
PHYSICAL REVIEW A 107, 062613 (2023)

Mode-pairing quantum key distribution with advantage distillation

Xin Liu,1 Di Luo,1 Zhenrong Zhang,2 and Kejin Wei1,*

1Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology,
Guangxi University, Nanning 530004, China

2Guangxi Key Laboratory of Multimedia Communications and Network Technology,
School of Computer Electronics and Information, Guangxi University, Nanning 530004, China

(Received 9 April 2023; accepted 5 June 2023; published 29 June 2023)

Mode-pairing quantum key distribution (MP-QKD) is an easy-to-implement scheme that transcends the
Pirandola-Laurenza-Ottaviani-Banchi bound without using quantum repeaters. In this paper, we present an
improvement of the performance of MP-QKD using an advantage distillation method. The simulation results
demonstrate that the proposed scheme extends the transmission distance significantly with a channel loss
exceeding 7.6 dB. Moreover, the scheme tolerates a maximum quantum bit error rate of 8.9%, which is nearly
twice that of the original MP-QKD. In particular, as the system misalignment error increases, the expandable
distance of the proposed scheme also increases. The proposed system is expected to promote the practical
implementation of MP-QKD in a wide range of applications, particularly in scenarios involving high channel
losses and system errors.
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I. INTRODUCTION

With the development of quantum computers, classical en-
cryption methods based on algorithm complexity [1,2] have
demonstrated to be insufficient in guaranteeing communi-
cation security. Thus, quantum key distribution (QKD) [3],
which operates by distributing information-theoretic secure
keys, has garnered significant attention in research. Specif-
ically, chip-based QKD has garnered considerable attention
in recent years due to its advantages involving small size
and cost efficiency [4,5]. However, there is a significant
gap between the ideal QKD model and realistic models, re-
sulting in security vulnerabilities in realistic QKD systems
[6].

The improvement of the practical security of QKD sys-
tems has been researched for decades. To this end, one
approach involves the construction of more realistic models
to analyze the security of QKD systems [7–13]. However,
characterizing all devices in real-world systems is challeng-
ing. In contrast, device-independent QKD has been proposed
to address all security loopholes induced by device imper-
fections [14]. However, this protocol exhibits a low key rate
and is difficult to implement because of the strict require-
ment on the detection efficiency of single-photon detectors.
Fortunately, measurement-device-independent QKD (MDI-
QKD) [15], which closes all loopholes in detection devices,
is relatively simple to implement with excellent performance.
Significant experimental progress has been made with regard
to this method [16–22].

Currently, most MDI-QKD methods are called two-mode
MDI-QKD because they encode single-sided key information
in the relative phases of the coherent states of two orthogonal
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optical modes. A successful two-photon interference mea-
surement is required to correlate the information encoded in
the photons by Alice or Bob in a two-mode scheme. If the
photon emitted by Alice or Bob is lost during transmission,
coincidence detection cannot be performed for successful
interference, rendering the restoration of the raw key in-
formation impossible. Thus, the requirement of coincidence
detection of MDI-QKD is a critical factor limiting its trans-
mission distance.

In recent years, the performance of MDI-QKD has been
improved from multiple perspectives, e.g., increasing the se-
cret key rate and the transmission distance [23–28]. Twin-field
QKD (TF-QKD) [29], which encodes information in a sin-
gle optical mode, is the most representative improvement. In
particular, TF-QKD transcends the repeaterless secret key ca-
pacity bound [30], and more tightly, the Pirandola-Laurenza-
Ottaviani-Banchi (PLOB) bound [31]. Subsequently, variants
of the TF-QKD protocol have been proposed, such as phase-
matching QKD, in which key information is encoded in phase
with the coherent states [32]; sending-or-not-sending TF-
QKD, in which information is encoded in intensity [33,34];
and so on [35–41]. However, TF-QKD requires locking the
frequency and phase of the coherent state and stabilizing the
global phase, which inevitably complicates the implemen-
tation setup with peripheral hardware [42–49]. This makes
experimentation challenging and hinders the use of single-
mode schemes in real-life applications.

Recently, a new variant of MDI-type QKD, called mode-
pairing QKD (MP-QKD), was proposed [50]. Similar to
TF-QKD, MP-QKD transcends the PLOB bound, but it does
not require the use of phase-locking technology. This feature
enables MP-QKD to be implemented using a simpler setup
than TF-QKD. More recently, the tight finite-key effect [51]
and experimental demonstrations using off-the-shelf optical
devices for MP-QKD were reported [52].
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FIG. 1. Diagram of the MP-QKD scheme. Alice and Bob trans-
mit the prepared coherent pulses to Charlie and they utilize the Z
pairs to generate the key after postprocessing. For time bins k and
l , one intensity is 0 and the other is nonzero as the Z basis, the
intensities are given by (μ, μ) as the X basis, and they are (0, 0)
in the vacuum state. If one or both of Alice and Bob lose data at
the same time bin, they both discard the corresponding data and
start searching for the following time bin. L/R: detector; BS: beam
splitter.

In this study, we further improve the performance of MP-
QKD by using the advantage distillation (AD) method. The
proposed scheme modifies the postprocessing step without
changing the hardware of a realistic MP-QKD system. Hence,
it can be directly applied to current systems. Its fundamental
underlying concept is to divide the original key into blocks of
a few bits each, enabling highly correlated keys to be distin-
guished from weakly correlated bits. The typical experimental
parameters of MP-QKD are used for simulations. The simu-
lation results demonstrate that the proposed scheme extends
the transmission distance significantly. Moreover, the maxi-
mum tolerable quantum bit error rate (QBER) of the proposed
system is 8.9%, which is nearly twice that of the original
MP-QKD. In particular, in some specific cases, the proposed
scheme exhibits a longer expandable distance, paving the way
for the widespread real-world application of MP-QKD.

The remainder of this paper is organized as follows. In
Sec. II, we briefly summarize the steps involved in MP-
QKD. In Sec. III, we introduce the protocol steps of the
proposed scheme and present its security analysis in detail.
Subsequently, in Sec. IV, we present the numerical simulation
results, comparing the performances of the proposed scheme
and the original MP-QKD. The results demonstrate the im-
pact of the misalignment error ed on the performance of the
proposed scheme. Finally, we present further discussion and
our conclusions in Sec. V.

II. ORIGINAL MP-QKD

In this section, we briefly review the original MP-QKD
method proposed in [50]. A schematic of this scheme is
presented in Fig. 1 and its specific steps are summarized as
follows.

Step 1. Preparation. Alice (Bob) prepares n weak coherent
state pulses |eiθ k

A

√
λk

A〉(|eiθ k
B

√
λk

B〉) with intensities λk
A(λk

B) ∈

{μ, 0}, where each time bin satisfies k ∈ {1, 2, . . . , n}, and the
phase satisfies θ k

A(θ k
B ) ∈ [0, 2π ).

Step 2. Measurement and announcement. Alice and Bob
transmit weak coherent light pulses to Charlie. For each time
bin k, Charlie performs an interference measurement on the
two received pulses and records the responses of detectors L
and/or R. Subsequently, Charlie publicly announces whether
a detection event is acquired and the detector that clicks.

Step 3. Mode pairing. Alice and Bob repeat the two afore-
mentioned steps N times. Corresponding to each round with
successful detection, only one detector click (L or R) round
is retained. Alice and Bob group the two clicked rounds into
pairs to determine the bases. The phases and intensities en-
coded in these two rounds form a data pair. The paired bases
are then compared: they are retained if they satisfy the sifting
conditions; otherwise, they are discarded.

Step 4. Basis sifting. For time bins k and l , if one of the
intensities is 0 and the other is nonzero, the data are retained
and recorded as the Z basis, if the intensities are (μ,μ) in
terms of the X basis, or if the intensities are (0, 0) as in a
vacuum state, then the rest of the data are discarded. Subse-
quently, Alice and Bob announce the bases and the sum of
the intensities corresponding to the time bins k and l . If the
announced bases are identical and no “discard” is present, the
bases are recorded and the data are retained.

Step 5. Key mapping. For each Z pair at time bins k
and l , Alice sets her key to κA = 0 if the intensity pair is
(λk

A, λl
A) = (μ, 0). Alternatively, Alice sets her key to κA = 1

if the intensity pair is (λk
A, λl

A) = (0, μ). For each X pair at
time bins k and l , the key is extracted from the relative phase
(θ l

A − θ k
A ) = φA + πκA, where the raw key bit is given by

κA = { [(θ l
A − θ k

A )/π ] mod 2}, and the alignment angle is given
by φA := (θ l

A − θ k
A ) mod π . Similarly, Bob assigns a raw key

bit κB and determines φB. For each X pair, Alice and Bob
announce the alignment angles φA and φB. If φA = φB, the
data pairs are retained; otherwise, they are discarded.

Step 6. Parameter estimation. Alice and Bob use the Z pairs
to generate a key. All the raw data obtained can be used to
estimate the bit error rate EZZ

(μ,μ) of the raw key in Z pairs

with overall intensities of (λk,l
A , λk,l

B ) = (μ,μ). When Alice
and Bob both transmit a single photon each at time bins k and
l , they can estimate the fraction of clicked signals, q̄11, using
the data of Z pairs with different intensities and can estimate
the single-photon phase error rate eXX

(1,1) using the data of the
X pairs.

Step 7. Postprocessing. Alice and Bob perform error cor-
rection and privacy amplification on the raw key data to obtain
the final secret key.

Based on the security proof presented in [50], the final key
rate of MP-QKD can be estimated as follows:

R = rp(p, δ)rs
{
q̄11

[
1 − h

(
eXX

(1,1)

)] − f h
(
EZZ

(μ,μ)

)}
, (1)

where rp(p, δ) denotes the expected pair rate contributed dur-
ing each round, δ denotes the maximum pairing interval, and
p denotes the probability of the kth emitted pulse results in
each successful click. rs denotes the probability that a gen-
erated pair is a Z pair, eXX

(1,1) denotes the single-photon phase
error rate, q̄11 denotes the expected single-photon pair ratio in
all Z pairs, f denotes the error correction efficiency, h(x) =
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−x log2(x) − (1 − x) log2(1 − x) denotes the binary Shannon
entropy function, and EZZ

(μ,μ) denotes the bit error rate of the
Z pairs. The detailed calculation process for obtaining these
parameters is described in Appendix A.

III. MP-QKD WITH AD METHOD

Next, we discuss the specific steps involved in applying
the AD method to MP-QKD. The AD method [53–59] only
changes the postprocessing steps. Thus, steps 1 to 6 of the
proposed scheme are identical to those of the original MP-
QKD. The only change is in the postprocessing procedure
of the original MP-QKD. The specific details are presented
below.

New step 7. Alice and Bob divide their raw key into b
blocks each, i.e., {x1, x2, . . . , xb} and {y1, y2, . . . , yb}. Alice
randomly selects a bit c ∈ {0, 1} and transmits the messages
m = {m1, m2, . . . , mb} = {x1 ⊕ c, x2 ⊕ c, . . . , xb ⊕ c} to Bob
via an authenticated classical channel. Alice and Bob accept
the block only if Bob announces that the result of {m1 ⊕
y1, m2 ⊕ y2, . . . , mb ⊕ yb} is {0, 0, . . . , 0} or {1, 1, . . . , 1}.
Then, they retain the first bits, x1 and y1, as raw keys. Finally,
Alice and Bob perform error correction and privacy amplifi-
cation on the raw key data to obtain the secret keys.

To obtain further insights into the improvement of the
achieved key rate using the AD method, we first reanalyze
the key rate of MP-QKD using quantum information theory.
We rewrite the key rate formulas as follows:

R � min
λ0,λ1,λ2,λ3

rp(p, δ)rs

{
q11

[
1 − (λ0 + λ1)h

(
λ0

λ0 + λ1

)

−(λ2 + λ3)h

(
λ2

λ2 + λ3

)]
− f h

(
EZZ

(μ,μ)

)}
, (2)

where
∑3

j=0 λ j = 1 and λ j ( j = {0, 1, 2, 3}) denote factors of
the characterizing quantum channel. The single-photon error
rates in the X basis and Z basis are constrained by λ1 + λ3 =
eXX

(1,1) and λ2 + λ3 = eZZ
(1,1), respectively. A detailed analysis of

Eq. (2) is presented in Appendix B.
After postprocessing using the AD method (new step 7),

highly correlated bits can be separated from weakly correlated
information and the key rate of the MP-QKD protocol can
be modified as follows (the detailed formulas following AD
postprocessing are presented in Appendix C):

R̃ �max
b

min
λ0,λ1,λ2,λ3

1

b
qsrp(p, δ)rs

×
{

(q̄11)b

[
1 − (λ̃0 + λ̃1)h

(
λ̃0

λ̃0 + λ̃1

)

−(λ̃2 + λ̃3)h

(
λ̃2

λ̃2 + λ̃3

)]
− f h

(
ẼZZ

(μ,μ)

)}
, (3)

subject to

eXX
(1,1) = λ1 + λ3,

eZZ
(1,1) = λ2 + λ3,

qs = (
EZZ

(μ,μ)

)b + (
1 − EZZ

(μ,μ)

)b
,

ẼZZ
(μ,μ) =

(
EZZ

(μ,μ)

)b

(
EZZ

(μ,μ)

)b + (
1 − EZZ

(μ,μ)

)b
, (4)

and

λ̃0 = (λ0 + λ1)b + (λ0 − λ1)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
,

λ̃1 = (λ0 + λ1)b − (λ0 − λ1)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
,

λ̃2 = (λ2 + λ3)b + (λ2 − λ3)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
,

λ̃3 = (λ2 + λ3)b − (λ2 − λ3)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
, (5)

where qs represents the probability of a successful advantage
distillation on a block of length b and ẼZZ

(μ,μ) represents the
overall error rate after the AD postprocessing step.

IV. SIMULATION

In this section, we report the simulation of the asymptotic
performance of the proposed scheme using a typical sym-
metric quantum channel model and practical experimental
parameters. The parameters for all numerical simulations de-
scribed below are listed in Table I. The parameters are adopted
from [50]. The value of b is restricted to the interval [1, 3].

First, we specify the misalignment error ed for MP-QKD
to be 4% and compare the asymptotic secret key rate per-
formance of the proposed scheme with that of the original
MP-QKD. Figure 2 reveals that the performance of the pro-
posed scheme is comparable to that of the original MP-QKD
scheme corresponding to distances between 0 and 482 km.
As the transmission distance increases, the secret key rate
of the original MP-QKD decreases rapidly owing to the in-
troduction of more noise, and the correlation of the original
key deteriorates. When the distance exceeds 482 km, the
proposed scheme represents an improvement over the original
MP-QKD and the maximum transmission distance increases
by 40 km.

To estimate the QBER tolerance of the proposed scheme,
the relationship between the secret key rate and the QBER is
simulated. The results are depicted in Fig. 3. The simulation
results indicate that QBER increases rapidly to 4.6%, and the
original MP-QKD becomes incapable of generating a secret
key rate. In contrast, the proposed scheme remains capable of
generating a secret key rate with a magnitude of 10−9. Thus,
the proposed scheme tolerates a maximum QBER of 8.9%,
which is nearly twice that of the original MP-QKD.

Finally, we investigate the effect of the misalignment error
ed on the performance of the proposed scheme and the optimal
b values, with the results depicted in Fig. 4. When ed =
1% (ed = 10%, ed = 20%), the optimal b value is greater

TABLE I. List of parameters used for numerical simulations. ηd

denotes the detection efficiency, α denotes the loss coefficient of
the fiber, pd denotes detector dark count rate, f denotes the error
correction, and δ denotes the maximum pairing interval.

ηd α pd f δ

20% 0.2 dB/km 1.2 × 10−8 1.15 106
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FIG. 2. Performance comparison between the proposed scheme
(MP-QKD-AD) and the original MP-QKD scheme and the relation-
ship between the optimal b values and the transmission distance
assuming ed = 4%. The blue solid line represents the secret key rate
of the proposed scheme, the pink dotted line represents the secret key
rate of the original MP-QKD scheme, the black dotted line represents
PLOB bound, and the pink scattered points represent the optimized
b values of the proposed scheme.

than 1 at a distance of 490 km (466 km, 434 km), and the
transmission distance of the proposed scheme increases by
38 km (46 km, 56 km). This observation implies that, as the
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FIG. 3. Comparison of the maximal tolerated quantum bit error
rates (QBER) of the proposed scheme and the original MP-QKD
assuming ed = 4%. The blue solid line and pink dotted line represent
the relationships between the secret key rate and the QBER of the
proposed scheme and original MP-QKD, respectively.

system misalignment error increases, the distance extension
of the scheme also increases.

V. DISCUSSION AND CONCLUSION

In summary, this paper proposes a scheme to improve
the performance of MP-QKD using the AD method and
simulates its performance for an asymptotic case. The sim-
ulation results reveal that, compared to the original MP-QKD,
the proposed scheme can tolerate a higher QBER and ex-
hibits a significantly increased transmission distance. When
the QBER reaches 4.6%, the original MP-QKD becomes
incapable of generating the secret key rate. In contrast, the
proposed scheme remains capable of generating a secret key
rate with a magnitude of 10−9. The maximum QBER tolerated
by the proposed scheme is nearly twice that of the original
MP-QKD. Moreover, the expandable distance of high mis-
alignment error systems in the proposed scheme is higher than
that of low misalignment error systems. Overall, the proposed
scheme outperforms the original MP-QKD in scenarios with
high channel loss and system errors.

The proposed scheme does not require any alterations to
the original hardware devices, it only requires modification of
the classical postprocessing process. Thus, it can be applied
to existing MP-QKD systems easily to improve their perfor-
mance [52].

In future research we can investigate the performance of
the MP-QKD protocol with an AD method in a more realistic
model by combining it with a tight finite-key analysis [51].
In addition, the possibility of improving the performance of
MP-QKD further using random postselection should be in-
vestigated as it has been shown to outperform the AD method
in device-independent QKD [60]. Moreover, the application
of the AD method to asynchronous MDI-QKD protocol [61],
which is a similar single-mode MDI-type QKD, should be
investigated.
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APPENDIX A: SIMULATION MODEL OF MP-QKD

According to Supplemental Material 4 in [50], we can
summarize the model of the mode-pairing QKD scheme as
follows.

In the asymptotic case, we assume that the probability
of Alice and Bob choosing a random emission intensity of
{0, μ} is close to 1/2, and the probability of decoy intensity ν

is negligible. We express the coherent pulse transmitted by
Alice in the kth round as |

√
ξ k

Aμeiθ k
A 〉, where ξ k

A represents
the random variable of intensity and θ k

A is the random phase.
Similarly, Bob transmits |

√
ξ k

Bμeiθ k
B 〉 in the kth round. The

intensity setting for round k is represented by the two-bit
vector ξ k := [ξ k

A, ξ k
B].
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FIG. 4. The performance of the proposed scheme corresponding to different ed . (a) Relationship between the secret key rate and the total
transmission distance corresponding to different ed . The solid lines and dotted lines of different colors represent the performances of the
proposed scheme and the original MP-QKD corresponding to different ed , respectively. (b) Relationship between the optimal value of b and
the total transmission distance corresponding to different ed . The blue, pink, and green scattered points represent the optimal value b with
respect to different distances corresponding to ed = 1%, 10%, and 20%, respectively.

Alice and Bob are assumed to transmit weak coherent light
pulses to Charlie through a typical symmetric-attenuation
channel, the channel is i.i.d. for each round. Alice and Bob
then pair the clicked pulses and determine their bases. For
the (k, l )th pulses to be paired, let τ k,l = [τ k,l

A , τ k,l
B ] := [ξ k

A ⊕
ξ l

A, ξ k
B ⊕ ξ l

B], where ⊕ is the bit-wise addition modulo 2.
When τ k,l = [1, 1] the (k, l ) pair is set to be a Z pair.

In the kth round, we adopt two variables (Lk, Rk ) to repre-
sent the click events of the L and R detectors in the kth round.
The successful click variable is Ck = Lk ⊕ Rk . A successful
click will occur only when Ck = 1. The detection probability
Pr(Ck = 1|ξ k ) can be expressed as

Pr(Ck = 1|ξ k ) ≈ 1 − (1 − 2pd ) exp
[−ηsμ

(
ξ k

A + ξ k
B

)]
.

(A1)

The phase-randomized coherent states transmitted by the
kth round can be regarded as a mixture of photon num-
ber states. Pr(Ck = 1|nk ) represents the detection probability
when Alice and Bob each transmit photon number states |nk

A〉
and |nk

B〉, respectively, and is expressed as

Pr(Ck = 1|nk ) ≈ 1 − (1 − 2pd )(1 − ηs)(nk
A+nk

B ). (A2)

Next, we are going to consider the calculation of rs. With-
out loss of generality, we regard the kth and lth rounds as a
pair. For a general round, the probability of an intensity setting
ξ causing a click is given by

Pr(ξ |C = 1) = Pr(ξ,C = 1)

Pr(C = 1)
= Pr(C = 1|ξ )∑

ξ ′ Pr(C = 1|ξ ′)
. (A3)

Note that the subscripts are omitted because all rounds of
detection are identical and independently distributed in our
simulation.

In the mode-pairing QKD scheme, a successful click
occurs when τ k,l = [1, 1]. Therefore, four possible configu-
rations of ξ k and ξ l (which generate Z pairs) are

[ξ k, ξ l ] ∈ {[00, 11], [01, 10], [10, 01], [11, 00]}, (A4)

of these, E := {[00, 11], [11, 00]} are the two configurations
that cause bit error. To simplify the notation, we introduce
several events:

Pr(C) = Pr(Pair Clicked) := Pr(Ck = Cl = 1) = p2,

Pr(E ) = Pr(Pair Effective) := Pr(ξ k ⊕ ξ l = 11),

Pr(E ) = Pr(Pair Erroneous) := Pr([ξ k, ξ l ] ∈ E ),

Pr(S) = Pr(Single-Photon Pair) := Pr(nk ⊕ nl = 11).
(A5)

Below, we will list the possible situations of ξ k and ξ l :

ξ k := [
ξ k

A, ξ k
B

] = [0, 1], [1, 0], [0, 0], [1, 1],

ξ l := [
ξ l

A, ξ l
B

] = [0, 1], [1, 0], [0, 0], [1, 1], (A6)

of these, the conditions conforming to ξ k ⊕ ξ l = 11 are

(1) ξ k := [
ξ k

A, ξ k
B

] = [1, 0] ξ l := [
ξ l

A, ξ l
B

] = [0, 1],

(2) ξ k := [
ξ k

A, ξ k
B

] = [0, 1] ξ l := [
ξ l

A, ξ l
B

] = [1, 0],

(3) ξ k := [
ξ k

A, ξ k
B

] = [0, 0] ξ l := [
ξ l

A, ξ l
B

] = [1, 1],

(4) ξ k := [
ξ k

A, ξ k
B

] = [1, 1] ξ l := [
ξ l

A, ξ l
B

] = [0, 0]. (A7)
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For case (1):

Pr(Ck = 1|ξ k ) ≈ 1 − (1 − 2pd ) exp
[−ηsu

(
ξ k

A + ξ k
B

)]
= 1 − (1 − 2pd ) exp(−ηsu),

Pr(Cl = 1|ξ l ) ≈ 1 − (1 − 2pd ) exp
[−ηsu

(
ξ l

A + ξ l
B

)]
= 1 − (1 − 2pd ) exp(−ηsu), (A8)

Pr(Ck = 1|nk = ξ k ) ≈ 1 − (1 − 2pd )(1 − ηs)nk
A+nk

B

= 1 − (1 − 2pd )(1 − ηs),

Pr(Cl = 1|nl = ξ l ) ≈ 1 − (1 − 2pd )(1 − ηs)nl
A+nl

B

= 1 − (1 − 2pd )(1 − ηs). (A9)

For case (2):

Pr(Ck = 1|ξ k ) ≈ 1 − (1 − 2pd ) exp(−ηsu),

Pr(Cl = 1|ξ l ) ≈ 1 − (1 − 2pd ) exp(−ηsu), (A10)

Pr(Ck = 1|nk = ξ k ) ≈ 1 − (1 − 2pd )(1 − ηs),

Pr(Cl = 1|nl = ξ l ) ≈ 1 − (1 − 2pd )(1 − ηs). (A11)

For case (3):

Pr(Ck = 1|ξ k ) ≈ 1 − (1 − 2pd ) = 2pd ,

Pr(Cl = 1|ξ l ) ≈ 1 − (1 − 2pd ) exp(−2ηsu), (A12)

Pr(Ck = 1|nk = ξ k ) ≈ 2pd ,

Pr(Cl = 1|nl = ξ l ) ≈ 1 − (1 − 2pd )(1 − ηs)2. (A13)

For case (4):

Pr(Ck = 1|ξ k ) ≈ 1 − (1 − 2pd ) exp(−2ηsu),

Pr(Cl = 1|ξ l ) ≈ 2pd , (A14)

Pr(Ck = 1|nk = ξ k ) ≈ 1 − (1 − 2pd )(1 − ηs)2,

Pr(Cl = 1|nl = ξ l ) ≈ 2pd . (A15)

The expected pair rate contributed during each round is

rp(p, δ) =
[

1

p[1 − (1 − p)δ]
+ 1

p

]−1

. (A16)

The expected successful click probability, i.e., the total
transmittance of each round, is

p := Pr(Ck = 1) =
∑
ξ k

Pr(Ck = 1|ξ k )Pr(ξ k )

= 1

4

∑
ξ k

Pr(Ck = 1|ξ k )

= 1

4
{2[1 − (1 − 2pd )e−ηsμ]

+ 2pd + [1 − (1 − 2pd )e−2ηsμ]}
≈ ηsμ. (A17)

The Z-pair ratio rs is expressed as

rs = Pr(E |C) = Pr(ξ k ⊕ ξ l = 11|Ck = 1,Cl = 1)

=
∑

ξ k⊕ξ l =11

Pr(ξ k|Ck = 1)Pr(ξ l |Cl = 1)

=
∑

ξ k⊕ξ l =11

Pr(Ck = 1|ξ k )Pr(ξ k )

Pr(Ck = 1)

Pr(Cl = 1|ξ l )Pr(ξ l )

Pr(Cl = 1)

= 1

16

1

p2

∑
ξ k⊕ξ l =11

Pr(Ck = 1|ξ k )Pr(Cl = 1|ξ l )

= 1

8

1

p2
[1 − (1 − 2pd ) exp(−ηsμ)]2. (A18)

The expected quantum bit error rate EZZ
(μ,μ) of the (k, l )

pair is

EZZ
(μ,μ) = Pr(E |E ,C)

= Pr(E, E |C)

Pr(E |C)
= Pr(E |C)

Pr(E |C)

= r−1
s Pr(E |C). (A19)

The erroneous pair event is included in the valid pair event.
Therefore, the erroneous probability can be written as

Pr(E |C) = Pr([ξ k, ξ l ] ∈ E |Ck = Cl = 1)

=
∑

[ξ k ,ξ l ]∈E
Pr(ξ k|Ck = 1)Pr(ξ l |Cl = 1)

=
∑

[ξ k ,ξ l ]∈E

Pr(Ck = 1|ξ k )Pr(ξ k )

Pr(Ck = 1)

× Pr(Cl = 1|ξ l )Pr(ξ l )

Pr(Cl = 1)

= 1

16

1

p2

∑
[ξ k ,ξ l ]∈E

Pr(Ck = 1|ξ k )Pr(Cl = 1|ξ l ).

(A20)

With the above Eqs. (A19) and (A20), we can obtain

EZZ
(μ,μ) = 1

16

1

rs p2

∑
[ξ k ,ξ l ]∈E

Pr(Ck = 1|ξ k )Pr(Cl = 1|ξ l )

= 1

4

1

rs p2
pd [1 − (1 − 2pd ) exp (−2ηsμ)]. (A21)

Then, we calculate the expected single-photon pair ratio
q̄11 in the effective Z pairs as follows:

q̄11 = Pr(S|E ,C) = Pr(S, E ,C)

Pr(E ,C)
= 1

rs p2
Pr(S, E ,C)

= 1

rs p2

∑
ξ k ,ξ l

Pr(S, E ,C|ξ k, ξ l )Pr(ξ k, ξ l )

= 1

16

1

rs p2

∑
ξ k⊕ξ l =11

Pr(S,C|ξ k, ξ l )

= 1

16

1

rs p2

∑
ξ k⊕ξ l =11

Pr(C|S, ξ k, ξ l )Pr(S|ξ k, ξ l )
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= 1

16

Pμ(1)2

rs p2

∑
ξ k⊕ξ l =11

Pr(Ck = 1|nk = ξ k )

× Pr(Cl = 1|nl = ξ l )

= 1

8

Pμ(1)2

rs p2
[1 − (1 − 2pd )(1 − ηs)]2, (A22)

where Pμ(k) = exp(−μ)μk

k! is the Poisson distribution, ηs =
ηA = ηB, ηA(ηB) is the transmittance from Alice (Bob) to
Charlie.

In the mode-pairing QKD scheme, if the decoy-state esti-
mation is perfect, then the gain and error rate of X basis can
be directly estimated by using the formula as follows [62]:

Y(1,1) = (1 − pd )2

[
ηAηB

2
+ (2ηA + 2ηB − 3ηAηB)pd

+ 4(1 − ηA)(1 − ηB)p2
d

]
,

eXX
(1,1) =

[
e0Y(1,1) − (e0 − ed )(1 − pd )2 ηAηB

2

]
Y(1,1)

. (A23)

APPENDIX B: SECURITY OF MP-QKD BASED
ON QUANTUM INFORMATION THEORY

The formula of the key rate based on information theory is
[63,64]

R = min
σAB∈�

S(X |E ) − H (X |Y ), (B1)

where � is the ensemble of all density operators σAB on the
2 × 2-dimensional Hilbert space HA ⊗ HB, S(X |E ) is the von
Neumann entropy, indicating the uncertainty of the eavesdrop-
per’s (Eve’s) auxiliary state E for the Alice’s measurement
result X , and H (X |Y ) is the Shannon entropy, indicating the
uncertainty of the receiver Bob’s measurement result Y to
Alice’s measurement result X .

Similar to the security analysis based on the entanglement
purification protocol, Alice and Bob prepare quantum states,
|1, 0〉k,l and |0, 1〉k,l are the eigenstates in the Z basis, |+〉 =
(|1, 0〉k,l + |0, 1〉k,l )/

√
2 and |−〉 = (|1, 0〉k,l − |0, 1〉k,l )/

√
2

arethe eigenstates in the X basis, who then send them to Char-
lie for the Bell-state measurement, where |1, 0〉k,l = |1〉k|0〉l

indicates that there is one photon in time-bin k and zero pho-
tons in time-bin l . Before Alice and Bob measure the quantum
states, the entire system can be described by the following
quantum state:

|�〉ABE :=
3∑

j=0

√
λ j |� j〉AB ⊗ |e j〉E , (B2)

where

|�0〉 = 1√
2

(|1, 0〉k,l
A |1, 0〉k,l

B + |0, 1〉k,l
A |0, 1〉k,l

B

)
,

|�1〉 = 1√
2

(|1, 0〉k,l
A |1, 0〉k,l

B − |0, 1〉k,l
A |0, 1〉k,l

B

)
,

|�2〉 = 1√
2

(|1, 0〉k,l
A |0, 1〉k,l

B + |0, 1〉k,l
A |1, 0〉k,l

B

)
,

|�3〉 = 1√
2

(|1, 0〉k,l
A |0, 1〉k,l

B − |0, 1〉k,l
A |1, 0〉k,l

B

)
, (B3)

and
∑3

j=0 λ j = 1, λ j ( j = {0, 1, 2, 3}) characterize quantum
channel and the single-photon error rates in the X basis and
Z basis are constrained by λ1 + λ3 = ex and λ2 + λ3 = ez,
respectively. The subscript A denotes mode “Alice” and B
denotes mode “Bob”. |e j〉E is an orthonormal basis of a four-
dimensional Hilbert space HE .

Since the quantum channel is controlled by Eve, when
the measurement results of Alice and Bob are 00, 11, 01, 10,
respectively, the quantum states that Eve can obtain are

|ϕ0,0〉 = 1√
2

(
√

λ0|e0〉 +
√

λ1|e1〉),

|ϕ1,1〉 = 1√
2

(
√

λ0|e0〉 −
√

λ1|e1〉),

|ϕ0,1〉 = 1√
2

(
√

λ2|e2〉 +
√

λ3|e3〉),

|ϕ1,0〉 = 1√
2

(
√

λ2|e2〉 −
√

λ3|e3〉). (B4)

Note that Eve can choose the optimal parameter λ j ( j =
{0, 1, 2, 3}) to reduce the security key rate, but λ j is con-
strained by the quantum bit error rate of two different bases.

After the interference of Eve in the quantum channel, Alice
and Bob obtain the density operators σXY E of the entire system
by the orthonormal measurement of HA and HB

σXY E =
∑
x,y

|x〉〈x| ⊗ |y〉〈y| ⊗ |ϕx,y〉〈ϕx,y|. (B5)

Based on the above analysis, we can easily obtain

H (σXE ) = 1 + h(λ0 + λ1),

H (σE ) = h(λ0 + λ1) + (λ0 + λ1)h

(
λ0

λ0 + λ1

)

+ (λ2 + λ3)h

(
λ2

λ2 + λ3

)
,

H (X |Y ) = h(λ0 + λ1). (B6)

Therefore, the final formula of key rate is

R � min
λ0,λ1,λ2,λ3

S(X |E ) − H (X |Y )

= min
λ0,λ1,λ2,λ3

H (σXE ) − H (σE ) − H (X |Y )

= min
λ0,λ1,λ2,λ3

1 − (λ0 + λ1)h

(
λ0

λ0 + λ1

)

− (λ2 + λ3)h

(
λ2

λ2 + λ3

)
− h(λ0 + λ1), (B7)

where h(x) = −x log2(x) − (1 − x) log2(1 − x) is the binary
Shannon entropy function.

Ideally, assuming ex = ez = Q, we can obtain

λ1 + λ3 = Q,

λ2 + λ3 = Q,

λ0 + λ1 + λ2 + λ3 = 1, (B8)
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which can be rewritten as

λ0 = 1 − 2Q + λ3,

λ1 = Q − λ3,

λ2 = Q − λ3, (B9)

where Q denotes the bit error rate.
By substituting Eq. (B9) into Eq. (B7), the formula of the

key rate is given by

R � min
λ0,λ1,λ2,λ3

1 − (1 − Q)h

(
1 − 2Q + λ3

1 − Q

)

− Qh

(
Q − λ3

Q

)
− h(Q). (B10)

There is a minimum value in the Eq. (B10), i.e., ∂R
∂Q = 0 is

satisfied, which requires that λ3 = Q2.
Therefore, to find the minimum value of the Eq. (B7), the

following conditions must be satisfied for λ0, λ1, λ2, and λ3,
respectively:

λ0 = 1 − 2Q + λ3,

λ1 = Q − λ3,

λ2 = Q − λ3,

λ3 = Q2. (B11)

In practical MP-QKD systems, phase-randomized weakly
coherent sources are widely used to prepare quantum states.
According to the specific protocol steps in Sec. II, Alice and
Bob only use the successfully paired Z basis to generate a key
and they use the decoy state method to resist photon number
splitting attacks. In total, all errors are corrected by Alice and
Bob so that in the Eq. (B6) H (X |Y ) � f h(EZZ

(μ,μ) ). h(EZZ
(μ,μ) )

is the maximum information that Eve steals during the error
correction step. Therefore, the secret key rate of the MP-QKD
protocol can be given by

R � min
λ0,λ1,λ2,λ3

rp(p, δ)rs

{
q̄11

[
1 − (λ0 + λ1)h

(
λ0

λ0 + λ1

)

−(λ2 + λ3)h

(
λ2

λ2 + λ3

)]
− f h

(
EZZ

(μ,μ)

)}
, (B12)

where rp(p, δ) is the expected pair rate contributed during
each round, rs is the probability that a generated pair is a Z
pair, and q̄11 is the expected single-photon pair ratio in all Z
pairs. f is the error-correction efficiency, EZZ

(μ,μ) is the bit-error
rate of the Z pairs.

APPENDIX C: SECURITY OF MP-QKD WITH AD

In this section, we calculate the parameters in Eq. (3) to
estimate the secret key rate. In our protocol, Alice and Bob
divide their raw key into blocks of b size {x1, x2, . . . , xb}
and {y1, y2, . . . , yb}. Alice depends on a randomly chosen
bit c ∈ {0, 1} and sends the message m = {m1, m2, . . . , mb} =
{x1 ⊕ c, x2 ⊕ c, . . . , xb ⊕ c} to Bob through an authenticated
classical channel. They accept the block if and only if Bob
announces the result of {m1 ⊕ y1, m2 ⊕ y2, . . . , mb ⊕ yb} is
either {0, 0, . . . , 0} or {1, 1, . . . , 1}. By a straightforward cal-
culation, the probability of a successful advantage distillation
on a block of length b is

qs = (
EZZ

(μ,μ)

)b + (
1 − EZZ

(μ,μ)

)b
. (C1)

For the message m = {m1, m2, . . . , mb}, once Eve gets any
one of the measurements in {m1, m2, . . . , mb}, she (he) can
obtain all b measurements. Therefore, it can only be used to
generate the secret key if all the b pulses used for pairing are
the single-photon state and the probability is (q̄11)b.

With these, Eq. (B12) can be modified as

R̃ � max
b

min
λ0,λ1,λ2,λ3

1

b
qs rp(p, δ)rs

×
{

(q̄11)b

[
1 − (λ̃0 + λ̃1)h

(
λ̃0

λ̃0 + λ̃1

)

− (λ̃2 + λ̃3)h

(
λ̃2

λ̃2 + λ̃3

)]
− f h

(
ẼZZ

(μ,μ)

)}
, (C2)

subject to

eXX
(1,1) = λ1 + λ3,

eZZ
(1,1) = λ2 + λ3, (C3)

qs = (
EZZ

(μ,μ)

)b + (
1 − EZZ

(μ,μ)

)b
,

ẼZZ
(μ,μ) =

(
EZZ

(μ,μ)

)b

(
EZZ

(μ,μ)

)b + (
1 − EZZ

(μ,μ)

)b
, (C4)

and

λ̃0 = (λ0 + λ1)b + (λ0 − λ1)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
,

λ̃1 = (λ0 + λ1)b − (λ0 − λ1)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
,

λ̃2 = (λ2 + λ3)b + (λ2 − λ3)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
,

λ̃3 = (λ2 + λ3)b − (λ2 − λ3)b

2[(λ0 + λ1)b + (λ2 + λ3)b]
, (C5)

where ẼZZ
(μ,μ) represents the overall error rate after the AD

method step.
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