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Multidimensional Fourier series with quantum circuits
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Quantum machine learning is the field that aims to integrate machine learning with quantum computation. In
recent years, the field has emerged as an active research area with the potential to bring new insights to classical
machine learning problems. One of the challenges in the field is to explore the expressibility of parametrized
quantum circuits and their ability to be universal function approximators, as classical neural networks are. Recent
works have shown that, with a quantum supervised learning model, we can fit any one-dimensional Fourier
series, proving their universality. However, models for multidimensional functions have not been explored in the
same level of detail. In this work, we study the expressibility of various types of circuit Ansätze that generate
multidimensional Fourier series. We found that, for some Ansätze, the degrees of freedom required for fitting
such functions grow faster than the available degrees in the Hilbert space generated by the circuits. For example,
single-qudit models have limited power to represent arbitrary multidimensional Fourier series. Despite this, we
show that we can enlarge the Hilbert space of the circuit by using more qudits or higher local dimensions to meet
the degrees of freedom requirements, thus ensuring the universality of the models.
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I. INTRODUCTION

Machine learning (ML) is a well-established field that aims
to develop the necessary tools to extract knowledge from big
data batches by drawing inferences from its patterns. The
development of computational paradigms such as quantum
computation opens the path to explore the use of quantum
devices to perform ML tasks, which raises the question of
whether quantum machine learning (QML) algorithms can
offer an advantage compared to classical ones.

QML explores the use of quantum computing devices to
implement ML algorithms [1]. In some of these algorithms,
in particular, in the supervised learning ones, data stored in a
classical register needs to be mapped into a quantum state to
be later processed by the quantum circuit. The parameters of
the circuit are optimized by minimizing a cost function that
compares some expectation values obtained from the circuit
with the true data labels. Several proposals exist to embed
data into quantum circuits [2–4]. Particularly, the reuploading
strategy has been applied to several problems, such as classi-
fication [2] or function fitting [5].

It has been shown that partial Fourier series emerge as the
output of these models when using the reuploading protocol
[6]. Fourier series are universal to represent any square-
integrable function in a given interval. This result has attracted
the attention of recent QML works that use classical data
[7–11]. Nevertheless, many applications that may require the
use of QML rely on multidimensional data sets [12]. Although
several works discuss the generalization of this model to
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multidimensional data, there needs to be a more thoughtful
analysis of the implementation and scaling of the model with
the data dimensions.

The current state of the art in experimental quantum
computation, the so-called noisy intermediate-scale quantum
(NISQ) era [13], presents a few qubit devices with limited
coherence times that impose restrictions on the circuit depth
and the fidelity of quantum operations. A family of algorithms
suitable for these devices are variational quantum algorithms
(VQA) [14,15], part of which are the aforementioned super-
vised QML algorithms. Variational algorithms present certain
noise resilience due to their hybridization with classical op-
timization subroutines that fine-tune the circuit parameters.
However, the low number of qubits in these NISQ devices
limits the size of the Hilbert space available to perform quan-
tum computational tasks. A way to circumnavigate this issue
is to increase the Hilbert space by exploiting the higher lo-
cal dimensions of each quantum information unit. Indeed,
all quantum systems naturally contain more than two levels,
which makes translating a qubit quantum device into a qudit
system with d dimensions technically feasible, despite being
experimentally challenging. Thus increasing the Hilbert space
from 2n to dn for n quantum information units might prove
valuable in the near term [16–21].

This work analyzes the multidimensional Fourier series
representation of QML circuits fed with classical data using
a general formalism for qubits and beyond (qudits). We show
how the quantum circuit requirements scale with the dimen-
sion of qudits and data when using the well-established data
reuploading strategy. Furthermore, we provide four types of
circuit Ansätze to generate these functions and examine the
constraints to ensure a proper fitting of a general series. The
study of this problem sheds light on the expressibility of QML
models and, in turn, provides insights into their capacity and

2469-9926/2023/107(6)/062612(15) 062612-1 ©2023 American Physical Society

https://orcid.org/0000-0002-9595-8523
https://orcid.org/0000-0002-8835-2910
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.107.062612&domain=pdf&date_stamp=2023-06-29
https://doi.org/10.1103/PhysRevA.107.062612


BERTA CASAS AND ALBA CERVERA-LIERTA PHYSICAL REVIEW A 107, 062612 (2023)

FIG. 1. Schematic representation of a quantum supervised learn-
ing model, which pertains to the family of variational quantum
algorithm (VQA). The picture divides the quantum and the classical
part (dashed line boxes). The quantum part is composed of a quantum
circuit with a given unitary U that depends on the data point �x and
the trainable parameters �θ . The classical part consists of building
an expectation value of a given observable M, introducing it into
a cost function [in our case, tailored for the classification of a target
function f (�x)], and optimizing it with respect to the parameters via a
classical subroutine.

limitations. It also addresses the question of whether these
models can be considered universal approximators.

We show that, while the proposed encoding strategies
generate multidimensional Fourier series, the scaling of the
degrees of freedom required to fit a general function grows
rapidly, in some cases faster than the Hilbert space of the
parameterized quantum circuit (PQC). However, we present
strategies that can overcome such limitations by increasing the
dimension of the local space or employing a greater number
of qudits. These strategies demonstrate the capability of gen-
erating arbitrary Fourier series through reuploading methods,
providing evidence of their universality.

This work is organized as follows. In Sec. II, we review
the formalism of the one-dimensional Fourier series and, in
Sec. III, we extend it to the multidimensional case. Fur-
thermore, we discuss the degrees of freedom requirements,
implementations, and analysis of the models in Sec. IV. Fi-
nally, the conclusions are presented in Sec. V.

II. ONE-DIMENSIONAL FOURIER SERIES
WITH QUANTUM CIRCUITS

This section reviews the quantum supervised learning
model for fitting one-dimensional functions with the reu-
ploading strategy. We use a VQA fed with classical data,
as we present in Fig. 1. Using a training data set {x} with
corresponding function images f (x), we generate a quantum
circuit for each data point by using encoding gates S(x) and
parametrized gates A(�θ ), which act as trainable gates. By
measuring the expectation value of some operator M, we
obtain a Fourier series in the {x} domain. After optimizing
the parameters �θ , we introduce test data points into the circuit
to obtain a function prediction.

A widely used technique to define a PQC Ansatz consists
of defining a layer: a subcircuit composed of encoding and
processing quantum gates. This structure is repeated L times
along the circuit [2,22] (see Fig. 2). We define the general

FIG. 2. General structure of a data reuploading procedure. The
zeroth layer is used to generate an initial superposition. The other
layers contain an encoding gate S(x) and a processing gate A(�θl ),
containing parameters which are optimized.

circuit layer l with the data reuploading encoding as

U0 ≡ A( �θ0), Ul ≡ A( �θl )S(x), (1)

where A( �θl ) and A( �θ0) are general n qudit unitary gates, with
free parameters �θ , that act as a processing step. For the en-
coding gate, a unitary gate S(x) = eixH is used, where H is
an arbitrary encoding Hamiltonian and x is the data point
considered. We assume that H is diagonal since its single
value decomposition is S(x) = V †eix�V , where V is a unitary
gate that can be reabsorbed by the processing gate A( �θl )
and � is a diagonal matrix with the eigenvalues of H (see
Appendix A for the detailed derivation). The circuit layer
can be interpreted as a quantum analogy of a neuron from
a classical neural network because both structures are repeat-
edly fed with data. This is why these models are sometimes
called quantum neural networks. The aforementioned quan-
tum circuit Ansatz has been used in prior works to prove that
we obtain a one-dimensional truncated Fourier series as the
output of these models [5,6].

Definition 1. One-dimensional truncated Fourier series. A
truncated Fourier series is an expansion of a periodic real-
valued function that can be expressed as a sum of sines
and cosines. In the exponential form, it takes the following
structure:

f (x) =
D∑

ω=−D

cωeix π
K ω, (2)

where K is a half of the function period, D = max(�) is the
Fourier series degree, and ω ∈ N are the multiples of the
fundamental frequency π

T . The frequency spectrum is given
by � = {ω π

K }ω. The coefficients cω ∈ C fulfill the condition
cω = c∗

−ω. A Fourier series with enough degree D can approx-
imate any continuous, square-integrable function.

By computing the expectation value of an observable M
in the output state of the PQC, we obtain an approximation of
f (x). For simplicity, when we use more than one qudit in the
PQC, we measure only one of them. Then, M = M ⊗ I ⊗
. . . I, where M is a single-qudit observable. We obtain (see
Appendix A for the details)

〈M(x)〉 =
∑

ω∈�kk′

cω eixω, (3)

with

cω =
N∑

k,k′=1
�kk′=ω

(
N∑

i=1

MiA
(L)
ikL

A∗(L)
ik′

L

)
A(0)

k11A∗(0)
k′

11

L∏
p=2

A(p−1)
kpkp−1

A∗(p−1)
k′

pk′
p−1

,

(4)
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where N = dn is the dimension of the Hilbert space of n
qudits with local dimension d , L is the number of lay-
ers, and Mi are the eigenvalues of the observable, which
we assume to be diagonal. We use the multi-index nota-
tion k ≡ {k1, k2, . . . , kL} ∈ [N]L, with ki ∈ {1, . . . , N}. Also,
we introduce the multi-index sum defined by �k ≡ (λk1 +
λk2 + . . . λkL ), where λki is an eigenvalue of the encoding
Hamiltonian H in the layer i. With this, the frequency spec-
trum of the model is given by

�kk′ ≡ {�k − �k′ }
= {

λk1 + λk2 + · · · + λkL − (
λk′

1
+ λk′

2
+ · · · + λk′

L

)}
.

(5)

The frequency spectrum is fully characterized by the eigen-
values of the encoding Hamiltonian and the coefficients rely
on the trainable gates and their parameters. Notice that all
combinations of the multi-indices k and k′ that generate a
frequency �kk′ = ω give us a different contribution to the
coefficient cω.

So far, this model accepts a general encoding
Hamiltonian H , but let us take the following choice
for practical purposes: using a Hamiltonian with the
N-dimensional spin Sz eigenvalues, which we name the
“spinlike” encoding. For one qubit we use H = 1

2σz, with
eigenvalues ±1/2; for one qutrit, the analogous Hamiltonian
of a spin-1 Hamiltonian, the eigenvalues of which are
±1, 0, etc. We use a global Sz Hamiltonian tailored to the
dimension of the quantum circuit N = dn. For example, for
a system of two qubits (N = 22 = 4), H is the spin-3/2
Hamiltonian, which acts on the whole circuit instead of
using H = 1

2σz ⊗ 1
2σz. This encoding will be the same used

with a ququart, which is a qudit of d = 4 (with the same
value of N as for two qubits). Using this particular encoding,
the positive frequency spectrum, emerging from Eq. (5),
is � = {0, . . . , (N − 1)L − 1, (N − 1)L}, where L is the
number of layers in the circuit. The negative frequencies are
also included in the spectrum, which is symmetric by its
construction. For simplicity, from now on, we drop the label
for multi-indices in the frequency spectrum: � ≡ �kk′ . The
degree of the Fourier series, with this particular encoding, is
given by D = (N − 1)L.

The spectrum generated with the spinlike encoding only
contains integer frequencies. For instance, if the function we
are fitting requires semi-integer or real frequencies a proper
approximation cannot be achieved, regardless of the number
of layers used. We can tackle this issue by introducing a
rescaling parameter η into the encoding gate: S(x) = eixηH .
This parameter is optimized together with the rest of the free
parameters of the circuit, as we explain in Appendix C. With
this re-scaling factor, the whole Fourier series spectrum is
multiplied by η and the degree of the Fourier series becomes
D = η(N − 1)L. We can introduce more fine-tuning in the
frequency spectrum by using a different ηi for each encoding
gate in the circuit layers. This extension is closer to the orig-
inal idea from the data reuploading work [2] but should be
treated carefully, because methods with rescaling parameters
may lead to good expressibility but overfitting and poor gen-
eralization bounds for more complex tasks [23]. Nevertheless,
when applied appropriately, the rescaling factor can serve as

an effective hyperparameter for promoting generalization in
quantum kernel models [24]. It is important to note that the
encoding strategy plays a significant role in determining the
characteristics of the frequency spectrum. For instance, in
Ref. [8], the authors propose a technique that utilizes rescaling
factors to generate exponentially more frequencies.

III. MULTIDIMENSIONAL FOURIER SERIES
WITH QUANTUM CIRCUITS

In this section, we present different Ansätze that generate
multidimensional Fourier series and explore the scaling of the
QML models’ performance with the dimensions of the input
data. To do it, we study the expressibility of the multidimen-
sional Fourier model, meaning the type of functions that the
model can generate. Hence we expand the function fitting
formalism to multidimensional data, opening the possibility to
explore more complex problems with these quantum models.

Definition 2. Multidimensional truncated Fourier series.
The generalization of a one-dimensional truncated Fourier
series to M-dimensional data is given by

f (�x) =
D∑

ω1,ω2,...,ωM=−D

c�ωei�x· �ω, (6)

where D = max(ω1, ω2, . . . , ωM ) is the degree of the Fourier
series. The data �x = (x1, x2, . . . , xM ) ∈ RM and the fre-
quencies �ω = (ω1, ω2, . . . , ωM ) ∈ ZM are represented by
M-dimensional vectors, and �x · �ω is the scalar product. The
coefficients cω1,ω1,...,ωM ∈ C fulfill the relation cω1,ω1,...,ωM =
c∗
−ω1,−ω1,...,−ωM

.
The M-dimensional Fourier series contains substantially

more coefficients than a series with only one dimension. For a
given degree D ∈ N, the number of independent coefficients
c�ω is

Nc = (2D + 1)M − 1

2
+ 1. (7)

As an example, for degree D = 1 and data-dimension
M = 2, according to Eq. (7), we have five coefficients:
c00, c01, c10, c11, c−11, while the other ones are constrained by
cω1ω2 = c∗

−ω1−ω2
. The degrees of freedom ν (abbreviated as

DOF) of the Fourier series are the number of independent
variables needed to fully characterize a set of coefficients of
a series with a given degree D. They account for the real and
imaginary parts of each coefficient, except the one associated
with the zero frequency, which only contains a real part.
Therefore, the DOF of an M-dimensional Fourier series are
given by

ν ≡ 2Nc − 1 = (
2D + 1)M . (8)

Depending on the circuit Ansatz, the number of layers re-
quired to achieve enough freedom to represent an arbitrary
series will vary. In the following subsection, we propose
four strategies: the line, parallel, mixed, and superparallel
Ansätze. We assume that the processing gates are general
unitary transformations in all models. Hence the number of
parameters they contain is N2 − 1, determined by the di-
mension of SU(N ), with N = dn being the dimension of the
quantum circuit. We acknowledge that this approach may not
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FIG. 3. Quantum circuit Ansätze of the models. The line Ansatz (a) encodes each data feature in a single qudit. Thus the circuit depth
grows linearly with the total number of features M. The parallel Ansatz (b) encodes the M features in M qudits instead. Finally, the mixed
Ansatz (c) combines the two approaches by distributing the features encoding between p < M qudits and uses more gates to introduce several
features in each layer. The superparallel Ansatz (d) uses L layers and L encoding blocks per qudit, therefore requiring d = ML qudits.

be practical in terms of trainability. However, we utilize this
strategy to explore the limits of the models.

A. Line Ansatz

The line Ansatz (LA) encodes all data dimensions in a
single qudit. The structure of the model is shown in Fig. 3(a).
Each layer L(l ) of the LA encodes M data features as

L(l )(�x, �θ )LA ≡
M∏

m=1

S(xm)A(l )
m (�θl,m), (9)

where M is the dimension of the data set, xm are the data fea-
tures, and �θl,m are the processing parameters corresponding to
feature m from layer l . After the encoding step, the processing
gate is applied to avoid the collapse of the data in a single
variable (see Appendix D for details).

Another strategy to encode multidimensional data in one
qudit is to use noncommuting gates, meaning [S1(x), S2(x)] 
=
0. For example, in the two-dimensional qubit case, we could
use S1(x1) = Ry(x1) and S2(x2) = Rz(x2). Given that S1 and
S2 do not commute, the single value decomposition of the
encoding gate is given by

S1(x1)S2(x2) = V †
1 �(x1)V1V

†
2 �(x2)V2. (10)

This can be interpreted as adding an extra layer V1V
†

2 in
between the two encoding gates that does not contain trainable
parameters and also avoids the model from interpreting the
data as one dimensional.

The number of parameters to be optimized in the LA
Ansatz is given by

N (LA)
p = (ML + 1)(N2 − 1) ∼ MLN2. (11)

As mentioned above, N = d is the dimension of the circuit
and the dimension of the encoding gate S(x). Thus the param-
eters grow linearly with the number of layers L and the data
dimension M and quadratically with the circuit dimension N .

B. Parallel Ansatz

The parallel Ansatz (PA) encodes each data feature in a
different qudit with a single-qudit gate; therefore, we require
n = M qudits to encode all M data features. The encoding is
followed by a processing M-qudit gate, as shown in Fig. 3(b).
We define each layer as

L(l )(�x, �θ )PA ≡
(

M⊗
m=1

S(xm)

)
A(l )( �θl ), (12)

where A(l )( �θl ) is an N × N general processing unitary, with
N = dM . This Ansatz contains a total number of parameters

N (PA)
p = (d2M − 1)(L + 1) ∼ d2ML, (13)

which grows exponentially with the number of features M.
If single-qudit gates are used in the processing steps

instead of general multiqudit gates, then a product of M
one-dimensional Fourier series is generated. Therefore, entan-
glement must be included in the processing gates to obtain a
genuine multidimensional series (see Appendix E for more
details).
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C. Mixed Ansatz

Now we consider a mix between the two Ansätze previ-
ously discussed, named the mixed Ansatz (MA). It divides
the data features into different batches and uses p qudits for
different sets [see Fig. 3(c)]. Taking p � M qudits, the data
features are distributed in p qudits, as in the PA, and more
encoding layers can be used for each qudit if required, as
in the LA. For p = 1, MA behaves like LA, and for p =
M it behaves like PA. More formally, we define a layer of
the MA as

L(l )(�x, �θ )MA ≡
�M/p∏
k=1

(
p⊗

m=1

S(xm)

)
A(l )

k ( �θl,k ) (14)

and the number of parameters in this model is given by

N (MA)
p = (d2p − 1)(�M/pL + 1). (15)

If M/p is not an integer, we use fewer encoding gates on the
layers’ last encoding block.

D. Superparallel Ansatz

Finally, we provide an Ansatz that includes layers in depth
and width directions of the quantum circuit. In other words, it
has the same layer structure of reuploading models but with
L encoding blocks per layer. Each block contains M single-
qubit encoding gates (one for each data feature). As shown in
Fig. 3(d), a total of n = LM qudits are required for this Ansatz.
Each layer is given by

Ll (�x, �θ )SP ≡
[

L⊗
i=1

(
M⊗

m=1

S(xm)

)]
A(l )( �θl ) (16)

and the number of parameters in this model is

N (SP)
p = (L + 1)(d2ML − 1) ∼ Ld2ML, (17)

which grows exponentially with the input data dimension and
the number of layers.

IV. RESULTS AND DISCUSSION

To compare the models, we assume that all use single-qudit
encoding gates, although their extension to multiqudit gates is
straightforward (equivalent to finding an information unit of
dimension d̄ = dn). The degree of the Fourier series generated
by the first three Ansätze is determined by

D = (d − 1)L, (18)

where d is the dimension of the qudit(s) used in the model.
The superparallel model outputs a Fourier series of degree

D(SP) = (d − 1)L2, (19)

which grows quadratic with the number of layers due to
the use of multiple encoding blocks per layer. For detailed
derivation and further information on the models, refer to
Appendixes D, E, F, and G. By specifying the qudit dimen-
sion d and the number of layers L, we determine the Fourier
series frequency spectrum � and its degree D. This allows
us to calculate the degrees of freedom ν of the output series
by plugging Eqs. (18) and (19) in Eq. (8). Our next step
is to investigate whether we can fully represent the Fourier

series coefficients by comparing the degrees of freedom ν

with the number of independent parameters Np in the quantum
circuit. The Ansätze are required to contain, at least, ν free
parameters to generate any series coefficient, resulting in a
condition Np � ν. When this condition is not accomplished,
the model is not general enough to approximate all possible
Fourier series. However, having ν > Np does not necessarily
guarantee that we can fit a general series since the coefficient
equations are highly coupled and nonlinear [see Eq. (4)],
although one might expect that, in general, ν > Np is enough
to approximate a given series. Our goal is to establish a
lower bound in the worst-case scenario in terms of the circuit
Ansatz requirements to fit a general multidimensional Fourier
series.

The one-dimensional feature model, introduced in Sec. II,
possesses ν = 2(D + 1) = 2[L(d − 1) + 1] degrees of free-
dom and Np = (L + 1)(d2 − 1) free parameters. Both these
quantities increase linearly with the number of layers and
Np > Nc holds for all values of L and d , which implies
that the degrees of freedom requirements are satisfied in all
cases.

For the line, parallel, and mixed Ansätze with a fixed
qudit dimension, the degrees of freedom grow polynomially
with the number of layers, ν ∼ LM , while the number of
parameters grows proportionally to the layers used Np ∼ L,
regardless of the data dimension. Therefore, at some point,
the DOF will exceed the number of free parameters of the
model.

In Fig. 4 we represent the DOF condition for the line, par-
allel, and superparallel Ansätze for a case of two-dimensional
data with qubit and qutrit models. In the first place, we see
that the line Ansatz only fulfills the condition for the qubit
model with D = 1. Taking into account the asymptotics in
the degrees of freedom condition Np � ν and assuming that
ν ∼ (2DL)M and N (LA)

p ∼ MLd2, we obtain the following
condition:

d �
(

M

2MLM−1

)1/(M−2)

−−−→
M→∞

1

2L
. (20)

This suggests that simply increasing the qudit dimension is
insufficient to achieve the desired number of parameters. In
particular, for large data dimensions, the condition cannot be
fulfilled because d � 1/2L is an impossible condition for L >

1. Therefore, one-qudit models have limited power for fitting
multidimensional functions.

For the parallel Ansatz depicted in the second row of Fig. 4,
we see that, by increasing the qudit dimension, we arrive at
higher Fourier series degrees. Indeed, by running the asymp-
totics in the DOF condition considering N (PA)

p ∼ Ld2M , we
achieve

d � 2L
M−1

M −−−→
M→∞

2L, (21)

which implies that, in order to satisfy the inequality, we would
need to use qudit dimensions that increase with the number
of layers. In particular, in the limit of large dimensional data
sets, d has to grow proportional to L. This indicates that the
model remains universal, in the sense that we can generate
any arbitrary Fourier series, as long as d can grow with L.
In that case, the complexity of the problem would shift to
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FIG. 4. Comparison of the degrees of freedom condition for a two-dimensional Fourier series for the line (first column), parallel (second
column), and superparallel (third column) Ansätze using qubits (first row) and qutrits (second row). The dashed lines represent the degrees
of freedom ν of the Fourier series produced by the models plotted against its degree D, while the solid line depicts the number of trainable
parameters Np in the circuit Ansätze that generate a Fourier series of degree D with L layers. The parallel Ansatz fulfills the degrees of
freedom condition for higher-degree Fourier series compared to the line Ansatz, with the gap being wider when using qutrits. In particular, the
condition for the parallel Ansatz is fulfilled until D = 3 and D = 10 for qubits and qutrits, respectively. In the superparallel Ansatz, plotted on
a logarithmic y-axis scale, we observe a faster increase in the number of parameters compared to the degrees of freedom.

finding systems with arbitrarily large qudit dimensions to fit
generic Fourier series, which can be resource demanding for
some technologies.

Figure 5 depicts the results of simulation for models fitting
a two-dimensional Fourier series of degree D = 2 with the
line and parallel Ansätze. Since, for two-dimensional data, the
LA does not accomplish the DOF condition, the simulation
does not find suitable parameters to fit the coefficients. On
the contrary, the parallel model approximates with high ac-
curacy the target function with only two layers, because it
meets the DOF requirements. For more details on two- and
three-dimensional models, see Ref. [25], where expressibility
is analyzed in detail.

The limitation that we exhibit for the line and parallel
Ansätze is that we do not have enough free parametrization
in the Hilbert space of the PQC to accomplish the DOF that
multidimensional Fourier series require. Therefore, we can
only fit functions up to a certain degree. One might assume
that the problem could be solved by adding more layers, which
introduces more trainable parameters in the PQC to match
the DOF required for the desired set of coefficients. However,
the addition of more layers also increases the output Fourier
series’ degree D [see Eq. (18)], which requires more co-
efficients and thus more degrees of freedom. Therefore,
the problem cannot be resolved by merely increasing the

number of layers because this also raises the required degrees
of freedom of the output model.

The superparallel Ansatz has a number of qudits that grows
with the number of layers and the data dimension. In this
scenario, the degrees of freedom scale as ν ∼ (2dL2)M . Sub-
stituting this into the inequality Np � ν with the parameter
count given in Eq. (17) yields

d � 2
1

2L−1 L
2

2L−1 . (22)

It can be easily seen that this inequality is always satisfied. An
example of this can be observed in the third row of Fig. 4,
where we can notice that the number of parameters grows
more rapidly than the degrees of freedom of the resulting
model function, making the model capable of fitting any ar-
bitrary Fourier series. There is an increasing gap between the
number of parameters and degrees of freedom, which opens
the possibility of finding more sophisticated superparallel
encodings that can employ lesser variables while remaining
universal, for instance, by using nongeneral unitary gates or
fewer qudits.

V. CONCLUSIONS

In this work, we have explored how to generate multidi-
mensional Fourier series with parametrized quantum circuits.
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FIG. 5. Simulation of the line and parallel Ansätze for fitting a Fourier series of degree D = 2. The target function in the trigonometric
form is given by f (x1, x2) = −0.02 + 0.04 cos(2x1 + x2) + 0.25 sin x1 − 0.3 cos 2x2 − 0.1 sin(x1 − x2 ). We use the Nelder-Mead method as
a classical optimization subroutine with 500 training and 1500 testing data points. In the line Ansatz, we use one qubit and L = 2. The accuracy
obtained is 38.53% and, as we can see, the model does not capture the structure of the target function. In the parallel Ansatz, we use two qubits
and L = 2. The accuracy obtained is 95.63% and the predicted and target functions have a similar structure. In this regime, the line Ansatz
model does not fulfill the degree of freedom (DOF) condition, while the parallel does. This is reflected in the accuracy of the simulations.

These series emerge naturally from the expectation values of
quantum operators with a particular data encoding. We have
compared the degrees of freedom of a general Fourier series of
a given degree to the number of free parameters in the circuit,
which we refer to as the DOF condition and which provides
insight into the model expressibility. We provide a trade-off
between the number of qudits, circuit depth (measured with
the number of layers of the circuit), data dimension, and local
qudit dimension.

Current quantum computers can use higher energy states to
perform high-dimensional quantum computation. Apart from
this, the use of a general formalism for qudits is motivated by
the possibility of exploring larger Hilbert spaces (with more
extensive parametrization), which gives more freedom when
fitting the desired set of coefficients.

For one-dimensional data, the DOF requirement is al-
ways accomplished. However, for higher-dimensional data,
the degrees of freedom grow exponentially with the data di-
mensions, which can be problematic for some models that
may not be able to keep up with this rapid growth. For
example, single-qudit models have limited power in the ex-
pressivity of multidimensional data, because they lack the
appropriate parametrization. However, multiqudit models can

approximate functions up to a higher degree, which can be
used as an appropriate approximation for some problems.

We can always find a model that satisfies the DOF
condition by using large qudit dimensions or a substantial
number of qudits, then being fully expressive. Therefore,
multidimensional quantum learning models can be con-
sidered universal, as with sufficient parametrization, they
can fit any arbitrary Fourier series. Potential issues may
appear with trainability and generalization resulting from
using such a large parametrization. However, we speculate
that, for most problems, such an extensive parametriza-
tion would not be necessary nor practical in terms of
trainability.

The line, parallel, and mixed Ansätze exhibit an inductive
bias towards limited-band functions, which contain low fre-
quencies. Further work needs to be done for studying how the
inductive bias of quantum learning models [26,27] varies with
the PQC used. It would be interesting to benchmark the per-
formance, trainability, and generalization capabilities of the
Ansätze against a classical surrogate model [28,29]. Another
open question is how to determine the level of redundancy
necessary in the output Fourier series degree when the target
function is not known beforehand.
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We aim for our work to contribute to the understanding
of QML with classical multidimensional data and the further
exploration of more sophisticated embedding strategies.

All code used in this work can be found on the GitHub
repository [30].
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APPENDIX A: DATA REUPLOADING FOR
ONE-DIMENSIONAL FOURIER SERIES

This section explains how we generate one-dimensional
Fourier series with a circuit of n qudits of dimension d . For the
processing gate a general unitary is taken, of total dimension
N = dn (n qudits of dimension d):

A(l ) =

⎛
⎜⎝A(l )

11 · · · A(l )
1N

...
. . .

...

A(l )
N1 · · · A(l )

NN

⎞
⎟⎠. (A1)

In contrast to the processing, the encoding gates are the same
in all layers. Let us assume the following single-qudit encod-
ing gate:

S(x) = eixH , (A2)

where H is a N × N Hermitian operator and x is a one-
dimensional data point from the function we want to
represent. We assume that the encoding Hamiltonian H is
diagonal because, when taking the singular value decompo-
sition, H = V †�V , where V and V † are unitary matrices and
� is a diagonal matrix formed with the eigenvalues of H , the
encoding gate becomes

S(x) = e−ixV �V † =
∞∑

m=0

1

m!
(−ixV �V †)m

= 1 +
∞∑

m=1

1

m!
V (−ix�)mV † = V e−ix�V † = V R(x)V †,

(A3)

where we take into consideration that V †V = I and � =
diag(λ1, . . . , λN ). The resulting diagonal encoding gate is

R(x) = diag(eixλ1 , . . . , eixλN ). (A4)

Therefore, we assume, without loss of generality, a diagonal
encoding matrix, since V and V † gates are reabsorbed in
the definition of the general processing gates A(l ). With this

assumption, each layer l is composed of the product

L(l ) = A(l )R(x), L(0) = A(0), (A5)

the matrix elements of which are

L(l )
i j =

N∑
k=1

A(l )
ik Rk j = A(l )

i j eixλ j , L(0)
i j = A(0)

i j . (A6)

In general, for L layers, the unitary transformation of the
whole circuit is expressed as

Ui j =
N∑

k1,...,kL=1

A(L)
ikL

e−ixλkL A(L−1)
kLkL−1

. . . A(1)
k2k1

e−ixλk1 A(0)
k1k0

. (A7)

The initial state of the circuit is the zero state of dimension N .
Therefore, |0〉 = (1, 0, . . . , 0)T . Thus the state generated by
the circuit becomes

|ψ〉 = U |0〉⊗n, (A8)

ψi = Ui jδ j1 = Ui1. (A9)

Putting it all together, we obtain

ψi =
N∑

k1,...,kL=1

e−ix(λk1 +···+λkL )A(L)
ikL

A(L−1)
kLkL−1

. . . A(1)
k2k1

A(0)
k11. (A10)

By introducing the multi-index notation k ≡ {k1, . . . , kL} ∈
[N]L and the multi-index sum �k = λk1 + · · · + λkL , we re-
express the i-vector state:

ψi =
∑

k∈[N]L

e−ix�k A(L)
ikL

A(L−1)
kLkL−1

. . . A(1)
k2k1

A(0)
k11. (A11)

Each multi-index k is a possible combination of L indices and
each run from 1 to N . The multi-index sum �k = λk1 + · · · +
λkL is a sum that has |k| = NL possible values, given by all the
possible combinations of λki .

Now we compute the expectation value of a given observ-
able M in this state. The observable can be diagonal by the
same argument used for the encoding gate S(x), explained
above. The eigenvalues of any observable are real, so M∗

ii =
Mii ≡ Mi. All together,

〈M〉 = 〈ψ |M|ψ〉 =
N∑

i=1

U ∗
i1MiUi1

=
N∑

k1,...,kL=1
k′

1,...,k
′
L=1

eix(�k−�k′ )

(
N∑

i=1

MiA
(L)
ikL

A∗(L)
ik′

L

)
A(0)

k11A∗(0)
k′

11

×
L∏

p=2

A(p−1)
kpkp−1

A∗(p−1)
k′

pk′
p−1

. (A12)

For each set of k and k′ parameters, we generate a partic-
ular frequency �kk′ = �k − �k′ . Notice that different k, k′
choices can give the same frequency. Also, to obtain the
opposite sign value −�kk′ , one needs to exchange the k and k′
indices. Therefore, we can group the coefficients that generate
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the same frequencies from the above expression:

〈M〉 =
∑
ω�0

N∑
k,k′=1
�kk′=ω

eixω

(
N∑

i=1

MiA
(L)
ikL

A∗(L)
ik′

L

)
A(0)

k11A∗(0)
k′

11

×
L∏

p=2

A(p−1)
kpkp−1

A∗(p−1)
k′

pk′
p−1

+ e−ixω

(
N∑

i=1

MiA
(L)
ik′

L
A∗(L)

ikL

)

× A(0)
k′

11A∗(0)
k11

L∏
p=2

A(p−1)
k′

pk′
p−1

A∗(p−1)
kpkp−1

. (A13)

Thus we generate a Fourier series with coefficients

cω =
N∑

k,k′=1
�kk′=ω

(
N∑

i=1

MiA
(L)
ikL

A∗(L)
ik′

L

)
A(0)

k11A∗(0)
k′

11

L∏
p=2

A(p−1)
kpkp−1

A∗(p−1)
k′

pk′
p−1

(A14)
and c−ω = c∗

ω, with a frequency spectrum

�kk′ = {�k − �k′ }
= {(λk1 + · · · + λkL ) − (λk′

1
+ · · · + λk′

L
)}. (A15)

Notice that the frequency spectrum is directly related to the
eigenvalues of the encoding Hamiltonian, while the coeffi-
cients depend on the elements of the trainable parameters.

APPENDIX B: MATRIX ELEMENTS COMBINATIONS
TO GENERATE FOURIER COEFFICIENTS

All the terms that constitute a given coefficient with asso-
ciated frequency ω have in common that �k − �k′ = ω [see
Eq. (A14)]. In this Appendix, we explore how many combina-
tions of the multi-indices k, k′ give us the same frequency ω,
what we call the number of contributions to the coefficient
(sω). In some occasions, this is also called the degeneracy
of the frequency. Having more terms that contribute to the
same coefficient may be beneficial since we can have more
parameters yielding the same coefficient. The number of con-
tributions does not affect the discussion about the degrees of
freedom.

The frequencies are generated according to Eq. (A15). For
one qudit model and with the spinlike encoding discussed
in Sec. II, the frequencies are generated by subtracting L
eigenvalues to L eigenvalues, and each of them can take N
values. In total we have |ω| = N2L possible eigenvalues com-
binations. However, some subtraction results with the same
frequency ω. The number of combinations that gives rise to
the same frequency is given by

sω =
(

2L

L − ω

)
N−1

. (B1)

As expected, the number of combinations depends on the
number of layers, the frequency considered, and the dimen-
sion of the model. The symmetry in the generation of the
frequencies is reflected by sω = s−ω. The sum of all combina-
tions gives back |ω|, which is the eigenvalues’ combinations.∑

ω∈� sω = d2L = |ω|. For qubits (N = 2), the distribution of

TABLE I. Example of the number of combinations of the positive
frequencies in the single-qubit model with two layers and encoding
gate S(x) = eixH with H = σz/2. The table highlights these combi-
nations in bold. The combinations of the negative frequencies are
obtained by swapping the eigenvalues, giving rise to the same com-
bination value (sω = s−ω).

ω = 0 ω = 1 ω = 2

1
2 + 1

2 − (
1
2 + 1

2

)
1
2 + 1

2 − ( − 1
2 + 1

2

)
1
2 + 1

2 − ( − 1
2 − 1

2

)
1
2 − 1

2 − (
1
2 − 1

2

)
1
2 + 1

2 − ( + 1
2 − 1

2

)
1
2 − 1

2 − ( − 1
2 + 1

2

)
1
2 − 1

2 − ( − 1
2 − 1

2

)
− 1

2 + 1
2 − ( − 1

2 + 1
2

) − 1
2 + 1

2 − ( − 1
2 − 1

2

)
− 1

2 + 1
2 − ( + 1

2 − 1
2

)
− 1

2 − 1
2 − ( − 1

2 − 1
2

)
s0 = 6 s1 = 4 s2 = 1

combinations becomes a binomial distribution:

sN=2
ω =

(
2L

L − ω

)
1

= 2L!

(L − ω)!(L + ω)!
. (B2)

For qutrits (N = 3), we have a trinomial distribution:

sN=3
ω =

(
2L

ω

)
2

=
∑

0�μ,ν�2L
μ+2ν=2L+ω

2L!

μ!ν!(2L − μ − ν)!
. (B3)

For ququarts, we have a quadrinomial distribution, etc.
By using higher-dimensional systems, the number of to-
tal combinations grows exponentially with the number of
layers used.

For example, let us consider a model with one qubit and
L = 2. The frequency spectrum is given by � = {λk1 + λk2 −
(λk′

1
+ λk′

2
)}. The eigenvalues are λki = ±1/2 and we can

combine them in |ω| = d2L = 24 = 16 ways to obtain one of
the frequencies � = {−2,−1, 0, 1, 2}. In Table I, we show
the distribution of combinations to obtain these frequencies.
As we can see, it fulfills s−2 + s−1 + s0 + s1 + s2 = 16.

We can easily generalize this for the M-dimensional mod-
els. The discussion is valid for the line, parallel, and mixed
Ansätze. We have coefficients associated with M frequencies
in such models: cω1,...,ωM . Hence the possible combinations of
the coefficients depend on the combinations of every single
frequency ωi,

s�ω = sω1 sω2 . . . sωM , (B4)

where sωi with i ∈ {1, . . . , M} is the degeneracy of the one-
dimensional model given in Eq. (B1). The more terms that
contribute to the sum of a coefficient, the more likely there is
to exist more than one set of parameters that contributes to the
same coefficient.

APPENDIX C: RESCALING FACTOR

In this section, we discuss why it is relevant to introduce
a rescaling factor in quantum methods for function fitting,
which can be extended to other methods. For simplicity, we
first discuss the rescaling strategy for the one-dimensional
case and then generalize it to the multidimensional model.
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The non-negative frequency spectrum generated by the
one-qudit models with the spinlike encoding (without the
rescaling factor) is given by

� = {(d − 1)L, (d − 1)L − 1, . . . , 0}. (C1)

Suppose we want to fit an M-dimensional function that can
be approximated with a Fourier series of degree D′. We fit
the function with at least L = D′/(d − 1) layers, under the
condition of the degrees of freedom (see Sec. III). Nev-
ertheless, we can find cases in which there is no number
of layers such that D′ = (d − 1)L. For instance, with the
spinlike encoding, we generate integer frequencies without
the possibility of generating semi-integer or float frequen-
cies, regardless of the number of layers used. If the target
function contains a noninteger frequency, the model can-
not generate the proper functions and the model’s training
fails. We overcome this inconvenience by introducing a
rescaling η.

Let us study the case of fitting a function f (x) = 0.2(1 +
cos x

2 + sin x
2 + cos x + sin x), which is decomposed in a

Fourier series with frequencies �′ = {0,±1/2,±1}. With one
layer, the qubit model generates the frequencies ω = 0 and
ω = ±1, but it cannot generate the semi-integer ones. Conse-
quently, it fails to fit this function. A solution to avoid this is
introducing a rescaling factor η in the Hamiltonian H of the
encoding gates, such that S(x) = eixηH = eixH ′

. Now, all the
eigenvalues of the Hamiltonian become ηλi, leading us to a
different frequency spectrum:

�η = η�. (C2)

The rescaling factor η is optimized by the classical subroutine
and all the other trainable parameters. In the example consid-
ered, the optimization subroutine ideally finds η = ± 1

2 . With
this, we change the eigenvalues of the encoding Hamiltonian
to λ′ = {−1/4, 1/4}. Consequently, the frequency spectrum
becomes �η=1/2 = {±L/2,±(L − 1)/2, . . . , 0}. With two
layers, we have the desired frequencies present in the tar-
get function. A simulation with this example is shown in
Fig. 6.

To have a more flexible model in terms of the frequen-
cies, one can introduce different rescaling parameters in all
L processing gates to be optimized together with the rest of
the model’s parameters (see Ref. [2] for a similar proposal
for classification problems). By doing this, we can match the
target function frequencies with more freedom. The accessible
frequencies for the model become

��η = {η1(λk1 − λk′
1
) + · · · + ηL(λkL − λk′

L
)}. (C3)

The Fourier series now has nonequispaced and real frequen-
cies that can capture better the target function structure. We
obtain any desired frequency present in the target with enough
layers by optimizing the right parameters.

The rescaling proposal can be easily generalized to
M-dimensional models by introducing more rescaling pa-
rameters: S(�η · �x), where �η = (η1, η2, . . . , ηM ) and �x =
(x1, x2, . . . , xM ) are M-dimensional vectors. In this way, we
modify the frequency associated with each dimension.

This method requires a small amount of classical prepro-
cessing. Instead of generating a unitary transformation with

FIG. 6. Simulations of a one-dimensional Fourier series with
one qubit and two layers. The target function is f (x) = 0.2(1 +
cos x

2 + sin x
2 + cos x + sin x) and the trainable gates are A(i)(�θi ) =

Ry(θ (1)
i )Rz(θ

(2)
i ) in both cases. The solid line is the target function,

while the dots correspond to the output of different quantum models.
The blue dots use an encoding gate Rz(x) and the orange ones use
Rz(ηx), where η is the rescaling factor. The optimization subroutine
finds η � 1

2 .

parameter θ = x, we have to generate a θ = ηix transforma-
tion. In exchange for this, we obtain flexibility to fit functions
with unknown frequencies. However, this approach should be
treated carefully, because methods with rescaling parameters
may lead to good expressibility but overfitting and poor gen-
eralization bounds for more complex tasks.

APPENDIX D: FOURIER SERIES WITH THE LINE ANSATZ

In this Appendix, we explore the line Ansatz (LA) for
a qudit of arbitrary dimension d . We show the exact form
of the parametrized states after the quantum circuit and the
expectation value of an observable in this state (the output of
the quantum model). We also include a slight variation of the
LA that does not contain the processing gates between each
data dimension. We show why this formalism does not fit
multidimensional functions in general.

We study the state after the quantum circuit of the LA
model [see Fig. 3(a) for the quantum circuit]. We consider the
spinlike encoding discussed in the main article for all data fea-
tures having the same frequency spectrum in all dimensions.
The quantum state is given by

ψi =
d∑

j1,..., jL
k1,...,kL
t1,...,tL

...

A(L)
MitL

eixMλtL . . . A(L)
1kL jL

eix1λ jL . . . A(1)
Mj2t1

eixMλt1

. . . A(1)
1k1 j1

eix1λ j1 A(0)
j11, (D1)

where λ ji are the eigenvalues of the single-qudit encoding
Hamiltonian H , with i ∈ {1, . . . , d}. In the symbol for a train-
able gate A(l )

mi, j
, l indicates the layer, m the position of the

gate in the layer, and i, j are the indices of the matrices.
Note that each eigenvalue on the exponentials, introduced
by the encoding gates S(xi ), has a different index. This is
crucial for having a nonrelated dependency in each dimension
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and it occurs because of the intermediate trainable gates be-
tween each encoding gate. For the sake of simplicity, from
now on, we assume that the M processing gates of any
layer l have the same structure, while taking into consider-
ation that they have different parameters: A(l )

1 ∼ A(l )
2 ∼ · · · ∼

A(l )
M ≡ A(l ). With the multi-index notation j = { j1, j2, . . . , jL}

and regrouping terms we write

ψi =
d∑

j,k,...,t

eix1(λ jL +···+λ j1 ) . . . eixM (λtL +···+λt1 )A(L)
itL

. . . A(L)
kL jL

. . . A(1)
j2t1

. . . A(1)
k1 j1

A(0)
j11. (D2)

Finally, we define the multi-index sum: �j = λ j1 + λ j2 +
· · · + λ jL , simplifying the previous expression

ψi =
d∑

j,k,...,t

ei(x1�j+···+xM�t )A(L)
itL

. . . A(L)
kL jL

. . . A(1)
j2t1

. . . A(1)
k1 j1

A(0)
j11.

(D3)
After this, we compute the expectation value of the observable
M. Without loss of generality, we assume that Mi j = Mii =
Mi

〈M〉 =
d∑

j,j′,...t,t′∈[N]L

ω1=ω′
1,...,ωM=ω′

M

N∑
i

eix1(�j−�j′ ) . . . eixM (�t−�t′ )A(0)∗
j′11 A(1)∗

k′
1 j′1

. . . A(1)∗
j′2t ′

1
. . . A(L)∗

k′
L j′L

. . . A(L)∗
it ′

L
MiA

(L)
itL

. . . A(L)
kL jL

. . . A(1)
j2t1

. . . A(1)
k1 j1

A(0)
j11. (D4)

As we can observe, the expectation value has the structure of
a multidimensional Fourier series:

〈M〉 =
∑
�ω∈ ��

c�ωei�x· �ω. (D5)

Each data dimension has its frequency spectrum, resulting in
an M-dimensional vector of frequencies:

��(LA) = ({�j − �j′ }, . . . , {�t − �t′ }). (D6)

The set of coefficients

c�ω =
∑

�j−�j′ =ω1
...

�t−�t′ =ωM

A(0)∗
j′11 A(1)∗

k′
1 j′1

. . . A(1)∗
j′2t ′

1
. . . A(L)∗

k′
L j′L

. . . A(L)∗
it ′

L
OiA

(L)
itL

. . . A(L)
kL jL

. . . A(1)
j2t1

. . . A(1)
k1 j1

A(0)
j11 (D7)

also fulfill that cω1,ω2,...,ωM = c∗
−ω1,−ω2,...,−ωM

.
Now, we provide an alternative Ansatz in which data of

all dimensions is uploaded without a processing gate separat-
ing the different dimensions. Considering this, the Ansatz is
composed of the following layers:

L0 = A(0), Li = S(x1)S(x2) . . . S(xM )A(i). (D8)

The problem with this Ansatz is that, by using the
same S(xi ) for all encoding gates, these gates become
S(x1)S(x2) · · · S(xM ) = S(x1 + x2 + . . . + xM ). Hence all data
dimensions are mapped to a single dimension in the following
way: x̄ = x1 + . . . + xM . In other words, the M-dimensional
data collapses in a one-dimensional space. For example, the

data we introduce for M = 2 with a qubit circuit is x̄ =
x1 + x2. The model cannot distinguish the data points x1 = 1,
x2 = 0, and x1 = 0, x2 = 1. Consequently, the results obtained
by the model for fitting a two-dimensional function have
a similar structure to the function f (x1 + x2) (depicted in
Fig. 7). For this reason, we need to introduce a trainable
gate in the middle of the encoding gate to separate the data
dependency.

APPENDIX E: FOURIER SERIES WITH
THE PARALLEL ANSATZ

This section explains in more detail the parallel Ansatz
(PA) and studies its performance. With this Ansatz, we take
advantage of larger Hilbert spaces for operations with the
trainable gates, which determine the coefficients of the Fourier
series. First, each data dimension is encoded in a different qu-
dit. Then, we present the resulting state after the parametrized
quantum circuit and the expectation value of an arbitrary
observable M in this state. We also provide a variation
of this Ansatz that does not use entanglement in the train-
able gates and we discuss the differences between the two
models.

Following the circuit of the PA in Fig. 3(b), the M-qudit
state after the circuit is given by

ψi =
N=dM∑

j1,..., jL=1

A(L)
i jL

ei
(

x1λ
(1)
jL

+···+xMλ
(M )
jL

)

. . . A(1)
j2 j1

ei
(

x1λ
(1)
j1

+···+xMλ
(M )
j1

)
A(0)

j11. (E1)

Now the indices run from 1 to N = dM , with M = n,
the number of qudits, and d its dimension. The
encoding gate is S(�x) = S(x1) ⊗ S(x2) ⊗ · · · ⊗ S(xM ) =
eix1H ⊗ eix2H . . . eixM H , which can be rewritten as S(�x) =
ei(x1H (1)+x2H (2)+···+xM H (M ) ), with

H (i) = I︸︷︷︸
1

⊗ I︸︷︷︸
2

⊗ · · · ⊗ H︸︷︷︸
i

⊗ · · · ⊗ I︸︷︷︸
M

. (E2)

All the Hamiltonians are built by the tensor product of
n − 1 identities except in the i position where we have
the single-qudit Hamiltonian. This gives a Hamiltonian of
dimension N = dM , which has the d eigenvalues λi of
the single-qudit Hamiltonian distributed along the N = dM

possible positions on the diagonal. For example, a qubit
model with two-dimensional data (M = 2) and the spin-
like encoding (H = σz/2) has the following encoding gate:
S(x1, x2) = eix1H ⊗ eix2H = ei(x1H (1)+x2H (2) ). The eigenvalues of
the two Hamiltonians are λ(1) = {− 1

2 ,− 1
2 ,+ 1

2 ,+ 1
2 } and

λ(2) = {− 1
2 ,+ 1

2 ,− 1
2 ,+ 1

2 }. Therefore, the eigenvalues of σz/2
are maintained but distributed differently. Continuing with the
quantum state, we group the different eigenvalues with the
multi-index sum notation, i.e., �

(i)
j = λ

(i)
j1

+ λ
(i)
j2

+ · · · + λ
(i)
jL

,
and we rewrite the final state as

ψi =
N=dn∑

j

ei
(

x1�
(1)
j +···+xM�

(M )
j

)
A(L)

i jL
. . . A(1)

j2 j1
A(0)

j11. (E3)

All data dimensions in the exponential are multiplied by a
multi-index sum with the same index, which may cut some
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FIG. 7. Fitting of a Fourier two-dimensional series with S(�x) = Rz(x1)Rz(x2) and 10 layers. The target function is f (x1, x2) = 1
12 (1 +

cos x1 + cos x2). The classical optimization method is the Nelder-Mead. We use 500 training points and 1500 test points. The predicted
functions do not result to be like the target. Instead, they present a structure similar to f (x1 + x2).

freedom in fitting a Fourier series. Although having the same
index, they are nonequally distributed. With this, the model
has enough freedom to have an independent frequency spec-
trum in each dimension. Finally, the expectation value of the
observable is given by

〈M〉 =
N∑

j,j′=1=1

N∑
i=1

ei
[

x1

(
�

(1)
j −�

(1)
j′

)
+···+xM

(
�

(M )
j −�

(M )
j′

)]
A(0)∗

j′11 A(1)∗
j′2 j′1

. . . A(L)∗
i j′L

MiA
(L)∗
i jL

. . . A(1)
j2 j1

A(0)
j11, (E4)

which has the structure of a multidimensional Fourier se-
ries. The observable M acts on n qudits, but we propose
to measure only one qudit, for example, the first one. Then
the observable becomes M = M ⊗ I ⊗ · · · ⊗ I, where M is
a single-qudit observable. This does not affect the models’
structure. The frequency spectrum obtained is

��(PA) = ({
�

(1)
j − �

(1)
j′

}
, . . . ,

{
�

(M )
j − �

(M )
j′

})
. (E5)

Therefore, the PA’s output has a multidimensional Fourier
series structure.

Now we explore a variation of the PA. The circuit Ansatz
we consider is the same, but instead of using processing gates
A(i) as multiqudit gates, we only use single-qudit gates, mean-
ing that we need to eliminate any entangling gate. In this way,
we explore the outcome of the model working with each qudit
separately. Now we measure an observable acting in all qudits
because they do not interact and consequently do not share
any correlation. The state after the circuit with the Ansatz
considered is

|ψ〉=A(0)S(�x)A(1) . . . S(�x)A(L) =|ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψM〉,
(E6)

where A(i) = A(i)
1 ⊗ A(i) ⊗ . . . ⊗ A(i)

M and S(�x) = S(x1) ⊗
S(x2) ⊗ . . . ⊗ S(xM ). Hence, if we choose to measure an

observable M = σz ⊗ σz ⊗ . . . ⊗ σz, the result is

〈M(�x)〉 = 〈ψ1|σz|ψ1〉〈ψ2|σz|ψ2〉 . . . 〈ψM |σz|ψM〉
=

∑
ω1

c(1)
ω1

eix1ω1
∑
ω2

c(2)
ω2

eix1ω2 . . .
∑
ωM

c(M )
ωM

eix1ωM

=
∑

�ω
c(1)
ω1

c(2)
ω2

. . . c(M )
ωM

ei(x1ω1+x2ω2+...+xMωM ), (E7)

where we have used the results of the one-dimensional Fourier
series discussed in Appendix A. We obtain a multiplication
of M one-dimensional Fourier series. In this case, how-
ever, we do not have all the free coefficients because c�ω 
=
c(1)
ω1

c(2)
ω2

. . . c(M )
ωM

. For example, for M = 2 we have five free
coefficients: c00, c01, c10, c11, c1−1 but in this variation of the
model we have four free coefficients: c(1)

0 , c(2)
0 , c(1)

1 , c(2)
1 , since

the other ones are constrained by c(i)
ωi

= c(i)∗
−ωi

. The output of
this model is still a Fourier series, but not the most general
one. Regardless of this, the possibility of finding applica-
tions for some problems is not discarded, as the question
remains open.

APPENDIX F: FOURIER SERIES WITH
THE MIXED ANSATZ

In this section, we explore the last Ansatz considered.
The circuit in Fig. 3(c) is called the mixed Ansatz (MA)
because it combines elements of the LA and the PA: var-
ious data dimensions are encoded in the same qudit as in
the LA, but also other qudits are used to encode them, like
in the PA. The idea of this model is to take advantage
of the hardware requirements of the current quantum de-
vices. For instance, if we have a chip with four qubits and
eight data features, we introduce two dimensions in each
qubit.

Let us consider a MA circuit of p qudits and an
M-dimensional data set. In the ideal case, we encode M/p data
dimensions in every qudit. Of course, M/p will not always
be an integer. In such cases, we use fewer encoding gates in
the last layer. Since we are encoding different data features
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in the same qudit, we need extra processing gates between
these dimensions, like in the LA. All the trainable gates are

p-dimensional qudit gates since we encode data in this number
of qudits. The quantum state after the circuit is given by

ψi =
N=d p∑
j1,..., jL
k1,...,kL
t1,...,tL

...

A(L)
M/pitL

ei
(

xM−(p−1)λ
(1)
tL

+···+xMλ
(p)
tL

)
. . . A(L)

1kL jL
ei
(

x1λ
(1)
jL

+···xpλ
(p)
jL

)
. . . A(1)

M/pj2t1
ei
(

xM−(p−1)λ
(1)
t1

+···+xMλ
(p)
t1

)
. . . A(1)

1k1 j1
ei
(

x1λ
(1)
j1

+···+xpλ
(p)
j1

)
A(0)

j11.

(F1)

This equation has a different distribution of eigenvalues: λ(i) with i ∈ {1, . . . , p} because we have p qudits. The different
distribution comes from the tensor product of the identity in all the p qudits and the encoding Hamiltonian in the ith qudit [see
Eq. (E2)]. By introducing the multi-index and multisum notation that we have explored in this work, we reduce the expression to

ψi =
N=d p∑

j,k,t,...

ei
(

x1�
(1)
j +...+xp�

(p)
j +...+xM−(p−1)�

(1)
t +...+xM�

(p)
t

)
A(L)

M/pitL
. . . A(L)

1kL jL
. . . A(1)

M/pj2t1
. . . A(1)

1k1 j1
A(0)

j11, (F2)

where j = { j1, j2, . . . , jL} and �
(i)
j = λ

(i)
j1

+ λ
(i)
j2

+ . . . + λ
(i)
jL

. The expectation value of an observable M in this quantum state
is given by

〈M〉 =
N=d p∑

j,j′,k,k′,t,t′...

N∑
i=1

ei
[
x1

(
�

(1)
j − �

(1)
j′

) + . . . + xp
(
�

(p)
j − �

(p)
j′

) + . . . + xM−(p−1)
(
�

(1)
t − �

(1)
t′

) + . . . + xM
(
�

(p)
t − �

(p)
t′

)]
× A(0)∗

j′11 A(1)∗
1k′

1
j′1

. . . A(1)∗
M/pj′2 t ′

1
. . . A(L)∗

1k′
L j′L

. . . A(L)∗
M/pit ′L

MiA
(L)
M/pitL

. . . A(L)
1kL jL

. . . A(1)
M/pj2t1

. . . A(1)
1k1 j1

A(0)
j11. (F3)

In terms of the eigenvalues, we see combined features of
the two models: having a different distribution of eigenvalues
with the same index (in the data dimensions processed at the
same level of depth) and having a different index with the
same distribution of eigenvalues (the data features processed
in the same qudit). Therefore, this model also generates a
multidimensional Fourier series.

APPENDIX G: FOURIER SERIES WITH
THE SUPERPARALLEL ANSATZ

In this section, we introduce the superparallel Ansatz. It
contains n = ML qudits. The Ansatz in question is depicted
in Fig. 3(d). It can be seen that now the layers grow in two
dimensions: in width and depth. Each layer comprises L en-
coding blocks, with each block consisting of M single-qudit
encoding gates. Similar to the previous Ansatz, the superpar-
allel Ansatz also generates multidimensional Fourier series
and the derivation is similar to that of the parallel Ansatz.
Thus we will not provide an explicit derivation here. However,
the encoding gates are significantly different in this Ansatz.
For instance, consider an encoding block of the superparallel
Ansatz with L = 2 for M-dimensional data:

S(�x) = S(x1) ⊗ · · · ⊗ S(xM ) ⊗ S(x1) ⊗ · · · ⊗ S(xM )

= eix1H ⊗ · · · ⊗ eixM H ⊗ eix1H ⊗ · · · ⊗ eixM H

×
dLM∑
j1=1

ei
(

x1λ
(1)
j1

+···+xMλ
(M )
j1

+x1λ
(M+1)
j1

+···+xMλ
(2M )
j1

)

=
dLM∑
j1=1

ei
[

x1

(
λ

(1)
j1

+λ
(M+1)
j1

)
+···+xM

(
λ

(M )
j1

+λ
(2M )
j1

)]
, (G1)

where λ
(1)
j1

is given in Eq. (E2). We see that each data fea-
ture in a single encoding block is multiplied by a sum of
L eigenvalues (in this case L = 2). Consequently, the output
Fourier series degree D becomes additionally dependent on
the number of layers in depth (the number of encoding blocks
for a data feature per layer), yielding D = (d − 1)L2. The rest
of the derivations can be deduced using a similar approach as
in Appendix E.

APPENDIX H: PRACTICAL CASE: FITTING
FOUR-DIMENSIONAL DATA

In this Appendix, we fit a four-dimensional Fourier series
of degree D with the three Ansätze described in this work: the
LA, PA, and MA. We compare which models are more con-
venient for fitting higher-degree Fourier series. The general
target function is given by

f (x1, x2, x3, x4) = f (�x) =
D∑

�ω=−D

c�ωei�x· �ω, (H1)

where �ω = (ω1, ω2, ω3, ω4) describes the frequency in each
dimension. The number of free coefficients Nc in the four-
dimensional Fourier series is determined by the degree of the
series:

Nc = (2D + 1)4 − 1

2
+ 1, (H2)

since half of them are constrained by c�ω = c∗
−�ω, except c�0. At

the same time, the degree of the Fourier series generated by
the model is determined by the qudit used and the number of
layers of the model: D = (d − 1)L. Hence Nc depends on d
and L. We know that ν ≡ 2Nc − 1 is the number of degrees
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FIG. 8. Graphic representation of the degrees of freedom and the free parameters with respect to the number of layers for the line, parallel,
and mixed Ansätze models with four-dimensional data. The upper plot depicts results for qubits and the lower for qutrits. The y axis is
logarithmic and represents the number of coefficients or parameters and the x axis is the number of layers in the models. The only model that
accomplishes the DOF condition is the PA and the results are improved when we use qutrits. With qubits, the condition is satisfied until the
Fourier series of degree D = (d − 1)L = 2 and D = 4 for qutrits.

of freedom required for the model to fit the general Fourier
series. The number of free parameters of the different models
for four-dimensional data is given by

N (LA)
p = (4L + 1)(d2 − 1),

N (PA)
p = (L + 1)(d8 − 1),

N (MA)
p = (2L + 1)(d4 − 1), (H3)

where for the MA we use two qudits; therefore, p = 2. With
this, we determine graphically the Fourier series degree that

accomplishes the DOF condition. This is shown in Fig. 8
for qubit and qutrit models. As we can notice, for four-
dimensional data, neither the LA nor the MA accomplish the
DOF condition for any number of layers. This means we do
not have enough free parameters in the model for fitting an
arbitrary Fourier series. With the PA model, the condition is
satisfied until L = 2, meaning that we achieve Fourier series
of degree D = 2(d − 1), having degree 2 for the qubit model
and 4 for the qutrit. Hence this model can give limited approx-
imations to some functions.
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