involved
system.

V. CONCLUSION

In this paper, considering that accurate evaluation and
compensation of phase drifts have an important impact on

the performance and stability of practical CVQKD systems,
we propose an automatic phase compensation approach to
reduce the phase drift and optimize the involved system. This
algorithm relies on machine-learning techniques, training an
LSTM model by learning from historical data, and predict-
ing future phase angle values. These predicted values are
eventually used to compensate for the phase drifts of the
system, instead of real-time phase drift measurement. Our
experimental results show that the proposed method accu-
rately predicts the time evolution of phase drifts and has
a great compensation effect, which can improve the perfor-
mance of the CVQKD system effectively, while it requires
neither additional quantum resources nor extra experimental
hardware.
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