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Zak transform as a framework for quantum computation with the Gottesman-Kitaev-Preskill code
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The Gottesman-Kitaev-Preskill (GKP) code encodes a qubit into a bosonic mode using periodic wave
functions. This periodicity makes the GKP code a natural setting for the Zak transform, which is tailor-made
to provide a simple description for periodic functions. We review the Zak transform and its connection to a Zak
basis of states in Hilbert space, decompose the shift operators that underpin the stabilizers and the correctable
errors, and find that Zak transforms of the position wave function appear naturally in GKP error correction.
We construct a bosonic subsystem decomposition (SSD)—the modular variable SSD—by dividing a mode’s
Hilbert space, expressed in the Zak basis, into that of a virtual qubit and a virtual gauge mode. Tracing over the
gauge mode gives a logical-qubit state, and preceding the trace with a particular logical-gauge interaction gives
a different logical state—that associated to GKP error correction.
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I. INTRODUCTION

The vast majority of schemes for quantum computation re-
quire discrete Hilbert spaces constructed from tensor products
of two-dimensional systems—the discreteness is the basis of
quantum error correction (EC) and fault tolerance as well as
known quantum algorithms. This has led to the question of
how infinite-dimensional continuous-variable (CV) systems,
such as quantized electromagnetic fields [1,2], superconduct-
ing circuits [3,4], or mechanical resonators [5,6], can be
repurposed into behaving effectively as two-level systems
(qubits). Clever methods to do so go beyond simply encod-
ing qubits into continuous-variable systems; they also endow
encodings with error-correcting properties, making them po-
tential building blocks for a fault-tolerant quantum device.
These encodings are collectively known as bosonic codes.

The Gottesman-Kitaev-Preskill (GKP) code [7] stands
out among bosonic codes due to its noise resilience [8],
all-Gaussian implementation of logical Clifford gates [7]
and magic-state production [9,10], seamless interface with
continuous-variable cluster-state quantum computing [11,12],
and rich set of mathematical properties [13,14]. The dis-
cretization mechanism at the basis of the GKP code is
periodization in phase space: code-word wave functions in the
computational and dual bases are periodic combs of Dirac-
delta distributions in position and momentum, respectively.
This introduces a redundancy that protects against small dis-
placements in position and momentum, as the error correction
procedure gives access to only small-displacement informa-
tion while leaving the logical information untouched.

*g.pantaleoni@pm.me

Pure GKP states, both ideal and approximate, are often
represented as wave functions in a quadrature basis. An ap-
pealing alternative description is obtained by performing a
Zak transform [15–17] of the position (or momentum) wave
function [18]. A Zak transform, also known as a Weyl-Brezin
transform, takes a function of a single unbounded real variable
to a function of two bounded real variables. This takes a wave
function ψ (x) with x ∈ R to a modular wave function ψ (u, v)
with u and v lying in a bounded patch of R2. The key property
of modular wave functions is that they are particularly suited
for compact representations not only of ideal, infinite-energy
GKP states, but also of their approximately periodic, finite-
energy approximations.

The Zak transform has been used and rediscovered in
mathematics (differential equations [19,20] and representa-
tion theory [21]), physics [15–17], and signal processing
[22–24]. In the early days of the GKP code, modular wave
functions were used to describe approximate GKP states and
GKP error correction (GKPEC) [7,18], while more recently,
they have found application in a wider range of GKP-related
topics [25–30]. Generalizations of the Zak transform also
proved fruitful in the broader context of quantum information
[31–34] and superconducting circuits [28,35].

In this paper, we delve further into connections between the
Zak transform and the GKP code. The results are organized
into two parts: the first part, Sec. II, is devoted to the Zak
transform, and the second part, comprising Secs. III and IV, is
devoted to the GKP code.

We begin in Sec. II A by presenting the Zak transform and
its relation to the “Zak basis” for representing quantum states
in Hilbert space. We collect a number of useful facts about
modular wave functions and elaborate on their natural 2π -area
domain induced by their periodicities. Modular arithmetic
plays an important role throughout this paper, especially so in
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the process of keeping track of the phasing rules that modular
wave functions must obey. We provide simple formulas to
keep track of these phases.

In Sec. II B, we show that the periodicity conditions can be
relaxed by defining “stretched Zak bases” whose domain has
arbitrary but finite area. We conclude the section by provid-
ing the link between modular variables (MVs) [34,36]—the
operators that are diagonalized by the Zak-basis eigenstates—
and the usual position and momentum operators of a bosonic
mode.

In Sec. III, we introduce the GKP code in the modular-
variable formalism and show how the Zak framework is
inherently present both when considering the problem of
evaluating the logical information of approximate GKP code-
words and when performing GKP error correction. In Sec. IV,
we develop a formalism specially tailored to deal with the
problem of addressing the logical content of any continuous-
variable state with respect to the GKP code. We use the
stretched Zak basis to decompose the CV Hilbert space of
a bosonic mode into that of a two-dimensional qubit and
an infinite-dimensional gauge subsystem. We refer to this
change of basis as a subsystem decomposition (SSD) [37,38].
In SSDs, logical-qubit information is encoded in a virtual
subsystem rather than in a subspace, which is the typical
framework for quantum error correcting codes. We show that
this decomposition gives a simple interpretation of the GKP
error correction procedure, and also, somewhat surprisingly,
that the logical content is identical to that of the partitioned-
position SSD [38].

II. DEFINITIONS AND PROPERTIES

A. The Zak basis

The Zak transform maps a square-integrable function
ψ ∈ L2(R) into a square-integrable, quasiperiodic function
of two real variables with period a. Denoting with ψ (x) the
function ψ evaluated at the point x ∈ R, its Zak transform Zψ ,
evaluated at u and v, is [15,17]

(Zψ )(u, v) =
√

a

2π

∑
m∈Z

e−iamvψ (u + am). (2.1)

For the moment, we let u and v take any real value. For the
remainder of this paper, we simply indicate ψ (u, v) instead of
(Zψ )(u, v), as there is no risk of confusion: ψ (x) will always
refer to a function in L2(R), and ψ (u, v) will always refer
to its Zak transform. Since we are mostly concerned with
quantum states, we use bra-ket notation wherever possible
and interpret square integrable functions as wave functions
in the position representation, ψ (x) = q〈x|ψ〉, where |x〉q is a
position eigenstate such that q̂|x〉q = x|x〉q, x ∈ R (we reserve
the symbol |x〉p for momentum eigenstates). The position and
momentum operators are q̂ := 1√

2
(â + â†) and p̂ := −i√

2
(â −

â†), respectively, in terms of creation and annihilation opera-
tors. We refer to ψ (u, v) as a modular wave function when
it describes a pure quantum state. We note in passing that
alternative phasings in the definition of the Zak transform,
Eq. (2.1), can be chosen, leading to different periodicity rules
for modular wave functions—here, we use Zak’s [15,16].

We can construct a Zak ket by applying the Zak transform
to the position eigenstates, which gives a superposition of
either position or momentum eigenstates,

|u, v〉 =
√

a

2π

∑
m∈Z

eiamv|u + am〉q (2.2)

= 1√
a

e−iuv
∑
m∈Z

e−i 2π
a mu

∣∣∣∣v + 2π

a
m

〉
p

, (2.3)

where the normalization factor (a/2π )−1/2 ensures orthonor-
mality in the Dirac-comb sense:

〈u, v|u′, v′〉 =
∑

m

δ(u − u′ + am)
∑

n

δ

(
v − v′ + 2π

a
n

)
.

(2.4)

The reader interested in verifying Eq. (2.3) will find Poisson’s
formula useful.

In analogy with the position and momentum wave func-
tions in their respective bases, we refer to ψ (u, v) in Eq. (2.1)
as the wave function in the Zak representation (or, more
simply, the modular wave function) by identifying it with the
inner product:

ψ (u, v) := 〈u, v|ψ〉 (2.5)

One may verify that this expression is consistent by taking
the adjoint of Eq. (2.2) and using the inner product of L2(R).
The dual vector 〈u, v| is thus the linear functional that gives
a wave function in Zak representation evaluated at u and v, in
the same sense that q〈x| and p〈x| are the linear functionals that
give the wave function in the position and momentum bases
evaluated at the point x. An example modular wave function,
that of the vacuum state, is shown in Fig. 1.

Two important properties of the vectors in Eq. (2.2) are
quasiperiodicity in the first variable and periodicity in the
second,

|u + a, v〉 = e−iav|u, v〉, (2.6a)

|u, v + 2π/a〉 = |u, v〉, (2.6b)

which are inherited by modular wave functions ψ (u, v):

ψ (u + a, v) = eiavψ (u, v), (2.7)

ψ (u, v + 2π/a) = ψ (u, v). (2.8)

An important consequence of these properties is that the states
|u, v〉 form an overcomplete basis when there are no restric-
tions on the domain of u and v. The standard prescription to
construct an orthonormal Zak basis is to restrict the domain
of u and v to a rectangle of area 2π , which we often refer to
as a “Zak patch,” whose sides are given by the periods a and
2π/a. This is equivalent to restricting the domain of modular
wave functions to a torus. One is free to choose the centering
of the Zak patch; we choose

P =
[
−a

4
,

3a

4

)
×

[
−π

a
,
π

a

)
(2.9)

so that the two points (u, v) = (0, 0) and (a, 0), which will be
important for GKP states, lie within the patch and not on its
boundaries. The fundamental Zak patch is shown in Fig. 2.
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(a)

(b)

FIG. 1. (a) Modular wave function ψvac(u, v) and (b) position
wave function ψvac(x) ∝ exp(−x2/2) for the vacuum state of the
harmonic oscillator. The modular wave function is given for a Zak
transform with period a = 2

√
π . It is periodic in the vertical direc-

tion, and periodic modulo a phase (quasiperiodic) in the horizontal
direction. Because of the quasiperiodicity, the values of ψvac(u, v)
outside P are redundant and it is sufficient to restrict ourselves to
a fundamental domain P whose center can be freely chosen. The
choice of periodicity and centering here is convenient for represent-
ing states of the square GKP code, whose code words have a 2

√
π

periodicity and support only on integer multiples of
√

π .

The states |u, v〉 with u, v ∈ P span the Hilbert space of
a bosonic mode, and one may write the completeness as (see
Ref. [32] for a brief, focused discussion and Ref. [39] for a
rigorous proof)

∫
P

du dv |u, v〉〈u, v| =
∫
R

dx|x〉qq〈x| = Î. (2.10)

The Zak transform is then interpreted as an isometry from
the Hilbert space of complex-valued, square-integrable func-
tions on the real line to the Hilbert space of complex-valued,
square-integrable functions of two real variables in the Zak
domain P , L2(R) → L2(P ) [23,24,40]. With the restriction

FIG. 2. Centered fundamental Zak domain P with width a and
height 2π/a.

on the domain to P , the orthonormality condition becomes

〈u, v|u′, v′〉 = δ(a)(u − u′)δ(2π/a)(v − v′), (2.11)

where δ(a)(u) and δ(2π/a)(v) are Dirac delta distributions in the
horizontal and vertical intervals of the Zak patch, respectively.
The Zak basis is then

BZ = {|u, v〉 | u, v ∈ P}. (2.12)

Unless otherwise stated, from now on, when we use the sym-
bols u and v, it is understood that u, v ∈ P .

Zak states that lie outside of P are phased versions of the
Zak-basis states within P . The periodicity and quasiperiodic-
ity conditions give the recipe to find this phase. First, recall
that a real number x ∈ R can be written as a quotient and
remainder with respect to a positive real number T . Including
a centering μ, x decomposes as

x = {x}μT + 	x
μ
T , (2.13)

where {x}μT ∈ [−μ, T − μ) is the centered fractional part of x
and 	x
μ

T = x − {x}μT is the centered closest integer multiple
of T to x. We will omit the centering superscript whenever
the centering does not matter. Consider now a Zak state |x, y〉,
where x, y ∈ R are not limited to P . By decomposing x and y
and using Eqs. (2.6a) and (2.6b), one finds that

|x, y〉 = e−i	x
a/4
a {y}π/a

2π/a
∣∣{x}a/4

a , {y}π/a
2π/a

〉
, (2.14)

with the state on the right-hand side being a bona fide element
of the orthonormal Zak basis within P , Eq. (2.12). An exam-
ple that appears often is a Zak basis state |u, v〉 with u, v ∈ P
that has undergone shifts by unrestricted values s and t :

|u + s, v + t〉 = e−i	u+s
a{v+t}2π/a |{u + s}a, {v + t}2π/a〉.
(2.15)

We discuss the effect of quadrature shifts more in depth, as
well as their Zak space versions. The Weyl-Heisenberg shift
operators

Ẑ (t ) := eiq̂t , (2.16)

X̂ (t ) := e−i p̂t , (2.17)

respectively, phase and shift position eigenstates, Ẑ (t )|x〉q =
eixt |x〉q and X̂ (t )|x〉q = |x + t〉q, with complementary actions
on momentum eigenstates. In the Zak basis, their actions are

Ẑ (t )|u, v〉 = eiut |u, v + t〉, (2.18)

X̂ (t )|u, v〉 = |u + t, v〉. (2.19)

We can see that, once a fundamental comb state is defined,
|0, 0〉 := ∑

m∈Z |am〉q, an equivalent definition of the Zak
transform can be given. We can do so by defining a Zak vector
as a displaced |0, 0〉 state,

|u, v〉 := X̂ (u)Ẑ (v)|0, 0〉, (2.20)

and ψ (u, v) = 〈u, v|ψ〉 as the Zak transform of |ψ〉. This
alternative definition highlights the fact that we have taken
the convention where momentum shifts are performed first.
Different ordering and phasings of the displacements would
give different Zak vectors. There are two more conventions
that appear to be just as natural or useful as the one above.
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FIG. 3. Effect of combined position and momentum displacements, X̂ (k 2
√

π

3 )Ẑ ( j
√

π

2 ) for integer j and k on the modular wave functions
ψ (u, v) of an approximate GKP state in a Zak patch with a = 2

√
π . We consider an approximation to an ideal |0GKP〉 state, whose position

wave function is a comb of Gaussian functions with spacing 2
√

π . Each Gaussian has variance �2 = 0.09, and the enveloping Gaussian has
variance �−2. These variances make the vertical and horizontal spread of the modular wave function the same. Each subplot shows a modular
wave function plotted in a fundamental domain P , Eq. (2.9), and the color legend is the same as in Sec. II A. The rows in the array of subplots
correspond to values of j and the columns to values of k. The acquired phases can be understood with the help of the relations in Eqs. (2.18)
and (2.19). Notice that the difference in relative phasing across the support of the state encodes displacements by a complete patch length or
width. For instance, compare the relative phasing across the states in the four corners, corresponding to ( j, k) ∈ {(0, 0), (0, 3), (2, 0), (2, 3)}.
These states would be identical without this difference in phasing. It is solely this phasing that encodes the relative displacement between these
four states. Finally, note that for an ideal |0GKP〉 state (Dirac delta at the origin of P), displacements by a full patch have no effect, and this is
reflected in the fact that the origin of all four of the these states remains unchanged in phase.

The second choice is the one where the shifts are taken in the
opposite order |u, v〉op := Ẑ (u)X̂ (v)|0, 0〉, and in the third one
they are performed symmetrically |u, v〉sym := ei(vq̂−up̂)|0, 0〉.
These Zak states differ from those defined in Eq. (2.20)
by phases, op〈u, v|u, v〉 = e−iuv and sym〈u, v|u, v〉 = e−i uv

2 .
One could proceed using any of these conventions; we use
Eq. (2.20).

We introduce operators that produce phases and shifts on
Zak eigenstates, analogous to the action of Weyl-Heisenberg
operators on position eigenstates. We define modular phase
operators

P̂U (t )|u, v〉 := eiut |u, v〉, (2.21a)

P̂V (t )|u, v〉 := eivt |u, v〉, (2.21b)

for u, v ∈ P and t ∈ R. The modular phase operators are
generated by the modular variables û and v̂, eiût = P̂U (t ) and
eiv̂t = P̂V (t ). The modular shift operators are defined as

T̂ U (t )|u, v〉 := |u + t, v〉, (2.22a)

T̂ V (t )|u, v〉 := |u, v + t〉, (2.22b)

for u, v ∈ P and t ∈ R. Here, an asymmetry becomes evident.
Scaled integer position am̂ generates a modular momen-
tum translation, eiam̂t = T̂ V (t ), but scaled integer momentum
2π
a n̂ generates a composite action, e−i 2π

a n̂t = P̂V (t )T̂ U (t ). It
is not possible to generate translations in modular position
by exponentiating only one of the fundamental operators in
Eq. (2.33a) to (2.33d). This is because, with our choice of
convention for the Zak transform and Zak states (introduced

by Zak [16,17]), modular position and modular momentum
are not on equal footing, at least when interpreting them in
terms of Aharonov’s integer and modular operators. For this
reason, the quadrature shift operators decompose as

Ẑ (t ) = P̂U (t )T̂ V (t ), (2.23a)

X̂ (t ) = T̂ U (t ), (2.23b)

which are simply Eqs. (2.18) and (2.19) in a basis-independent
form.1 We illustrate their action on modular wave functions in
Fig. 3.

The modular phase and modular shift operators obey sim-
ilar commutation relations to that of the Weyl-Heisenberg
operators, Ẑ (s)X̂ (t ) = eist X̂ (t )Ẑ (s). That is, the only nonzero
commutators between pairs of modular operators come from
shifts and phases of the same modular variable: P̂U (s)T̂ U (t ) =
eist T̂ U (t )P̂U (s) and P̂V (s)T̂ V (t ) = eist T̂ V (t )P̂V (s).

1It is possible to work with more symmetrical relations using
the Zak kets, |u, v〉sym = e

iuv
2 |u, v〉. We then get a more sym-

metrical decomposition of the Weyl-Heisenberg operators, X̂ (t ) =
T̂ U

sym(t )P̂V
sym(−t/2) and Ẑ (t ) = T̂ V

sym(t )P̂U
sym(t/2), with the modular

shift and phase operators acting on symmetric Zak states as in
Eq. (2.21a) to (2.22b). Exponentiating the scaled integer operators
generates a combination of primed modular phases and shift, eiam̂t =
T̂ V

sym(t )P̂U
sym(−t/2) and ei 2π

a n̂t = T̂ U
sym(t )P̂V

sym(t/2). We do not adopt
this convention throughout this paper.
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The conditions in Eqs. (2.6a) and (2.6b) imply periodicity
on the modular shift operators in the following sense:

T̂ U (a) = P̂V (−a), (2.24)

T̂ V (2π/a) = Î. (2.25)

With these relations, the modular shift operators can be rewrit-
ten using modular arithmetic as

T̂ U (t ) = P̂V (−	t
a)T̂ U ({t}a), (2.26)

T̂ V (t ) = T̂ V ({t}2π/a). (2.27)

According to Eq. (2.26), translations that wrap around the u
domain are accompanied by a phase. Translations on the v

domain do not exhibit this behavior, as shown in Eq. (2.27).
Note that these relations give us an alternative approach to
obtaining Eq. (2.14).

Relation to modular variables

The modular variables û and v̂ we encountered are an
important concept in physics. They may be interpreted as
nonlocal analogs of the position and momentum of a quantum
particle [36]. They are useful quantities in solid-state physics,
where useful dynamical variables are not necessarily local
[16,17] (in that context, they are known as quasiposition and
quasimomentum) and they have been used for interpreting
quantum-mechanical effects with no classical analogs, such
as the Aharonov-Bohm effect. Here, we give explicit relations
between the Zak kets, the operators diagonalizing them, and
modular variables as known in the physics literature [36].

The operators û and v̂ are simultaneously diagonalized by
the Zak basis:

û|u, v〉 = u|u, v〉, (2.28)

v̂|u, v〉 = v|u, v〉. (2.29)

For all u, v ∈ P , they commute,

[û, v̂] = 0, (2.30)

and are, in fact, modular position and momentum operators,
respectively. This can be shown by using Eq. (2.13) to de-
compose the position and momentum operators following the
prescription (with the exception of the centering) in Aharonov
et al. [36]:

q̂ = û + am̂, (2.31)

p̂ = v̂ + 2π

a
n̂. (2.32)

The modular position and momentum operators, û and v̂, and
integer position and momentum operators, m̂ and n̂, are given
by

û := {q̂}a/4
a , (2.33a)

v̂ := { p̂}π/a
2π/a, (2.33b)

m̂ := 	q̂
a/4
a

a
, (2.33c)

n̂ := 	p̂
π/a
2π/a

2π/a
. (2.33d)

The operators m̂ and n̂ have integer spectra, while the spectra
of their counterparts, 	q̂
a/4

a and 	p̂
π/a
2π/a, are integer multiples

of the bin size. The positive integer a is interpreted as a “bin
size” in position, with a complementary bin size in momentum
of 2π/a.

These formulas are useful to keep in mind. For example,
evaluating the modular phase operators on the unrestricted
|x, y〉 state is potentially ambiguous, but we can do so using
their expressions in terms of q̂ and p̂, Eqs. (2.33a) and (2.33b),
which give

P̂U (t )|x, y〉 = eit{x}a |x, y〉, (2.34)

P̂V (t )|x, y〉 = eit{y}2π/a |x, y〉. (2.35)

Although we do not make use of it in this paper, a
useful representation of the modular and integer operators,
Eq. (2.33a) to (2.33d), in differential form is given by the
formal relations

〈u, v|û = u 〈u, v|, (2.36)

〈u, v|v̂ = v 〈u, v|, (2.37)

〈u, v|am̂ = i
∂

∂v
〈u, v|, (2.38)

〈u, v|2π

a
n̂ = −

(
i

∂

∂u
+ v

)
〈u, v|. (2.39)

B. The stretched Zak basis

In Sec. II A, we introduced and discussed the Zak trans-
form as a map from functions ψ on the real line to
quasiperiodic functions of two variables, Zψ . The Zak trans-
form Z is parametrized by a periodicity a, and the domain
of Zψ can be restricted to a patch of the real plane with
fundamental fixed area 2π [22,39,41], rather than the whole
plane itself, since Zψ is periodic.

In this section, we modify the definition of the Zak trans-
form Z to allow two independent periodicities, a and 2π/b,
thereby stretching the area of the fundamental Zak domain
to 2π (a/b). We collect several formulas of practical interest
that will be useful in Sec. IV A, when presenting a subsystem
decomposition of the CV Hilbert space into two subsystems.
One of the two subsystems will be two dimensional, while
the other one will be a Zak-like domain with nonstandard
periodicity. Finally, we discuss the physical implications of
a Zak domain with nonstandard periodicity and show how
the relationship between modular operators and quadrature
operators is different from the standard case.

We define a stretched Zak basis by introducing an addi-
tional periodicity parameter, b > 0, namely,

|u, v〉S =
√

b

2π

∑
m∈Z

eibmv|u + am〉q (2.40)

=
√

1

b
e−i b

a uv
∑
m∈Z

e−i 2π
a mu

∣∣∣∣v + 2π

bm

〉
p

, (2.41)

with subscript S indicating stretched-basis vectors. The
stretched Zak basis states are related to the standard Zak basis
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states, Eq. (2.2), as

|u, v〉S =
√

b

a

∣∣∣∣u,
b

a
v

〉
, (2.42)

similar in form to a squeezing transformation acting on the
second argument, which we discuss in more detail later.

The stretched Zak basis exhibits a modified quasiperiodic-
ity compared to Eq. (2.6). A shift in the first modular variable
u by the full period a gives an acquired phase that depends
on the second period b. Meanwhile, the periodicity in v is
identical to that of the standard Zak basis. Together,

|u + a, v〉S = e−ibv|u, v〉S, (2.43a)

|u, v + 2π/b〉S = |u, v〉S. (2.43b)

The stretched Zak domain PS is a rectangle with sides given
by the two periodicities a and 2π/b:

PS =
[
−1

4
a,

3

4
a

)
×

[
−π

b
,
π

b

)
, (2.44)

where the centering is chosen for later convenience. The
2π (a/b) area of the stretched Zak patch depends explicitly on
the periodicities, in contrast to standard Zak patch P , where
a = b.

We define the stretched Zak basis in analogy to the standard
one:

BS
Z = {|u, v〉S | u, v ∈ PS}. (2.45)

With simple changes of variables, it can be shown that the
basis states in BS

Z are δ normalized,

S〈u, v|u′, v′〉S = δ(a)(u − u′)δ(2π/b)(v − v′), (2.46)

and complete:
∫
PS

du dv |u, v〉S S〈u, v| =
∫
P

du dv |u, v〉 〈u, v| = Î.

(2.47)

The action of modular phase and translation operators in
the stretched picture is the same as in Eq. (2.21a) to (2.22b):

P̂U
S (t )|u, v〉S = eiut |u, v〉S, (2.48)

P̂V
S (t )|u, v〉S = eivt |u, v〉S, (2.49)

T̂ U
S (t )|u, v〉S = |u + t, v〉S, (2.50)

T̂ V
S (t )|u, v〉S = |u, v + t〉S, (2.51)

but the periodicity of the stretched translation operator is
different, namely,

T̂ U
S (a) = P̂V

S (−b), (2.52)

T̂ V
S (π/b) = ÎG, (2.53)

which can be seen by using Eqs. (2.43a) and (2.43b).

Just like the standard Zak basis, the stretched Zak basis
has a set of operators associated with modular and integer
quadratures. Stretched modular and integer positions are the
same as for the standard Zak basis, Eqs. (2.33a) and (2.33b):

ûS := {q̂}a/4
a , (2.54)

m̂S := 	q̂
a/4
a

a
. (2.55)

As hinted by Eq. (2.42), the other set of modular and integer
operators is associated with a squeezed momentum operator.
The squeezing operator is Ŝ(ζ ) := e

i
2 (ln ζ )(q̂ p̂+p̂q̂)/2, so that the

squeezed position and momentum operators are

q̂ζ := Ŝ†(ζ )q̂Ŝ(ζ ) = ζ q̂, (2.56)

p̂ζ := Ŝ†(ζ ) p̂Ŝ(ζ ) = ζ−1 p̂. (2.57)

The stretched modular and integer operators are those arising
from momentum squeezed by ζ = b/a:

v̂S := { p̂b/a}π/b
2π/b, (2.58)

n̂S := 	p̂b/a
π/b
2π/b

2π/b
. (2.59)

The above expressions for ûS and v̂S along with Eq. (2.42)
give the expected eigenvalue equations:

ûS|u, v〉S = u|u, v〉S, (2.60)

v̂S|u, v〉S = v|u, v〉S. (2.61)

The relationship between Aharonov’s modular momentum
v̂—defined as a fractional part with respect to 2π/a—and the
stretched modular momentum v̂S is given by

v̂S = { p̂b/a}π/b
2π/b = a

b
{ p̂}π/a

2π/a = a

b
v̂. (2.62)

This relation is the counterpart to the states in Eq. (2.42). Once
the modular-position period a is chosen, v̂S has two equivalent
interpretations: (1) v̂S is modular momentum rescaled with
respect to 2π/a, or (2) v̂S is modular squeezed momentum
with respect to 2π/b. In the first case, the rescaling factor is
a/b, while in the second case, this same quantity is interpreted
as a squeezing factor. We learn that, should we want to work
with stretched modular variables, we may always relate them
to Aharonov’s with a squeezing operation.

That the operators ûS and v̂S commute is not apparent since
we have changed the modularity in the latter operator (it is no
longer 2π/a). In fact, the vanishing commutator of û and v̂

defined with fixed modularities (a in one quadrature and 2π
a in

the other) extends to arbitrary modularities when the quadra-
tures are squeezed appropriately. To find a general expression,
we multiply the commutator in Eq. (2.30) by two positive real
numbers c1 and c2 and make use of the modular-arithmetic
expression c{x}μT = {cx}cμ

cT to obtain vanishing commutation
relations in terms of two modular squeezed quadratures:

c1c2[û, v̂] =
[
{q̂c1}c1a/4

c1a ,
{

p̂c−1
2

}c2π/a

c22π/a

]
= 0. (2.63)

This expression identifies a family of commuting operators
within a bosonic mode and means that pairs of modular
squeezed quadratures can be measured with no backaction

062611-6



ZAK TRANSFORM AS A FRAMEWORK FOR QUANTUM … PHYSICAL REVIEW A 107, 062611 (2023)

between them. The stretched Zak basis defined in Eq. (2.40)
is composed of the joint eigenstates for c1 = 1 and c2 = a/b.
The commutator expression above provides a foundation for
more general Zak bases, although we do not pursue them here.

III. THE GKP CODE

A. Zak description of the GKP code

The GKP code embeds a qubit into a rotor or a bosonic
mode [7], although more exotic Hilbert spaces can support it
after appropriate generalization [33]. (It is worth noting that
the procedure involves a generalization of the Zak transform).
The code is constructed by considering a pair of momentum
and position shift operators2 for some real values a and b such
that

Ẑ (a)X̂ (b) = X̂ (b)Ẑ (a). (3.1)

The parameter choice ab = 2πK encodes a logical subspace
of dimension K . We work with qubits, choosing a = 2α and
b = 2π/α. The GKP codespace is defined by the stabilizer
group S = 〈X̂ (2α), Ẑ (2π/α)〉. One can then use the expo-
nentiated canonical commutation relations to verify that odd
powers of X̂ (α) and Ẑ (π/α) give pairs of anticommuting
operators that commute with S (i.e., they are logical). Even
powers are in S instead. GKP states in the Hilbert space of the
rotor or a bosonic mode are obtained by electing that the stabi-
lizer generators are a pair of phase translation and momentum
kicks. We get the GKP code in a bosonic mode when the pair
of operators is interpreted as position and momentum shifts in
a bosonic mode.

A stabilizer measurement for the GKP code is a simultane-
ous measurement of modular variables. This can be phrased
nicely in the Zak framework using modular operators with
natural periodicity 2α [set a = 2α in (2.24) to (2.27)]. Using
Eq. (2.23) and the periodicity relation T̂U (2α) = P̂V (−2α),
the stabilizer group is expressed in terms of modular operators

S = 〈P̂V (−2α), P̂U (2π/α)〉 = 〈e−2iαv̂, ei 2π
α

û〉, (3.2)

which commute because û and v̂ do. Expressing S this way
makes it apparent that codespace will be spanned by simulta-
neous û and v̂ eigenstates, or, in other words, by Zak vectors
|u, v〉 with period 2α. We can find the computational basis by
looking for +1 eigenvalues of the stabilizer group:

P̂V (−2α)|u, v〉 = e−2iαv|u, v〉 = |u, v〉, (3.3)

P̂U (2π/α)|u, v〉 = e
2π iu

α |u, v〉 = |u, v〉. (3.4)

There are two solutions: the GKP codewords

|	GKP〉 = |α	, 0〉, 	 ∈ {0, 1}. (3.5)

The logical Paulis are a pure phase and a pure translation in
modular position, respectively,

ẐL = P̂U

(
π

α

)
, (3.6)

X̂L = T̂ U (α), (3.7)

2One could consider more constructions by promoting X̂ (a) and
Ẑ (b) to a pair of displacement operators instead [42].

as well as their odd powers. In terms of position eigenstates,
the GKP codewords are

|	GKP〉 =
∞∑

n=−∞
|(2n + 	)α〉q for 	 ∈ {0, 1}. (3.8)

In position space, the real number α sets the spacing of the
grid where GKP states have support. For the square-lattice
GKP code α = √

π ; here, we leave it arbitrary.
We can apply the same reasoning to the more general

choice of the stabilizer group for an asymmetric GKP code
of dimension K , 〈Ẑ (a), X̂ (2πK/a)〉. It suffices to pick a set
of modular operators with period a, so that we can use
Ẑ (a) = P̂V (−a). To find the codespace, we start by looking
for |ū, v̄〉 such that P̂V (−a)|ū, v̄〉 = |ū, v̄〉, i.e., eigenstates of
v̂ with value v̄ = 2πn/a, for n ∈ Z. But the periodicity of the
Zak basis in the second modular variable, |ū, 2π/a〉 = |ū, 0〉,
ensures that the codewords are of the form |ū, 0〉. Thus, it is
always possible to pick a Zak basis (the one with period a)
such that the codewords will be zero-eigenstates of modular
momentum. One can use the other eigenvalue equation and the
quasiperiodicity in the first modular variable to show that the
codespace is spanned by |	̄〉 = | a

K 	, 0〉, for 	 ∈ 0, . . . , K − 1.
We have encoded a qudit of dimension K by introducing K
bins in modular position with width a/K . We set K = 2 from
now on.

B. GKP error correction in the Zak picture

GKPEC projects a CV state into the GKP code subspace
spanned by the GKP computational basis codewords. Error
correction is not the only useful application of the error
correction gadget: When the input state is known, we may
also use GKPEC as an outcome-dependent projection into
the codespace, so that we can postselect a state that is close
enough to a target logical state such as a magic state [9]. In
this section, we explore GKPEC and its connection to the Zak
transform.

Let us consider the circuit for GKP syndrome
extraction [7]:

(3.9)

The circuit is read right to left,3 and we represent a measure-
ment in the position basis by sticking bras directly into the
circuit’s wires (e.g., q〈s| is a position-quadrature measurement
with outcome s). The boxed F and F † are the Fourier trans-
form and its adjoint, respectively (note that F̂ |x〉q = |x〉p). We
refer to the operator represented by this circuit as 
̂(s, t ),
where s and t are the outcomes of the two homodyne measure-
ments. Although the syndromes can take on any real number,
the circuit is only sensitive to shifts in modular position and

3We find this notation more convenient than the conventional left
to right because it preserves ordering when translating circuits into
sequences of operators.
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modular momentum due to the periodicity in the GKP ancilla.
This is by design, since measuring the integer parts would
reveal logical information about the state.

The syndrome-extraction circuit can be rewritten in
terms of a projector into GKP codespace, 
̂GKP =∑

	 |α	, 0〉〈α	, 0|, that has been shifted according to the
syndromes [9]


̂(s, t ) = X̂ (ũ)Ẑ (ṽ)
̂GKPẐ†(ṽ)X̂ †(ũ), (3.10)

where

ũ := {s}α and ṽ := {t}π/α. (3.11)

As anticipated, the shifted projector 
̂(s, t ) depends only on
the fractional parts of the syndromes, which are confined to a
patch PG that defines the set of correctable shifts on an ideal
GKP state:

PG = [−α/2, α/2) × [−π/2α, π/2α). (3.12)

This patch, with area π , is only half the size of the funda-
mental Zak domain P , Eq. (2.9). In the Zak picture, the GKP
syndrome-measurement operator can be written in terms of
modular phases and translations. Using Eq. (2.23), it is


̂(ũ, ṽ) = T̂ U (ũ)T̂ V (ṽ)
̂GKPT̂ V (−ṽ)T̂ U (−ũ) (3.13)

=
∑
	=0,1

|ũ + α	, ṽ〉〈ũ + α	, ṽ|, (3.14)

where 	 labels the GKP logical state as in Eq. (3.8), and the
modular phases have canceled.

After syndrome extraction, GKP error correction returns
the conditional state to the codespace using an outcome-
dependent recovery operation composed of displacements in
position and momentum by −ũ and −ṽ:

R̂(ũ, ṽ) := Ẑ (−ṽ)X̂ (−ũ) (3.15)

= P̂U (−ṽ)T̂ V (−ṽ)T̂ U (−ũ). (3.16)

Composing syndrome extraction and recovery gives the Kraus
operator for GKP error correction, presented here in Zak form:

K̂EC(ũ, ṽ) = R̂(ũ, ṽ)
̂(ũ, ṽ) (3.17)

= P̂U (−ṽ)
̂GKPT̂ V (−ṽ)T̂ U (−ũ). (3.18)

The modular phase operator P̂U (−ṽ) generates a logical rota-
tion around the Z axis when acting on a GKP state:

P̂U (−ṽ)|	GKP〉 = e−iα	ṽ|	GKP〉
= eiφR̂L(2ṽα)|	GKP〉, (3.19)

where R̂L(θ ) := ei θ
2 σ̂z is a qubit rotation operator on the GKP

subspace, and φ is a trivial phase.
Performing GKP error correction on an arbitrary, pure CV

state |ψ〉 gives a conditional state in the GKP codespace,

K̂EC(ũ, ṽ)|ψ〉 = c̄0|0GKP〉 + c̄1|1GKP〉, (3.20)

with un-normalized complex amplitudes given by wave func-
tions in the Zak representation:

c̄	 = e−iα	ṽψ (ũ + α	, ṽ). (3.21)

Each amplitude is a Zak transform of the position-shifted ini-
tial state, ψ (ũ + α	, ṽ) = 〈ũ + α	, ṽ|ψ〉 = 〈ũ, ṽ|X̂ †(α	)|ψ〉,

with an additional phasing in c̄1 due to the final logical rota-
tion, Eq. (3.19).

C. Mapping a CV state to a qubit state

A qubit state ρ̂ = ∑
	,	′ ρ		′ |	〉〈	′| is encoded into a CV

state in the GKP code:

ρ̂GKP =
∑
	,	′

ρ		′ |	GKP〉〈	′
GKP|. (3.22)

The inverse question of how to construct a map from any CV
state into the Bloch sphere in a way that is compatible with
the GKP code is much subtler, because the map above is not
uniquely invertible, and we have yet to define the notion of
compatibility with the GKP code. We construct this inverse
map by averaging over states that are assumed to well approx-
imate GKP codewords over the set of all correctable errors.
The average will decrease the dimensionality of the state, and
at the same time, approximate GKP states will be associated
to qubit states that have good overlap with the intended qubit
state with matrix elements ρ		′ .

Consider a CV state ρ̂, assumed to approximate ρ̂GKP

well. An ideal GKP state is error correctable whenever it
undergoes a combination of small quadrature displacements
X̂ (ũ)Ẑ (ṽ) with ũ and ṽ confined to the patch PG, Eq. (3.12).
We expect the same to hold, approximately, for ρ̂. Thus, the
states ρ̂ and ρ̂(ũ, ṽ) = Ẑ†(ṽ)X̂ †(ũ)ρ̂X̂ (ũ)Ẑ (ṽ) are logically
equivalent, up to how well ρ̂ approximates ρ̂GKP. We integrate
the small shifts away and note that, for reasonably good ap-
proximate GKP states, we can define qubit matrix elements as
if Eq. (3.22) were to hold and expect them to be reasonably
close to the target matrix elements ρ		′ . Specifically,

ρ̃		′ :=
∫
PG

dũ d ṽ 〈	GKP|Ẑ†(ṽ)X̂ †(ũ)ρ̂X̂ (ũ)Ẑ (ṽ)|	′
GKP〉.

(3.23)

The emergence of this half domain is the fundamental reason
why, later on, we will find it convenient to use a stretched
Zak basis with area π . Using |	GKP〉 = |α	, 0〉 and acting with
translation operators on the Zak kets, we can also express
Eq. (3.23) as

ρ̃		′ =
∫
PG

dũ d ṽ 〈ũ + α	, ṽ|ρ̂|ũ + α	′, ṽ〉 (3.24)

=
∑

n

Prn

∫
PG

dũ d ṽ ψn(ũ + α	, ṽ)∗ψn(ũ + α	′, ṽ),

(3.25)

which we have cast in terms of Zak transforms in the second
line by expressing ρ̂ in diagonal form, ρ̂ = ∑

n Prn|ψn〉〈ψn|,
where Prn is the mixture probability of state |ψn〉.

Although designed for approximate GKP states, the above
procedure can be used to find a “logical” GKP state associated
to any CV state:

ρ̂L[ρ̂] :=
∑
	,	′

ρ̃		′ |	〉 〈	′|, (3.26)

with qubit matrix elements given by Eq. (3.23). When ρ̂

is an approximate GKP state, the fidelity between ρ̂L and
the intended qubit state increases monotonically (i.e., ρ̃		′
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approaches ρ		′) with the quality of the approximation, and
so does the purity. In fact, in this picture, most approximate
GKP states encode mixed qubits. Interestingly, the qubit state
defined by Eq. (3.23) coincides with that obtained by a partial
trace over the gauge subsystem in the “partitioned-position”
(PP) subsystem decomposition [38,43]—as we will show in
Sec. IV A. A thorough investigation of PP subsystem qubits
encoded by approximate GKP states and other common re-
source states in continuous-variable quantum computing can
be found in Ref. [44].

IV. MODULAR VARIABLE SUBSYSTEM
DECOMPOSITION

In Sec. III C, we have given procedures to associate to any
CV state a qubit state whose matrix elements involve partial
integrals of the state’s Zak transform over the π -area patch
PG in Eq. (3.12). In this section, we revisit this idea from the
perspective of a bosonic SSD, introduced in Ref. [38]. This
procedure, which is not uniquely defined, decomposes the
infinite-dimensional Hilbert space of the CV mode into that of
a virtual qubit and another full CV mode, HCV

∼= C2 ⊗ HCV,
by means of a change of basis. With this decomposition,
the qubit subsystem carries the logical information, and the
CV subsystem, referred to as the gauge mode, carries no
logical information. Below, we construct a modular variable
subsystem decomposition in the form (qubit) ⊗ (mode) using
the Zak-transform tools introduced above. Ultimately, we find
that the tensor-product structure of this SSD is the same as
that for the partitioned-position SSD [38,44], except that the
gauge mode is expressed in the stretched Zak basis. However,
the MV SSD is specifically suited to describe GKP error
correction, because the GKP error recovery procedure extracts
syndrome information by measuring modular position and
momentum.

A. Construction

The Zak basis is well suited for a subsystem-decomposed
description of periodic states. In analogy with the proce-
dure we followed when defining the partitioned-position SSD
[38], we construct the SSD by decomposing an operator
diagonal in a basis for HCV: the modular position opera-
tor in the Zak basis (as opposed to the position operator
in the position basis, which is the strategy we used for the
partitioned-position decomposition). Using Aharonov’s mod-
ular variables, Eq. (2.31), we have

q̂ = û + 2αm̂, (4.1)

p̂ = v̂ + π

α
n̂, (4.2)

where we choose a bin size of 2α.4 The domains of û =
{q̂}α/2

2α , v̂ = { p̂}π/2α

π/α , m̂ = 	q̂
α/2
2α , and n̂ = 	p̂
π/2α

π/α are chosen
such that the modular variables lie in a fundamental, 2π -area

4In the partitioned-position SSD [38,44] the bin size is α; thus the
operator û here is different from û there.

Zak patch:

P =
[
−α

2
,

3α

2

)
×

[
− π

2α
,

π

2α

)
. (4.3)

A useful choice is α = √
π , which makes the rectangle ex-

actly the union of two identical squares with sides
√

π—in
fact, the figures in this paper reflect this choice.

We define a set of logical and gauge operators as simple
functions of the modular operators, where the parameter α is
taken as the half period of the GKP codewords in Eq. (3.5)
(this is where the construction becomes compatible with the
GKP code):

ûG := {û}α, (4.4)

v̂G := v̂, (4.5)

	̂ := 	û
α

α
, (4.6)

omitting the centering, which is understood throughout the
rest of the paper as α/2 for the modular position truncation,
and π/2α for the modular momentum one. The which-patch
operator 	̂ indicates whether a modular position eigenstate in
the original patch P is closer to zero or to α.

The inverse relation

û = ûG + α	̂ (4.7)

reveals that modular position can be fully reconstructed from
	̂ and ûG. Thus, since the operators 	̂, ûG, and v̂G commute,
their eigenvalues label a basis for the CV mode, since the
eigenvalues of û and v̂ do. The change of basis induced by
the operator decomposition above is

|u, v〉 = |	u
α + {u}α, v〉 (4.8)

= |	u
α/α〉L ⊗ |{u}α, v〉G, (4.9)

where the second line introduces a tensor-product structure
between a virtual logical qubit and a virtual gauge subsystem.
This tensor-product structure defines a subsystem decompo-
sition. The eigenvalues of the gauge subsystem lie in the
Voronoi cell of the symplectically dual lattice as defined in
Gottesman et al. [7], which is exactly the π -area patch PG

defining the set of correctable shifts on an ideal GKP state,
Eq. (3.12).

A Zak-basis state in the left square of the full patch P
is associated with the state |0〉L of the logical subsystem
and a right square is associated with |1〉L, as illustrated in
Figs. 4 and 5. The gauge subsystem lies in a stretched Zak
space PG with area π , and is the Hilbert space of a (virtual)
bosonic mode. Thus, we refer to the gauge subsystem as a
gauge mode [38]. The periodicities of the gauge eigenstates
are given by setting a = α and b = 2α in Eq. (2.43):

|u + α, v〉G = e−i2αv|u, v〉G, (4.10)

|u, v + π/α〉G = |u, v〉G. (4.11)

We use the α quasiperiodicity above to give an alternate form
for the change of basis by plugging {u}α = u − 	u
α into
Eq. (4.8):

|u, v〉 = e2iv	u
α |	u
α/α〉L ⊗ |u, v〉G. (4.12)
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FIG. 4. Modular wave functions for GKP Pauli-Z eigenstates
|	GKP〉 are δ(u − α	, v). They are each represented as a single dot
in a fundamental Zak domain P with a = 2α [31]. Note that the dot
color is consistent with the convention in Fig. 1.

Because u ∈ [−α/2, 3α/2), the gauge Zak state above is not
centered, and the phase multiplying the state may or may not
cancel depending on which patch u lies in.

As far as the logical-qubit subsystem is concerned, since
	̂|	〉L = 	|	〉L, the operator 	̂ is the projector into |1〉L gener-
ating a logical Pauli-Z by exponentiation as ẐL = eiπ	̂.

The completeness relation of the full mode with respect
to the SSD gives the expressions for the gauge and logical
identities. We can write the completeness for the Zak basis as
a sum of integrals over the left and right patches,

ÎCV =
∑
	∈0,1

∫ α
2 +α	

− α
2 +α	

du
∫ π/2α

−π/2α

dv |u + α	, v〉〈u + α	, v|,

(4.13)
and use the change of basis in Eq. (4.8), as well as the fact that
{u}α = u holds in the integration domain. Thus,

ÎCV =
∑
	∈0,1

|	〉L L〈	| ⊗
∫
PG

du dv |u, v〉G G〈u, v| = ÎL ⊗ ÎG.

(4.14)

This identifies the completeness relations for the logical sub-
system and the gauge mode. Using Eq. (4.14), we can write

FIG. 5. Graphical depiction of the MV SSD. Top: A linear com-
bination of modular-shifted GKP states,

∑
i T̂ U (ũi )T̂ V (ṽi )|0GKP〉 =∑

i |ũi, ṽi〉, represented in the fundamental Zak patch P . Bottom:
After the change of basis into the MV SSD, the smaller gauge patch
PG no longer carries left or right information, which is instead trans-
ferred into the logical index spanning a basis for C2. The final state
is then decomposed as a linear combination of | j〉L ⊗ |{ũi}α/2

α , ṽi〉G.

any CV state in the Zak subsystem basis as

ρ̂ =
∑
	∈0,1

∑
	′∈0,1

∫
PG

du dv

∫
PG

du′ dv′

× ρ		′ (u, u′, v, v′)|	〉L L〈	′| ⊗ |u, v〉G G〈u′, v′| (4.15)

with matrix elements

ρ		′ (u, u′, v, v′) := (L〈	| ⊗ G〈u, v|)ρ̂(|	′〉L ⊗ |u′, v′〉G).

(4.16)

Since the SSD defines a complete basis over the full mode, it
can also be used to write other CV objects, such as operators
or channels, in the logical-gauge tensor-product basis. Once a
suitable method for extracting a logical-qubit state is defined,
such decompositions can be useful techniques for identifying
the logical action of such objects.

The tensor-product decomposition allows us to revisit the
question in Sec. III C: what is the logical qubit associated with
a CV state? A straightforward way to extract a logical-qubit
density matrix from a CV state ρ̂ is by taking a trace with
respect to the gauge subsystem:

ρ̂L[ρ̂] = TrGρ̂ =
∫
PG

du dv G〈u, v|ρ̂|u, v〉G. (4.17)

The gauge mode is defined over a patch PG, so taking this
subsystem trace is equivalent to the map in Eq. (3.23), and
the qubit state is identical to the one in Eq. (3.26), which
is why we use the same notation, ρ̂L[ρ̂]. This equivalence is
straightforward: Starting from Eq. (3.24) for the qubit matrix
elements,

ρ̃		′ =
∫
PG

du dv 〈u + α	, v|ρ̂|u + α	′, v〉 (4.18)

=
∫
PG

du dv (L〈	| ⊗ G〈u, v|)ρ̂(|	′〉L ⊗ |u, v〉G) (4.19)

=
∫
PG

du dv ρ		′ (u, u, v, v) (4.20)

= L〈	|(TrGρ̂ )|	′〉L = (TrGρ̂ )		′, (4.21)

as anticipated. The third form uses the matrix elements of ρ̂,
Eq. (4.16), showing that this partial trace can be interpreted as
integration of the “gauge diagonal” of these matrix elements
(i.e., u = u′, v = v′) over the gauge patch, for each of the four
choices of logical elements 	 and 	′.

Ideal GKP states are not the only states whose gauge
trace is a pure state: Any product state of the form ρ̂ =
|ψ〉L L〈ψ | ⊗ρ̂G encodes a pure logical state, even when ρ̂G

is mixed, allowing for mixed-state quantum computation
[45,46].

It should be noted that, while we usually interpret the gauge
mode as a subsystem containing redundant information, we
are not in the same situation that is set up for subsystem
codes. Overall, error-correctable shifts that we have referred
to as “gauge operators” must be detected via a syndrome
measurement and corrected. After all, the GKP code is a
subspace code, and remains as such, despite the fact that our
subsystem construction rephrases the code in terms of two
subsystems. The interpretation of subsystem codes in terms
of subsystems is not a new idea: In fact, it was introduced
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in Refs. [47,48]—see, specifically, Theorem 3.5 in the former
reference, where the “syndrome subsystem” plays the same
role as what we have called the “gauge subsystem.”

Connection to the partitioned-position SSD

We can draw an explicit connection (in fact, an equiva-
lence) between the MV SSD presented here, Eqs. (4.4)–(4.6),
and the partitioned-position SSD in Refs. [38,44]. We do
so by first comparing their logical operators. Consider the
partitioned-position logical operator, 	̂PP, defined as

	̂PP =
{	q̂
α

α

}
2

, (4.22)

where {n}2 gives the parity of the integer n. In terms of
Aharonov’s modular variables, Eq. (4.1), we have

	̂PP =
{	û + 2αm̂
α

α

}
2

=
{	û
α

α
+ 2m̂

}
2

= 	û
α

α
, (4.23)

which is exactly Eq. (4.6). Since 	̂PP and the 	̂ in Eq. (4.6) are
the same operator, they define the same logical-qubit subsys-
tem. As a result, the two SSDs are related by a change of basis
on the gauge modes. The change of basis is a Fourier series
of the partitioned-position gauge mode states (an inverse Zak
transform), |m, u〉G,PP:

|	〉L ⊗ |u, v〉G = |	〉L ⊗
√

α

π

∑
m∈Z

ei2αmv|m, u〉G,PP, (4.24)

where u ∈ [−α/2, α/2). The important feature to highlight is
that the tensor-product structure of the SSDs is the same.

The reader interested in the analysis of approximate re-
source states for protocols that rely on finite-energy GKP
states, as well as cluster states, can leverage this equivalence.
For example, the logical analyses in Refs. [43,44] use the
partitioned-positioned decomposition. In this picture, states
have the same logical subsystem of the modular-variable
decomposition presented here. Further, one can obtain the
gauge wave functions in the modular-variable decomposition
via a Zak transform of the gauge mode alone, as shown in
Eq. (4.24).

B. Phases and translations in the subsystem-decomposed picture

States and operators can be decomposed and interpreted in
the modular variable subsystem description. We focus on the
quadrature-shift operators X̂ (t ) and Ẑ (t ), since they form an
operator basis [49], meaning that their subsystem decomposi-
tions can be used to decompose unitaries and more general
quantum operations on the CV mode. Moreover, specific
shifts implement logical Paulis on GKP states, and small shifts
describe correctable errors.

The periodicities of the modular gauge phase and transla-
tion operators are read from Eq. (2.52), choosing a = α and
b = π/α:

T̂ U
G (α) = P̂V

G (−2α), (4.25)

T̂ V
G (π/α) = ÎG. (4.26)

The winding number of u translations differs by a factor of 2
with respect to the full-mode case Eq. (2.24).

It is sufficient to consider how modular-phase and modular-
translation operators in the original Zak patch P decompose
in the MV SSD, since we can use Eqs. (2.23b) and (2.23a)
to reconstruct the quadrature shift operators. The subsystem
decomposition leaves modular-momentum unchanged, so we
immediately find that P̂V (t ) = ÎL ⊗ P̂V

G (t ) and T̂ V (t ) = ÎL ⊗
T̂ V

G (t ). The phase operator associated to modular position
decomposes easily: P̂U (t ) = ei(α	̂+ûG )t = eiα	̂t ⊗ P̂U

G (t ), where
we used the decomposition of the modular position operator,
Eq. (4.7), and P̂U

G (t ) = eiûGt . We find the decomposition of
momentum shift operator Ẑ (t ), from Eq. (2.18),

Ẑ (t ) = eiα	̂t ⊗ T̂ V
G (t )P̂U

G (t ), (4.27)

a tensor-product operator across the logical and gauge subsys-
tems.

The MV SSD of T̂ U (t ) is more complicated. We first split
the translation into an integer and a fractional component,
T̂ U (t ) = T̂ U (	t
α )T̂ U ({t}α ). The first term (on the left) is a
logical bit flip depending on the bin parity of the t parameter:

T̂ U (	t
α ) = X̂
	t
α

α

L ⊗ ÎG. The second term can be evaluated in
the Zak basis using Eq. (4.12). We obtain

T̂ U ({t}α )|α	 + u, v〉

= X̂
	u+{t}α 
α

α

L T̂ U
G ({t}α )eiv̂G	{t}α+ûG
α |	〉L ⊗ |u, v〉G. (4.28)

Using the fact that the decomposed basis is complete, adding

the remaining logical operation X̂
	t
α

α

L , and recalling that
X̂ (t ) = T̂ U (t ), the position-shift operator decomposes as

X̂ (t ) = X̂
	t
α

α

L X̂
	ûG+{t}α 
α

α

L T̂ U
G ({t}α )eiv̂G	{t}α+ûG
α . (4.29)

This is not a tensor-product operator. The factor
T̂ U

G ({t}α )eiv̂G	{t}α+ûG
α acts only on the gauge mode, phasing
and shifting it in a nontrivial way. However, there is a

logical-gauge entangling factor, X̂
	ûG+{t}α 
α

α

L , also discussed in
Ref. [44], whose purpose is to account for the logical bit
flip that occurs when the value of {t}α is sufficiently large to
translate a gauge modular position eigenstate outside of the
half patch, i.e., when α/2 � {t}α + u < 3α/2.

Quadrature-shifted GKP states, Ẑ (ũ)X̂ (ṽ)|	GKP〉, can be
evaluated in their decomposed form with the expressions we
derived in this section. They simplify greatly due to the fact
that the GKP state is a zero-eigenstate of both ûG and v̂G. In
addition, when the displacements are small we have

X̂ (ũ)Ẑ (ṽ)|	〉L ⊗ |0, 0〉G = eiα	̂⊗v̂G |	〉L ⊗ |ũ, ṽ〉G, ũ, ṽ ∈ PG.

(4.30)

Small position shifts do not disturb logical information, while
a momentum shift by ṽ induces a logical rotation around
the Z axis of the Bloch sphere, eiαṽ	̂. On the other hand,
a well-known property of the GKP code is full protection
against small shifts. Thus, we expect the GKP error correction
gadget to apply a logical rotation in the opposite direction, so
as to cancel this unwanted logical distortion. This is indeed
the case, as we will see in the next section.
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C. GKP error correction in the subsystem-decomposed picture

The MV SSD is a change of basis in the Hilbert space of
a bosonic mode that is compatible with the GKP code in the
sense that ideal states are separable:

|ψGKP〉 = |ψ〉L ⊗ |0, 0〉G. (4.31)

The gauge-mode state is |0, 0〉G = ∑
m |αm + u〉q =

|+GKP〉G. GKP states play a special role in this decomposition,
by design, but we still have not fully discussed how their
resilience with respect to small shifts fits into our paradigm.
This discussion is the aim of this section.

Equation (4.30) shows that a small position shift X̂ (t ),
t ∈ [−α/2, α/2), acts as an identity on the logical subsystem
while inducing a small shift on the gauge mode. Thus, pro-
tection against a small position shift is well described in the
decomposed basis: a random small shift induces no logical
errors and manifests itself as syndrome information encoded
by the gauge mode.

On the other hand, Eq. (4.30) also shows that momentum
shifts, Ẑ (t ), rotate the qubit subsystem around the z axis of
the Bloch sphere by an angle αt/2, regardless of the mag-
nitude t of the shift. At first glance, this is a discrepancy
with the error model of the GKP code, as one would expect
small momentum shifts to act as logical identities just like for
position shifts. From an error correction perspective, they are
correctable in the same sense that small position shifts are.
Because of this asymmetry in how small shifts are described
in the SSD, we conclude that simply inspecting the logical
subsystem may not be the most accurate figure of merit for
the logical content of a codeword with respect to the GKP
code.

This additional logical operation under Ẑ (t ), however, is
merely a logical artifact due to the choice of the decomposed
basis. To remedy this, we propose modifying the expression
for the gauge trace so that it will give a logical qubit that
agrees with the procedure for GKP error correction and re-
covery, as discussed next.

First, note that since |	GKP〉 = |	〉L ⊗ |0, 0〉G, the projector
into the GKP codespace decomposes into a tensor product
operator 
̂GKP = ∑

	 |α	, 0〉〈α	, 0| = IL ⊗ |0, 0〉G G〈0, 0|.
Given two measurement outcomes associated to the error
correction procedure, s and t , we write ũ = {s}α and
ṽ = {t}π/α and decompose GKPEC [Eq. (3.17)] as

K̂EC(ũ, ṽ) = (IL ⊗ |0, 0〉G G〈0, 0|)Ẑ†(ṽ)X̂ †(ũ) (4.32)

= e−iα	̂⊗v̂G |0, 0〉GG〈ũ, ṽ|. (4.33)

In the MV SSD, GKPEC consists of a gauge-mode mea-
surement, followed by a projection of the gauge subsystem
into |0, 0〉G—the gauge state of a perfectly encoded GKP
qubit—followed by an entangling operation. The entangling
operation e−iα	̂⊗v̂G is a counter-rotation that undoes the logical
artifact appearing in small-shifted GKP states, in accordance
with the fact that small shifts are correctable and bear no
consequences on the logical information of a GKP state after
error correction.

Performing GKP error correction on pure CV state |ψ〉
gives a conditional tensor-product state:

K̂EC(ũ, ṽ)|ψ〉 = (
c̄0|0〉L + c̄1|1〉L

) ⊗ |0, 0〉G, (4.34)

which is an ideal GKP state according to Eq. (4.31). By
expressing the state |ψ〉 in the Zak basis with expansion
coefficients ψ	(u, v), the complex amplitudes above can be
written as c̄	 = e−iα	ṽψ	(ũ, ṽ), which is an alternate form for
those in Eq. (3.21).

More generally, we can construct the full GKP error cor-
rection channel from the Kraus operators K̂EC(ũ, ṽ):

EEC :=
∫
PG

dũ d ṽ K̂EC(ũ, ṽ) � K̂†
EC(ũ, ṽ) (4.35)

=
∫
PG

dũ d ṽ (e−iα	̂ṽ ⊗ |0, 0〉GG〈ũ, ṽ|)

� (eiα	̂ṽ ⊗ |ũ, ṽ〉GG〈0, 0| (4.36)

=
∫
PG

dũ d ṽ (IL ⊗ |0, 0〉GG〈ũ, ṽ|)e−iα	̂⊗v̂G

� eiα	̂⊗v̂G (IL ⊗ |ũ, ṽ〉GG〈0, 0|) (4.37)

= (IL ⊗ |0, 0〉G)TrG(e−iα	̂⊗v̂G � eiα	̂⊗v̂G )

× (IL ⊗ G〈0, 0|) (4.38)

= TrG(e−iα	̂⊗v̂G � eiα	̂⊗v̂G ) ⊗ |0, 0〉GG〈0, 0|, (4.39)

where in the third line, we used the fact that ṽ|ũ, ṽ〉 = v̂G|ũ, ṽ〉
to promote the logical rotation to a logical-gauge controlled
unitary; in the fourth line, we used TrG = ∫

PG
dũ d ṽ G〈ũ, ṽ| �

|ũ, ṽ〉G; and in the final line, we noted that TrG is a purely
logical operator, so it commutes with the gauge pieces.

All told, the GKP error-correction channel EEC first applies
a logical-gauge entangling operation e−iα	̂⊗v̂G and then takes
the usual (MV SSD) gauge trace, Eq. (4.17), resulting in the
logical state

ρ̂L,EC[ρ̂] := TrG(e−iα	̂⊗v̂G ρ̂eiα	̂⊗v̂G ) (4.40)

as the logical qubit state, with the gauge mode always left in
|0, 0〉G G〈0, 0|. Thus,

EEC(ρ̂) = ρ̂L,EC[ρ̂] ⊗ |0, 0〉GG〈0, 0|. (4.41)

This channel is equivalent to performing error correction and
averaging the resulting state over the possible syndrome out-
comes.

An ordinary partial trace, such as TrG, preceded by an
entangling operation can be interpreted as a new partial trace
with respect to a different tensor-product decomposition [50].
Thus, we may define

TrGEC
:= TrG ◦ (e−iα	̂⊗v̂G � eiα	̂⊗v̂G ) (4.42)

as an inequivalent error-correction-based partial trace of a CV
mode resulting in a different type of logical qubit, namely,
ρ̂L,EC[ρ̂] = TrGEC (ρ̂), as distinct from ρ̂L[ρ̂] = TrG(ρ̂ ). Re-
cent work [51] explores a tensor-product decomposition
of a CV mode into a logical and gauge mode directly
based on GKP error correction, and it remains an interest-
ing open question to connect the present discussion to that
framework.
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V. SUMMARY AND OUTLOOK

We reviewed the Zak transform formalism in the context
of continuous-variable quantum mechanics. We focused pri-
marily on issues related to periodicity and quasiperiodicity
of modular wave functions and Zak basis states that lie in
a fundamental domain of area 2π . By modifying the Zak
transform to include additional periodicity, we introduced a
stretched Zak basis spanned by basis kets that lie in a trans-
formed domain whose area is not 2π . Two consequences
are that stretched-Zak kets obey different quasiperiodicity
relations, and the stretched modular variables are no longer
the same operators as Aharonov’s, but squeezed versions
thereof.

Modular wave functions are useful for working with the
GKP code. One practical appeal is the compactness of the
domain where they are defined. Ideal GKP states are rep-
resented in a simple form as “two dots in the Zak patch”
(two-dimensional Dirac delta distributions) whose amplitudes
and phases specify the state. Good approximations to a GKP
states have Zak transforms that are mainly distributed around
these points—the narrower the distribution, the better the ap-
proximation. For these states, |ψ (u, v)|2 can be interpreted as
the probability distribution that an ideal GKP state has been
displaced in position and momentum by u and v, respectively
[18].

Moreover, the Zak domain provides a pathway to more
generally interpret the logical-qubit content of a CV state.
By dividing the fundamental rectangular domain P down
the middle into two “squares,” we associate the left square
with state |0〉 and the right square with state |1〉.5 We for-
malized this concept with a subsystem decomposition [38]
that decomposes the Zak basis into a tensor-product basis
for a qubit and a gauge mode in the stretched Zak basis,
L2(P ) ∼= C2 ⊗ L2(PG).

Decomposing quadrature displacements in the modular
variable subsystem decomposition revealed that position
shifts can introduce discrete, periodic logical operations,
whereas momentum shifts generate continuous rotations of
the logical-qubit subsystem. (Both of the displacements are
accompanied by gauge-mode transformations.) This logical
rotation may seem incompatible with GKP error correction
because the latter can perfectly correct small shifts in either
quadrature without introducing logical byproducts. This fea-
ture is indeed revealed in the SSD of GKP error correction,
which includes a logical counter-rotation that undoes the rota-
tion introduced by a momentum-shift error.

5The patches are only square when α = √
π , but it is convenient to

always consider this parameter choice when representing the domain
pictorially, as we have done in all figures.

Finally, we embedded this corrective rotation in a new logi-
cal qubit—defined with respect to GKP error correction—that
differs from the one found by taking the trace over the gauge-
mode subsystem of the MV SSD. Recently, it was shown that
it is possible to define a different subsystem decomposition
also based on modular variables wherein small, correctable
shifts in both position and momentum act purely as gauge-
subsystem operations [51]. In that case, GKP error correction
acts exclusively as a measurement of the gauge mode (i.e.,
with no logical-correction component).

Of course, regardless of the SSD, the fundamental quantum
operation is fixed—GKP error correction—so the resulting
state obtained from it is the same. Since all SSDs provide
complete bases, albeit with generally different tensor-product
decompositions [50], any of them can be used to represent a
CV quantum operation.

The main difference arises in the representation of the
information before GKP error correction occurs. The logi-
cal subsystem before GKP error correction in the case of
Ref. [51], and also when using TrGEC as defined in this paper,
but not when using TrG alone, is the same as the GKP-encoded
logical state after error correction. Whether this fact has prac-
tical utility remains to be seen, but it is appealing in its direct
encoding of the post-error-correction logical information into
one of the two subsystems.

Looking forward, one might explore how the SSD in
Ref. [51] relates in detail to the one induced by TrGEC . It
may be the case that the associated SSD bases differ at the
gauge-mode level even though the logical states in both are
equivalent (and based on GKP error correction). Finally, we
note that possible extensions to this paper may include de-
veloping SSDs based on generalizations of the Zak transform
to different Hilbert spaces corresponding to generalizations
of GKP states to different quantum systems, such as those
discussed in Ref. [33].
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