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We propose methods for the exact synthesis of single-qubit unitaries with high success probability and gate
fidelity, considering both time-bin and frequency-bin encodings. The proposed schemes are experimentally im-
plementable with a spectral linear-optical quantum computation (S-LOQC) platform, composed of electro-optic
phase modulators and phase-only programmable filters (pulse shapers). We assess the performances in terms
of fidelity and probability of the two simplest three-component configurations for arbitrary gate generation in
both encodings and give an exact analytical solution for the synthesis of an arbitrary single-qubit unitary in
the time-bin encoding, using a single-tone rf driving of the electro-optic modulators. We further investigate the
parallelization of arbitrary single-qubit gates over multiple qubits with a compact experimental setup, both for
spectral and temporal encodings. We systematically evaluate and discuss the impact of the rf bandwidth, which
conditions the number of tones driving the modulators, and of the choice of encoding for different targeted
gates. We moreover quantify the number of high-fidelity Hadamard gates that can be synthesized in parallel,
with minimal and increasing resources in terms of driving rf tones in a realistic system. Our analysis positions
spectral S-LOQC as a promising platform to conduct massively parallel single-qubit operations, with potential
applications to quantum metrology and quantum tomography.
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I. INTRODUCTION

Quantum information processing with light is a promising
direction for near-term quantum computing. Quantum pho-
tonics systems are currently placed at the forefront of the
technological race to engineer well-controlled optical quan-
tum states in a Hilbert space of very high dimensionality, with
a record value of 1043 [1]. Another key advantage of quantum
photonics hardware is scalability based on photonic integra-
tion, now enabling compact photonic circuits approaching
1,000 components for millimeter-scale footprints [2].

A drawback of using light, however, is that photons do
not interact with one another, which means that conditional
operations need to be mediated by matter via some nonlinear
process [3]. Even though nonlinear processes can theoretically
implement the desired operations, this can lead in practice to
very inefficient schemes, i.e., with very low probability of suc-
cess. Linear optics quantum computation (LOQC), introduced
in the pioneering work of Knill et al. in 2001 [4], performs
universal quantum computing with light, using only linear
optics and postselection. A different scheme, spectral linear-
optical quantum computation (S-LOQC), was proposed [5] as
a highly promising approach for scalable quantum informa-
tion processing. S-LOQC harnesses photonic qubits encoded
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over spectral modes (dual-rail frequency encoding) and gate
transformations implemented with off-the-shelf telecom com-
ponents: electro-optics modulators (EOM) and. phase-only
programmable filters (PS). S-LOQC notably leverages the
spectral degrees of freedom that can allow to reach high di-
mensionality much more easily than spatial and polarization
degrees of freedom. It can be used as a quantum frequency
processor [6], to build high-dimensional quantum gates, with
applications such as quantum process tomography or quantum
networking at telecom wavelength.

The question of unitary gate synthesis in S-LOQC has
already been studied in a series of work over the past few
years. In the seminal paper [5], a setup comprising two PS
[P] and two EOM [P] in the sequence [PEPE] was first
considered. Using numerical optimization techniques, a de-
terministic Hadamard gate for spectral dual-rail encoding was
theoretically designed with a unity fidelity and success. The
question of parallelization was also studied, however it was
found that a minimum of six modes separating two qubits was
needed to ensure a success probability >90%. The number
of components, ancilla bits, and guard bands required were
found to be higher for the synthesis of the controlled-Z (CZ)
gate.

In Ref. [7], the authors adapted their scheme from Ref. [5]
to experimentally implement high-fidelity frequency beam
splitters and tritters with classical light. Two important mod-
ifications from their previous proposal involved reducing the
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number of components from four to three (in an [EPE] se-
quence) and the use of phase-shifted sine waves as the EOM
rf driving, as opposed to arbitrary waveforms, which place
greater demands on bandwidth. Using this [EPE] single-tone
scheme, a beam splitter was experimentally realized with a
fidelity of ∼0.99998 and success probability ∼97.39% at
1545.04 nm. The scheme was also shown to be well suited for
parallelization, where the separation between adjacent beam
splitters was found to be a minimum of four spectral modes,
allowing for 33 beam splitters to be implemented in parallel
under the constraints of the experiment. Furthermore, with the
addition of an extra tone to the EOM rf driving, a frequency
tritter with fidelity ∼0.9989 and success probability ∼97.30%
was synthesized.

The same [EPE] scheme was then used to implement
distinct quantum gates (Hadamard and identity) in par-
allel, in frequency-bin encoding [8]. The corresponding
programmable unitary was moreover used to tune the overlap
between adjacent spectral bins, which allowed to observe
spectral Hong-Ou-Mandel interference with a visibility of
97%. More generally, it was shown that individual single-
qubit gate operations can be applied in parallel to each of an
ensemble of copropagating qubits, where each operation can
be smoothly tuned between the identity and Hadamard gates.

More recently, arbitrary control of spectral qubits was re-
ported in Ref. [9] with the same set of components [EPE],
(i) experimentally with a single-tone sine wave modulation,
and (ii) numerically for dual-tone modulation. The two-qubit
controlled-NOT (CNOT) gate with the same setup ([EPE]
and BFC source) [10] was also reported. Gate reconstruc-
tion was performed from measurements in the two-photon
computational basis alone, and a fidelity F ≈ 0.91 was
inferred.

In our work we explore S-LOQC further, with a focus on
single-qubit unitary gate synthesis, first for a single qubit,
and then for many qubits in parallel. S-LOQC is indeed natu-
rally adapted for parallelization, allowing, without substantial
change in the implementation, to apply the same unitary gate
to many qubits in parallel. While being used in several quan-
tum information protocols [11,12] time-bin encoding has not
been as much explored as frequency encoding in the context
of the spectral LOQC platform. It has, however, been proved
to be efficient for several tasks in quantum information pro-
cessing [13–16]. Similarly to frequency encoding, it offers the
advantages of a high-dimensional accessible Hilbert space,
and we show here that time encoding allows for more ex-
pressive gate synthesis possibilities than frequency encoding
while using the same number of phase modulators and pulse-
shaper components.

We investigate both [EPE] and [PEP] configurations of
components, and show that both configurations can be used
to efficiently perform any unitary transformation, with unity
fidelity and success probability. In particular, we exhibit an
analytical solution for the synthesis of an arbitrary single-
qubit unitary using minimal resources, i.e., a single-tone rf
driving for the EOM. Moreover, we also show that those trans-
formations can be applied in parallel with time encoding to a
larger number of qubits than what is possible with frequency
encoding. We study, for several gates, the trade-off between
the quality (fidelity, success probability) of the synthesis, the

parallelization that can be achieved, and the resources needed,
in particular in terms of rf bandwidth.

The article is organized as follows: we introduce in Sec. II
the formalism for encoding both in time or frequency basis
and for the corresponding Hilbert spaces, and the description
of the components in both bases. Section III defines the gen-
eral problem of qubit unitary gate synthesis that we tackle
in this article and explains the rationale of our approach. We
notably detail the two-scattering model for the pulse shaper in
the time basis, that will be instrumental for the results reported
in Sec. IV. We finally detail how the performance parameters
for gate synthesis, namely, fidelity and success probability,
are defined. The next two sections report our results, which
consist in a systematic and wide exploration of the different
options, in terms of encoding bases, gates, and configurations
(either [EPE] or [PEP]). Section IV presents our results related
to the synthesis unitary gates, for a single qubit. Remarkably,
we exhibit, in the time basis, an exact solution allowing the
synthesis of an arbitrary single-qubit unitary with single-tone
rf driving of the EOM, in both [EPE] and [PEP] configura-
tions. These results are put in perspective with single-qubit
unitary gate synthesis in the frequency basis, whose fidelity
and success probability depend on the type of gate that is
targeted. Section V then presents our results related to the
parallel synthesis of the same qubit gate over many different
qubits. Here again, we compare the two encodings, as well as
the two considered configurations, and discuss the interplay
between the performance of the synthesis and the number of
rf tones.

II. TIME AND FREQUENCY FORMALISM FOR S-LOQC

In this section we define the photonic states that we will
employ and the theoretical description of the pulse shaper (PS)
and the EOM. The descriptions of the devices must take into
account the EOM and PS physical characteristics, as these
characteristics set a limit on the total number of available
modes for quantum manipulation.

A. Optical modes and quantum states

The system that we consider is composed of M optical
modes identified either by a frequency bin of width δω, cen-
tered on ω j , or by a time bin of width δt , centered on tk .
Frequency modes |ω j〉 are linear combinations of time-bin
modes |tk〉. These two sets of basis vectors are connected by a
discrete Fourier transform

|tk〉 ≈ 1√
M

M−1∑
j=0

exp

(
i
2π

M
jk

)
|ω j〉, (1)

|ω j〉 ≈ 1√
M

M−1∑
k=0

exp

(
−i

2π

M
jk

)
|tk〉. (2)

The interchange between the frequency and time bases
is exact only in the continuous case, when M → ∞ and
δω, δt → 0.

To operate on single qubits, we divide our Hilbert space
of dimension M into M/2 independent subspaces accord-
ing to a choice of qubit encoding either in the frequency
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(a) (b)

FIG. 1. Action of (a) the electro-optic phase modulator and
(b) the pulse shaper in the frequency basis.

domain Hω
j using two contiguous frequency bins or in the

time domain Ht
k using modes separated by M/2 time bins,

with j, k ∈ [0, M/2 − 1].

Hω
j = {|ω2 j〉, |ω2 j+1〉}, ω2 j+1 − ω2 j = δω, (3)

Ht
k = {|tk〉, |tk+M/2〉}, tk+M/2 − tk = M

2
δt, (4)

Such a qubit encoding choice is made to take into account
the technical limitations of the devices. In the present case,
the fact that the EOM couples mainly neighboring frequency
modes justifies the choice of adjacent modes to encode
frequency-bin qubits. Conversely, the fact that the PS couples
time modes that are M/2 time bins apart (cf. Appendix B)
justifies the choice of encoding used for the time-bin qubits.

As the considered Hilbert spaces are orthogonal, we can
write the sum of the subspaces as

H =
⊕

j

Hω
j =

⊕
k

Ht
k . (5)

We now introduce the devices that we are using for photonic
qubit processing.

B. Pulse shaper

The PS can shift the phase of frequency modes concur-
rently and independently. It is therefore characterized by a set
of M angles {ϕ j} (one angle per mode) that can be chosen
freely, without constraints. In general, the PS acts as the tensor
product of distinct phase shifts operators, one per frequency
mode, and its operator ÛPS can be written

ÛPS =
M−1⊗
j=0

exp(iϕ j N̂ω j ), (6)

where N̂ω j is the number operator of the ω j frequency mode:
N̂ω j = ∑

n n|nω j 〉〈nω j |. However, in the restricted case of a
single photon, we can thus treat the PS as a diagonal matrix P
in the frequency basis. Its action on the one-photon subspace
is described in Fig. 1(b).

P|ω j〉 = eiϕ j |ω j〉. (7)

In order to describe the action of the PS in the time basis
(see Fig. 2), we use the Fourier transform P̃ = FPF †, where
the matrix F and the detailed calculations are given in Ap-
pendix A, and we obtain

P̃|tk〉 = 1

M

M−1∑
k′=0

M−1∑
j=0

exp

(
i
2π

M
(k′ − k) j + ϕ j

)
|tk′ 〉. (8)

(a)

(b)

FIG. 2. Action of the (a) pulse shaper and (b) electro-optic phase
modulator in the time basis.

The PS is therefore a scatterer in the time basis, coupling a
single time mode to all the other modes. The number of modes
over which a single mode can be scattered will be an important
optimization parameter, as shown in Sec. III C 1.

C. EOM

The EOM is a device that is complementary to the PS as it
performs phase shifts of individual modes in the time domain,
and therefore its operator can be expressed as

ÛEOM =
M−1⊗
k=0

exp(iφkN̂tk ), (9)

where N̂tk is the number operator of the tk time-bin mode:
N̂tk = ∑

n n|ntk 〉〈ntk |. Within our restriction to the one-photon
subspace, we can write the action of the EOM over time
modes |tk〉 as a diagonal matrix E in the {|tk〉} basis as

E |tk〉 = eiφk |tk〉. (10)

Contrary to the PS case, the set of angles {φk} for the EOM
cannot be chosen freely. It is determined by the rf driving.
For instance, in the case of a monochromatic (or single-tone)
rf driving, the phase φk applied to the optical wave can be
written as a sinusoidal function of time with frequency �

φk = μ sin(�tk + θ ) + φc, (11)

with μ = π Vm
Vπ

the modulation index proportional to the modu-
lation amplitude Vm and Vπ the half-wave voltage of the EOM,
θ ∈ [0, π ] a constant angle, and φc ∈ [0, π ] a constant phase
shift applied to all time bins. In practice, μ is limited by the
power of the rf source that drives the EOM (typically μ is
of order 1), and by the EOM characteristics. The maximum
frequency � is determined by the frequency response of the
EOM.

We can describe the action of the EOM in the frequency
basis [17,18] (see Fig. 1) through the Fourier transform Ẽ =
FEF † and check that the EOM creates left- and right-side
bands (spaced by �) with amplitude decreasing according to
Bessel functions. If the mode spacing δω is set equal to the rf
driving single-tone �, we have

Ẽ |ω j〉 = eiφc

k=�μ�+1∑
k=−�μ�−1

(eiθ )kJk (μ)|ω j+k〉. (12)
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The sum can be extended to ±∞ as the additional terms
are weighed by vanishing Bessel functions [19].

The EOM is therefore a scatterer in the frequency basis.

D. Orders of magnitude

The PS and the EOM act on conjugate variables (frequency
and time), which are related by a Fourier transform, which
results in relationships between bandwidths and resolutions.
We denominate 	ω and δω, respectively, as the total fre-
quency bandwidth that the PS can operate on and its frequency
resolution. On the other hand, if the EOM is driven at a rf �,
it can generate sidebands at intervals �. This naturally defines
a number Mω = 	ω/� frequency modes as long as δω � �,
so that the PS can distinguish and address them individually.
It is important to match the number of frequency modes and
time modes to make sure that the two devices are acting on
two conjugate bases of the same Hilbert space.

In the time domain, the resolution δt will be limited by
the characteristic times of the detectors. The period of the
rf driving the EOM is T = 2π/�, which in principle defines
Mt = T/δt = 	ω/� = Mω time modes.

A realistic PS (Finisar WaveShaper 4000A) has a total
bandwidth 	ω = 5.36 THz, and the rf voltage signal that
drives the EOM can be set to be a sine wave with a frequency
in the order of 10 GHz (which is close to the frequency reso-
lution of the PS). From these figures we derived a number of
time and frequency modes M = T/δt = 	ω/δω ≈ 536, and
in our calculations, we chose M = 27 = 128 modes.

III. PROBLEM DEFINITION: QUBIT GATE SYNTHESIS
WITH EOM AND PS

A. Objective

Our aim is to synthesize single-qubit quantum gates using
some combination of the components described in the pre-
vious section, namely, PS and EOM. A single-qubit gate is
by definition a unitary transformation over a two-dimensional
Hilbert space, and is hence represented by a 2 × 2 uni-
tary matrix, whereas the components can be described by
unitaries (P, P̃, E , and Ẽ ) that can operate over a much larger,
M -dimensional Hilbert space. Describing how to perform
single-qubit gate synthesis in this context therefore requires
specifying several types of information:

(1) The configuration, i.e., how many components are
combined into the unitary. After justifying that the minimum
number of components is three, we focus in this article on two
main configurations, [EPE] and [PEP].

(2) The values of the different components free parame-
ters, (phases of the form ϕ0, . . . , ϕM−1 for the pulse shaper,
and parameters μ, θ, φc for an electro-optic modulator driven
with a single frequency modulation at �).

(3) The choice of encoding, i.e., a choice of two orthonor-
mal M-dimensional vectors, {|e1〉, |e2〉}, that constitute the
encoding basis and are identified with the logical qubit basis
{|0L〉, |1L〉}.

As explained in the previous section, we will use both fre-
quency basis {|ωi〉, |ω j〉} and time basis {|ti〉, |t j〉} as defined
in Eqs. (3) and (4).

B. Performance metrics

For a given configuration (e.g., combination of PS and
EOM), we can define a global operator V̂ (
) and the
corresponding M × M unitary matrix V (
), product of
n PS and n′ EOM, depending on many parameters that
we will globally denote as 
 ≡ (ϕ1,0, . . . , ϕn,M−1, μ1,0, θ1,0,

φc1,0 . . . μn′,M−1, θn′,M−1, φcn′,M−1).
The choice of the encoding {|e1〉, |e2〉} ↔ {|0L〉, |1L〉} then

directly induces a reduced 2 × 2 matrix W (
) defined as

W (
) =
(

〈0L|V̂ (
)|0L〉 〈0L|V̂ (
)|1L〉
〈1L|V̂ (
)|0L〉 〈1L|V̂ (
)|1L〉

)
. (13)

If T represents the (ideal) target qubit unitary that one
wants to synthesize, then the performance of the synthesis can
be quantified by comparing this resultant 2 × 2 matrix W (φ)
to the target (ideal) gate T . The performance of the synthesis
can be essentially captured by two parameters:

(1) The success probability P , which measures the sta-
bility of the two-dimensional subspace {|e1〉, |e2〉}, under the
unitary V (φ),

P (W, T ) = Tr(W †W )

Tr(T †T )
; (14)

(2) The fidelity F , which measures the accuracy of the
synthesis of the target single-qubit gate (in other words, it
measures how close we are to the gate we intended to syn-
thesize in the first place),

F (W, T ) = Tr(W †T )Tr(T †W )

Tr(W †W )Tr(T †T )
. (15)

C. Arbitrary unitary synthesis for a single qubit

We will identify configurations of components, and en-
coding methods for which it is possible to synthesize any
single-qubit unitary, by varying the free parameters of 
, and
this with fidelity and success probability greater than some
given threshold values, which we denote Fth and Pth. This
objective is captured in the following definition:

For a given encoding {|e1〉, |e2〉} ↔ {|0L〉, |1L〉}, a con-
figuration V̂ (
) can perform arbitrary single-qubit unitary
synthesis with precision Fth, Pth if ∀U ∈ SU (2), ∃ 
 such
that P (W (
),U ) � Pth and F (W (
),U ) � Fth.

An arbitrary unitary matrix can be described with four
parameters,

M(a, b, c, d ) = eia

(
cos

(
c
2

)
e−i( b

2 + d
2 ) − sin

(
c
2

)
e−i( b

2 − d
2 )

sin
(

c
2

)
ei( b

2 − d
2 ) cos

(
c
2

)
ei( b

2 + d
2 )

)
,

(16)

where a, b, c, d ∈ R. Note that if an arbitrary single-qubit
unitary synthesis is achieved with F = 1 and P = 1 with a
given configuration and some encoding, then any other basis
choice within the subspace {|e1〉, |e2〉} will lead to an arbitrary
single-qubit synthesis as the change of encoding is a unitary
operation. On the other hand, if a configuration cannot achieve
arbitrary synthesis, then the ability to synthesize one given
target gate U will vary with the basis choice.
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1. Subspace stability and choice of encoding

We aim in general at the highest possible F and P for every
gate synthesis. The requirement on the success probability P
can be used as a guideline for the choice of the encoding
basis we consider. A necessary condition to achieve a high
success probability is to pick an encoding subspace that is
(approximately) stable under the action of V̂ (φ). From the pre-
vious considerations on the pulse shaper and the electro-optic
phase modulator, we get a first intuition on the difficulties of
obtaining some transformations, according to the considered
encoding: some require energy exchange between the two
basis states, as, for instance, the X or Y Pauli transformations,
whereas some only require phase changes, such as the Z
Pauli transformation. A very important example is that of the
Hadamard transformation that achieves the balanced splitting
of the energy between the two modes corresponding to the
basis states. It is therefore important to choose the component
combination and encoding in order to be able to control both
phase changes and energy exchanges between the two modes
of the computational basis. In any component combination,
we need either a dephasing element, a scatterer, or a certain
combination of these two elements. The stability condition
will be satisfied if the combination of components and the
encoding allow the scattered energy to remain in the subspace
defining the qubit. Let us now consider the consequence of
this requirement, for our two families of encoding.

(a) Frequency encoding. In the frequency basis, all vec-
tors are stable under the action of the pulse shaper but the
EOM acts as a scatterer. The number of modes where the
energy is scattered from one given initial mode depends on
the modulation index. As mentioned, because the EOM cou-
ples frequency modes locally [see Eq. (12) and Fig. 1], the
computational basis is formed of adjacent modes of the form
{|ωi〉, |ωi + 1〉} when studying synthesis in the frequency en-
coding as in Ref. [5].

(b) Time encoding. In the time basis, all vectors are stable
under the action of the EOM but the PS acts as a scatterer. The
large number of independent parameters available for the PS
allows a variety of scattering possibilities.

Proposition 1. PS parameters can be chosen to satisfy the
two-scattering assumption

∀k ∈ [0, M/2 − 1], P̃|tk〉 = α|tk〉 + β|tk+M/2〉,
where α and β are complex numbers, linked by the unitar-
ity condition |α|2 + |β|2 = 1. This ensures the stability of
our time qubit subspace in all transformations including PS
and EOM when using the basis choice {|0L〉 = |tk〉, |1L〉 =
|tk+M/2〉}.

In Appendix B we calculate the PS parameters that allow to
satisfy the two-scattering assumption and we derive the matrix
elements of the PS both in the frequency basis and in the time
basis

P|ω j〉 = [
α + βe−i2πm j

M
]|ω j〉. (17)

We obtain

∀k ∈
�

0,
M

2
− 1

�
, P̃|tk〉 = α|tk〉 + β|tk+M/2〉

∀k ∈
�

M

2
− 1, M − 1

�
, P̃|tk〉 = β|tk〉 + α|tk−M/2〉. (18)

The matrix in the time basis is therefore

P̃ = eiγ

( |α|I M
2

±i|β|I M
2

±i|β|I M
2

|α|I M
2

)
, (19)

where I M
2

stands for an identity matrix of dimension M/2
and γ is a global phase induced by the pulse shaper. When
using the basis choice {|0L〉 = |tk〉, |1L〉 = |tk+M/2〉}, the 2 × 2
matrix of the PS can be mapped to the matrix of a ro-
tation of angle θPS about the x axis in the Bloch sphere,
with

eiγ |α| = cos
θPS

2
;

eiγ |β| = sin
θPS

2
. (20)

It can also be mapped to the matrix of an arbitrary
beam splitter with reflexion and transmission coefficients r
and t ,

|α| = |r|
|β| = |t |. (21)

In the same way, the matrix of the EOM in the time basis
can be written

E = eiφc

(
diag{eφk }0�k� M

2 −1 0
0 diag{e−φk }0�k� M

2 −1

)
.

(22)

With the chosen encoding, the 2 × 2 matrix of the EOM can
be identified to the matrix of a rotation of angle θEOM about
the z axis in the Bloch sphere, with

iφc + φk = −iθEOM/2

iφc − φk = iθEOM/2. (23)

2. Minimum number of components

Using the analogy with rotations and the fact that an arbi-
trary unitary transformation requires the composition of three
rotations about two orthogonal axes of the Bloch sphere [20],
we derive that a minimum number of three components will
be required to synthesize an arbitrary unitary transformation,
using pulse shapers and electro-optic phase modulators. Since
two EOM or two PS in serial are equivalent to one, the se-
quences with minimum resource to investigate are [EPE] and
[PEP]. We investigate the case of the single qubit for both
frequency and time bases encoding.

IV. RESULTS FOR SINGLE-QUBIT GATE SYNTHESIS

A. Frequency encoding

Within each frequency subspace, we define the logical
basis as

|0L〉 j = |ω j〉 |1L〉 j = |ω j+1〉. (24)

1. [EPE] configuration

This configuration has been thoroughly investigated [5,7–
10] and the theoretical results about one-qubit gates synthesis

062610-5



ANTOINE HENRY et al. PHYSICAL REVIEW A 107, 062610 (2023)

are summarized in Table I. Experimental implementation of
Hadamard have been reported in Ref. [7], the control-NOT
gate in Ref. [10], and more recently arbitrary transformations
of a single qubit in Ref. [9]. The limitation on success prob-
ability arises from the difficulty to control the scattering of
energy in many modes by the EOM. This is also the rea-
son why guard bands must be used to avoid crosstalk when
working with qubits in parallel in the frequency domain: the

coupling to adjacent modes cannot be perfectly controlled,
even with ideal lossless devices.

2. [PEP] configuration

In order to assess this configuration, the first step is to write
the generic element of the corresponding synthesized matrix,
using two diagonal matrices P1 and P2 for the PS and Eq. (12)
for the EOM matrix Ẽ in the frequency basis

∀ k, k′ ∈ [0, M − 1], (P2ẼP1)k′k = ei(ϕ1,k+ϕ2,k′ +φc )
k=k′+�μ�+1∑
k=k′−�μ�−1

(eiθ )k′−kJk (μ). (25)

For qubit j, ∀ j ∈ [0, M/2 − 1] encoded over modes |ω j〉 and |ω j+1〉, the matrix of the synthesized unitary is given by

Wj = eiφc

(
J0(μ)ei(ϕ1,2 j+ϕ2,2 j ) e−iθ J1(μ)ei(ϕ1,2 j+1+ϕ2,2 j )

−eiθ J1(μ)ei(ϕ1,2 j+ϕ2,2 j+1 ) J0(μ)ei(ϕ1,2 j+1+ϕ2,2 j+1 )

)
, (26)

where ϕn,m is the phase applied by PSn to mode m.
Let M(a, b, c, d ) be the matrix of an arbitrary unitary as given in Eq. (16). One can achieve an exact synthesis of U over

qubit j if parameters ϕ match the following set of conditions:

{
J0(μ) = cos (c/2)

J1(μ) = sin (c/2)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ϕ1,2 j = −d−θ+π+s j

2 mod π

ϕ2,2 j = − b+d
2 + ϕ1,2 j mod π

ϕ1,2 j+1 = s j − ϕ1,2 j mod π

ϕ2,2 j+1 = −s j + (
b−d

2 + ϕ1,2 j
)

mod π.

(27)

If the parameters of the pulse shapers satisfy the second
set of equations, then fidelity and success probability do not
depend on the qubit number j and are given by

P = J0(μ)2 + J1(μ)2, (28)

F =
[
J0(μ) cos

(
c
2

)+ J1(μ) sin
(

c
2

)]2
J0(μ)2 + J1(μ)2 . (29)

TABLE I. Comparison of the success probabilities of single-
qubit arbitrary unitary synthesis with [EPE] and [PEP] configurations
for single-tone driving at � of the EOM and for two encodings, with
unit fidelities. The bold part corresponds to results reported in this
work.

Arbitrary unitary synthesis for a single qubit

Subsequently, we get the following results on the best achiev-
able performances of the [PEP] configuration, indicating that
unit success probability and unit fidelity can only be obtained
for phase gates.

P = 1 ⇔ μ = 0

F = 1 ⇔ J0(μ) sin

(
c

2

)
= J1(μ) cos

(
c

2

)
(30)

P = F = 1 ⇔ μ = c = 0.

Figure 3 summarizes the performance of gate synthesis for
this configuration. Varying μ allows to cover all unitaries.
The dephasing applied to each frequency mode by the pulse
shapers are chosen such that F = 1 is achievable for all gates
but with a decreasing success probability P . The bit flip gate

Bit flip:

0.1 0.2 0.30.0

Phase gate:
1.0

0.0
0.1 0.2 0.30.0

Hadamard:

0.1 0.2 0.30.0

FIG. 3. Success probability P (black line) and fidelity F (blue
line) for phase, Hadamard, and X (bit flip) gates in the [PEP] config-
uration for frequency-bin qubits as functions of the modulation index
of E, μ. Varying μ covers all angles θ of the Bloch sphere following
Eq. (26). The performance of the gate does not depend on the rotation
around the z axis.

062610-6



PARALLELIZABLE SYNTHESIS OF ARBITRARY … PHYSICAL REVIEW A 107, 062610 (2023)

X appears, for this configuration, as the worst case in terms
of gate synthesis objective: it is the gate for which the success
probability, conditioned on unit fidelity, is the lowest.

We can see some intrinsic limitation of the frequency en-
coding, when using the [PEP] configuration, due to the loss
of energy in the side bands induced by the EOM. The gates
requiring no coupling or energy exchange between the two
modes of the qubit (phase gates) exhibit unity success proba-
bility, as all the energy remains in the computational modes.
For the other gates, however, the more coupling we need, the
greater the index of modulation, and the more energy gets lost
in the adjacent modes, leading to a lower success probability.
In summary, the success probability in this case is lower than
in the previous configuration, especially for the X gate: with
only one EOM, the energy scattered in adjacent modes cannot
be coupled back to the qubit subspace.

A heuristic justification that multiple tones do not bring
improvement in the parallel synthesis of single qubit gates,
in the PEP configuration, and for frequency encoding, lies in
the fact that more tones will lead to more scattering out of
the computational space, and hence a decrease of the success
probability of the gate.

This [PEP] configuration has been used with spectral
encoding implementing Hadamard gates for quantum state to-
mography and probabilistic Hong-Ou-Mandel [21–25]. [PEP]
configuration has not been explored up to now for arbitrary
gate synthesis. We can note that the dephasing action of a
pulse shaper acting on two frequency modes could also be
obtained by adjusting a linearly dispersive optical delay, and

hence emulate [PEP] by [E + delay lines]. On the other hand,
the use of pulse shapers is necessary to handle many frequency
qubits in parallel.

B. Time encoding

In this basis, the matrices of the two components are

P̃ = eiγ

(
|α|I ±i|β|I

±i|β|I |α|I

)
;

E = eiφc

(
diag{eφk }0�k� M

2 −1 0

0 diag{e−φk }0�k� M
2 −1

)
. (31)

The qubit is encoded over two time modes separated by M/2
modes

|0L〉k = |tk〉 |1L〉k = |tk+M/2〉. (32)

1. [EPE] configuration

Proposition 2. One can achieve exact synthesis of any sin-
gle qubit arbitrary unitary U with a single-frequency rf driving
with the [EPE] configuration.

Proof. Let α, β, and γ be the parameters of the pulse
shaper in the time basis, μi, θi the parameters of the EOMi (i ∈
{1, 2}), and M(a, b, c, d ) the matrix of an arbitrary unitary
U . We consider qubit k ∈ [0, M/2 − 1] encoded on modes |tk〉
and |tk+M/2〉. The matrix of the three-component configuration
is

V = E2P̃E1 = ei(φc,1+φc,2+γ )

(
|α|diag{ei(φ1,k+φ2,k )} ±i|β|diag{ei(−φ1,k+φ2,k )}

±i|β|diag{ei(φ1,k−φ2,k )} |α|diag{e−i(φ1,k+φ2,k )}

)
, (33)

which yields the matrix of the synthesized unitary for the qubit encoded over modes |tk〉 and |tk+M/2〉,

∀k ∈ [0, M/2 − 1], Wk = ei(φc,1+φc,2+γ )

(
|α|ei(φ1,k+φ2,k ) ±i|β|ei(−φ1,k+φ2,k )

±i|β|ei(φ1,k−φ2,k ) |α|e−i(φ1,k+φ2,k )

)
. (34)

Identification with M(a, b, c, d ) yields the following set of conditions for qubit k:

{
|α| = cos (c/2)

|β| = sin (c/2)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ1,k + φ2,k = −b−d
2 mod 2π

−φ1,k + φ2,k + π/2 = −b+d
2 + π mod 2π

φ1,k − φ2,k + π/2 = b−d
2 mod 2π

−φ1,k − φ2,k = b+d
2 mod 2π,

(35)

which finally gives

|α| = cos (c/2); |β| = sin (c/2)

φ1,k = −d

2
− π/4 mod π

φ2,k = −b

2
+ π/4 mod π. (36)

As we consider a sinusoidal rf driving, the dephasing ap-
plied by the EOM to each temporal mode |tk〉 is φk =
μ sin ( 2kπ

M + θ ), (∀k ∈ �0, M/2 − 1�), which gives

|α| = cos (c/2); |β| = sin (c/2); with c ∈ [0, π ]

φ1,k = μ1 sin

(
2kπ

M
+ θ1

)
= −d

2
− π

4
mod π

φ2,k = μ2 sin

(
2kπ

M
+ θ2

)
= −b

2
+ π

4
mod π. (37)
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The condition is satisfied with the following parameters:

μ1 =
−d
2 − π

4

sin
(

2kπ
M + θ1

) ; μ2 =
−b
2 + π

4

sin
(

2kπ
M + θ2

)
θ1, θ2 �= −2kπ

M
. (38)

�
This possibility of synthesizing an arbitrary unitary for a

single qubit with unit success probability and fidelity is a
noticeable advantage of the time encoding as compared to the
frequency encoding for which only phase gates can exhibit
such performance.

2. [PEP] configuration

Proposition 3. One can achieve an exact synthesis of an
arbitrary unitary U over qubit k with a single-frequency rf
driving with the [PEP] configuration.

Proof. Based on the two-scattering property demonstrated
in Sec. III C 1, we can see the PS acts as a beam splitter
in the time basis. The following EOM can then introduce
an arbitrary phase shift between the two modes of the qubit
subspace, while the final PS of this configuration acts as a
second arbitrary beam splitter, completing a Mach-Zehnder
interferometric device. Such Mach-Zehnder has been shown
to achieve arbitrary unitary qubit synthesis [26]. �

3. Trivial gates

It is noticeable that some gates do not require the three-
component configuration. For instance, in the time basis,
phase gates only require one EOM and no PS. X gates that
do not even require any EOM can be trivially obtained in
both [EPE] and [PEP] configurations. They correspond to the
parameters b = −d = π

2 and the performances do not depend
on the qubit number k, which means that they will also be
trivially parallelized to all qubits. The whole family of bit flip
gates requires only one PS and one EOM.

V. PARALLELIZATION OF QUBIT GATE SYNTHESIS

In this section, taking advantage of the possibility to ad-
dress and manipulate a large number of modes with the same
components E and P, we tackle the question of gate synthe-
sis parallelization. More precisely, we explore the ability to
parallelize the synthesis of an arbitrary single-qubit unitary,
so that the same unitary can be applied to multiple qubits
in parallel. We will moreover study the trade-offs between
performance and the number of qubits on which the synthesis
can be performed in parallel, both for frequency and time
encodings and for the two three-component configurations,
i.e., [EPE] and [PEP].

A. Frequency encoding

In the frequency basis, a qubit is encoded over two adjacent
modes. Because the EOM inevitably scatters energy in the
adjacent modes, using all the available frequency modes to
encode quantum information would generate crosstalk prob-
lems. Considering a gate implemented with a single photon
and considering its computational space and a mode outside

FIG. 4. Simulation of scattering probability for one photon in-
jected in mode 0 and an X gate implemented on frequency modes
0 and 1. The parameters for the flip gate are given in Fig. 3. The
computational space is indicated by the thick dark line. Starting with
one photon in mode 0, the probability of finding one photon in the
original mode 0 after the X gate is 3.99 × 10−9, while the probability
to have to have one photon in mode 1 is 27%. The red line indicates
the threshold of 10−3 that is reached beyond six guard modes.

this space, we define crosstalk between the computational
space and this outside mode as the probability of finding
the photon in this outside mode after implementing the gate.
We can compute such crosstalk for the [PEP] configuration
synthesizing the X gate, as a function of the number of modes
between the computational basis and the outside mode. We
can see from Fig. 4 that for a guard band of six modes (or
more) the crosstalk is lower than 10−3. For the synthesis in
the [PEP] configuration, which had not been investigated up to
now, we also compute the minimum mode spacing for which
crosstalk is less than 10−3 between two subsequent gates. We
moreover chose to target the synthesis of the least favorable
gate, namely, the bit flip gate. Implementing the bit flip gate
indeed requires a complete energy transfer between the two
modes of the qubit, and hence a large modulation index. We
obtained a minimum mode spacing of six frequency modes,
similar to the [EPE] configuration to reach F � 0.99 We note
that a similar number of guard band modes has been found
necessary to implement two Hadamard gates with a fidelity
� 0.99, in the [EPE] configuration in Ref. [5].

For a computational space composed of 128 frequency
modes, which we consider for this analysis, a maximum
number of 128

8 = 16 qubit gates can thus be implemented in
parallel for both [EPE] and [PEP] configurations with high
performance (high fidelity and success probability).

B. Time encoding

In Sec. IV B, we showed that we were able to find the set-
tings of the three components to synthesize with unit fidelity
and success probability an arbitrary quantum gate for a single
qubit encoded over two modes. The next step is to use all 128
time modes to parallelize those transformations to a maximum
number of qubits, the optimal number being M/2 = 64 qubits.
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1. Multitone rf driving of the EOM

Proposition 4. One can achieve an exact synthesis of an arbitrary unitary transformation U over all qubits with the [EPE]
configuration with a square rf driving of the EOM.

Proof. The parameters have to satisfy the following set of conditions:

{|α| = cos (c/2)
|β| = sin (c/2) ∀k ∈ �0, M/2 − 1�,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ1,k = −d

2
− π/4 mod π

φ2,k = −b

2
+ π/4 mod π

φ1,k+M/2 = −φ1,k mod π

φ2,k+M/2 = −φ2,k mod π,

(39)

which implies that the phases of the EOM are independent of
time on the whole interval [0, T

2 ] = [0, π
�

]: The driving signal
of the EOM must then be of the form

x(t ) = μ

n=∞∑
n=0

1

2n + 1
sin [(2n + 1)(�t + θ )], (40)

with μ = 1 and 0 < θ < 2π/M. �
Although an infinite-sum square function allows arbitrary

synthesis over all qubits, the practical implementation of such
a signal is limited by the pass band of the EOM and we
consider therefore more realistic cases:

(1) The ideal square function can be truncated at order N ,

x(t ) = μ

N∑
n=0

1

2n + 1
sin [(2n + 1)(�t + θ )]. (41)

(2) The truncated function can be optimized by using dif-
ferent modulation index μ and modulation phase θ for each
frequency component,

x(t ) =
N∑

n=0

μn

2n + 1
sin [(2n + 1)(�t + θn)]. (42)

(3) The rf driving can be limited to a single frequency or
very few frequency components, as will be considered in the
next sections.

For our numerical optimizations of the parallelization of
gate synthesis, we use the fidelity and success probability
acceptance thresholds

Fth = 0.99, Pth = 0.9999. (43)

Figure 5 shows the number of parallel Hadamard gates above
the fidelity threshold as a function of the number of frequency
tones in the rf driving signal of the EOM for both [EPE]
and [PEP] configurations. Considering 64 time-bin qubits,
parallel synthesis of 28 almost ideal Hadamard gates can be
performed, in the single-tone regime. We mean by this that
the parallel synthesis of Hadamard gates can be performed
with >99% fidelity and >0.9999 success probability, for up
to 28 pairs of time modes. This parallelization can be brought
to 47 qubits with two tones, and 53 qubits with three tones.
This positions spectral LOQC as a possible platform to con-
duct quantum metrology experiments where a large number
of quantum modes must be manipulated to achieve better
precision.

In the following sections, we derive the number of parallel
transformations above a given performance threshold for the
Hadamard and phase gates with a single-tone rf driving of the
EOM.

2. Single-tone rf driving of the EOM

Phase gates. The matrix of phase gates is of the form

M =
(

1 0
0 e−iν

)
. (44)

From the expression of the Wk matrix corresponding to the
[EPE] (red) and [PEP] (blue) configuration [see Eq. (34)], we
derive a set of conditions on the component parameters for the
parallelization, first for the [EPE] configuration

|α| = 1; |β| = 0

∀k ∈ [0, M/2 − 1] φ1,k + φ2,k = ν

2
mod 2π

∀k ∈ [0, M/2 − 1] φ1,k+M/2 + φ2,k+M/2 = −ν

2
mod 2π

φc1 + φc2 + γ = −ν

2
mod 2π. (45)

As φi,k+M/2 = −φi,k , we need only write

|α| = 1; |β| = 0

∀k ∈ [0, M/2 − 1] φk,1 + φk,2 = μ1 sin

(
2kπ

M
+ θ1

)
+ μ2 sin

(
2kπ

M
+ θ2

)
= ν

2
mod 2π

φc1 + φc2 + γ = −ν

2
mod 2π. (46)
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The two modulators act as one. It is then sufficient to consider only one modulator. We can write the previous set of equations as

|α| = 1; |β| = 0

∀k ∈ [0, M/2 − 1] φk = μ sin

(
2kπ

M
+ θ

)
= ν

2
mod 2π

φc + γ = −ν

2
mod 2π. (47)

In the same way, conditions can be found on the component parameters for the [PEP] configuration,

|α1| = |α2| = 1; |β1| = |β2| = 0

∀k ∈ [0, M/2 − 1] φk = μ sin

(
2kπ

M
+ θ

)
= ν

2
mod 2π

φc + γ1 + γ2 = −ν

2
mod 2π. (48)

or

|α1| = |α2| = 0; |β1| = |β2| = 1

∀k ∈ [0, M/2 − 1] φk = μ sin

(
2kπ

M
+ θ

)
= −ν

2
mod 2π

φc + γ1 + γ2 = −ν

2
mod 2π. (49)

These three sets of equations lead to the same synthesized
matrix and therefore to the same formula for the fidelity. The
fidelity of each qubit k undergoing a phase change φk can be
computed with the parameters for phase gates using Eq. (15)
as

∀k ∈ [0, M/2 − 1] Fk = cos2
(
φk − ν

2

)
. (50)

Each qubit will not realize the gate with the same fidelity,
as this fidelity depends on the value of the phase at each time
k. We now compute the maximum number of qubits realizing
the transformation with a fidelity better than a threshold Fth.

FIG. 5. Parallel Hadamard gate synthesis in time encoding
framework: number of qubits above fidelity threshold Fth = 0.99 as
a function of the number of frequency components of the rf driving
of the EOM, for the Hadamard transformation in [EPE] (light blue)
and [PEP] (dark blue) configurations with exact (dotted line) and op-
timized (full line) truncation of a square rf driving. For time domain
manipulation, the qubit space is stable, with a success probability of
100%, hence always above threshold.

For each qubit k,

Fk � Fth ⇒ cos2
(
φk − ν

2

)
� Fth. (51)

Solving this equation and replacing φk by its expression,
we find

ν

2
− arccos(

√
Fth) � μ sin

(
2πk

M
+ θ

)

� ν

2
+ arccos(

√
Fth). (52)

The maximum value that the sine can take is bounded by
the upper bound. We thus set the modulation index to this
upper bound μ = ν

2 + arccos(
√
Fth). Equation (52) can then

be rewritten as a condition on k:

M

2π
arcsin

(
ν
2 − arccos(

√
Fth)

ν
2 + arccos(

√
Fth)

)
− θ

� k � M

2
− M

2π
arcsin

(
ν
2 − arccos(

√
Fth)

ν
2 + arccos(

√
Fth)

)
− θ. (53)

The number N of qubit k realizing the transformation with
a fidelity over Fth is thus given by

N =
⌊

M

2π

[
π

2
− arcsin

(
ν
2 − arccos(

√
Fth)

ν
2 + arccos(

√
Fth)

)]⌋
. (54)

The additional factor 1
2 comes from the fact that we consider

only half the values k, as we divide our 128 dimensional state
of space in 64 two-dimensional subspaces N decreases with
increasing ν, showing that the limitation comes from the phase
of the EOM. The result is shown in Fig. 6 for four values of
the fidelity threshold.

Hadamard gates. The Hadamard gate requiring both phase
change and energy splitting between the two modes of the
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FIG. 6. Phase gates parallel synthesis: maximum number of
gates synthesized in parallel with a fidelity better than Fth for four
levels of accuracy by a phase gate operating on time modes (time
encoding) as a function of the required gate z-rotation angle. This
dependency holds for both [EPE] and [PEP] configurations. Phase
step is π × 10−4.

qubit subspace is therefore among the most difficult to syn-
thesize.

Let us calculate the number of qubits realizing the
Hadamard gate with performances exceeding Pth and Fth in
[PEP] and [EPE] configurations: the parameters correspond-
ing to a single Hadamard gate for qubit k are

|α| = |β| = 1√
2

∀k ∈ [0, M/2 −1] φk = μ sin

(
2kπ

M
+ θ

)
= π

4
mod π.

(55)
By using the same method as for the phase gates, we can

determine the fidelity achieved for each qubit k as

∀k ∈ [0, M/2 − 1] F (EPE )
k = sin4

(
φk + π

4

)
(56)

∀k ∈ [0, M/2 − 1] F (PEP)
k = sin2

(
φk + π

4

)
(57)

for, respectively, [EPE] and [PEP] configurations.
As for the phase gate, we look at the greater number of

qubits that can realize the Hadamard transformation for [EPE]
and [PEP] configurations. By starting with Eqs. (56) and (57),
we find,

for the [EPE] configuration,

−π

4
+ arcsin

(
F1/4

th

)
� φk � 3

π

4
− arcsin

(
F1/4

th

)
, (58)

and for the [PEP] configuration,

−π

4
+ arcsin

(
F1/2

th

)
� φk � 3

π

4
− arcsin

(
F1/2

th

)
. (59)

Introducing 	νEPE = π
2 − arcsin (Fth

1/4) and 	νPEP = π
2 −

arcsin (Fth
1/2), this reads

π

4
− 	νEPE � φk � π

4
+ 	νEPE,

FIG. 7. Number of qubits with fidelity above threshold as a func-
tion of fidelity threshold for [EPE] (light blue) and [PEP] (dark blue)
configurations with a single-frequency rf modulation.

π

4
− 	νPEP � φk � π

4
+ 	νPEP. (60)

Similarly to the phase gate calculation, we find the maximum
number of qubits achieving the Hadamard transformation with
a fidelity over Fth for both configurations:

NEPE = M

π

⌊
π

2
− arcsin

(
π
4 − 	νEPE
π
4 + 	νEPE

)⌋
+ 1;

NPEP = M

π

⌊
π

2
− arcsin

(
π
4 − 	νPEP
π
4 + 	νPEP

)⌋
+ 1. (61)

Proposition 5. For the Hadamard gate, the number of
qubits realizing Fth is larger in the [PEP] configuration than in
the [EPE] configuration for any finite number of frequencies
in the rf driving.

Proof. Let k ∈ [0, M/2 − 1] and Fth be a fidelity thresh-
old.

Fk � Fth ⇔ φk ∈
[
π

4
− 	ν,

π

4
+ 	ν

]
. (62)

In the [EPE] configuration, 	νEPE = π
2 − arcsin (Fth

1/4).
In the [PEP] configuration, 	νPEP = π

2 −
arcsin (Fth

1/2). �
	νPEP � 	νEPE.
Figure 7 indeed shows that the configuration [PEP] gives

slightly better results than [EPE] for parallelization of the
Hadamard gate. It is noteworthy that the number of parallel
phase gates corresponding to ν = π/2 is 28, as in the case of
the Hadamard gate, suggesting that the performance limitation
for the [PEP] configuration does not depend on the energy
exchanges required by the gate but only on the required de-
phasing.

Table II summarizes the main results on parallelization,
showing a clear advantage of time encoding over frequency
encoding. This advantage of time encoding mainly comes
from the two-scattering property (see Prop. 1) that can be used
with the PS in the time basis, while it is not readily possible
(under realistic rf bandwidth constraint) to use the EOM in
the frequency basis without coupling to frequency modes
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TABLE II. Comparison of the possibilities of arbitrary unitary
synthesis with [EPE] and [PEP] different configurations and for two
kinds of encoding. N stands for the number of parallel qubits for
which the gate fidelity and success probability are above threshold.
The bold part corresponds to results reported in this work. Here,
NX (H ) designate the number of bit flip (Hadamard) transformation
that can be parallelized.

Arbitrary unitary synthesis :

parallelization for M = 128 modes, 64 qubits

outside of the Hilbert space, composed here of two neigh-
boring frequencies, thereby imposing important constraints on
the achievable success probability.

VI. CONCLUSIONS AND OUTLOOK

Optimized for the telecom industry, electro-optic modu-
lator (E) and pulse shaper (P) components perform mathe-
matically complementary operations on multimode quantum
photonic states. Their combination gives rise to an appeal-
ing and engineering-friendly platform for photonic quantum
information processing. P and E can in particular be used
in combination to perform S-LOQC, in which quantum in-
formation encoding as well as measurements are performed
in the frequency basis [5]. Such a S-LOQC platform has the
ability to leverage high-dimensional frequency encodings and
has proven to be a promising approach for photonic quantum
information processing [8,9].

In this work we focus on a subset of S-LOQC tasks,
namely, the synthesis of an arbitrary single-qubit gate, and
also the parallelization of such synthesis. We moreover extend
our investigation beyond standard S-LOQC by considering
time-bin encoding, in addition to frequency encoding. We
give an overview of what can be achieved with the two
paradigmatic minimal configurations, [PEP] and [EPE], for
the processing of photonic qubits encoded either on frequency
modes or on time modes, and we consider two main objec-
tives: (i) the arbitrary unitary gate synthesis, with single-tone
driving of the EOM, and (ii) the parallelization of the synthe-

sis of a large number of unitaries with close-to-unit fidelity
and success probability.

Concerning objective (i), we compute the achievable fideli-
ties and probabilities of success for arbitrary unitaries with
single-tone rf driving of the EOM. Based on analytical and nu-
merical studies, we show that time encoding allows the exact
synthesis of an arbitrary single-qubit unitary transformation
with both configurations, whereas frequency encoding only
allows the exact synthesis of phase gates with maximal unit
fidelity and success probability.

Concerning objective (ii), i.e., the parallelization, we have
compared the two configurations [PEP] and [EPE] in terms of
the number of qubit gates that can be synthesized in parallel
with high performance, with a single setup of only three
components with single- and dual-tone driving of the EOM.
In the time encoding framework, where exact synthesis is
achievable, we have shown that the number of qubits that can
be manipulated with high fidelity and probability is always
higher than for frequency domain implementation. We also
demonstrate that the [PEP] configuration performs slightly
better than [EPE] to manipulate a larger number of time-mode
qubits. We have moreover analyzed the impact of the addition
of tones on the number of gates that can be synthesized in par-
allel and provide practical solutions, i.e., truncation strategies
of the rf signal, for high-fidelity Hadamard and phase gates
acting on multiple time modes. Quantitatively, considering a
system with 128 addressable modes (and hence 64 qubits,
with dual-rail encoding) that can be realistically addressed
in the near-term with EOM and PS, we notably exhibit, for
time encoding, the possibility to perform the parallel synthesis
of 28 Hadamard gates (with >99% fidelity and almost 100%
success probability) with a single-tone EOM driving. We also
show that this parallelization can be extended to 47 qubits with
two tones, and to 53 qubits with three tones.

Our work illustrates the interesting perspectives offered by
the combined use of pulse shapers and rf-driven electro-optics
modulator to provide a versatile and powerful experimental
platform for photonic information processing. The immediate
perspective opened by this work will consist in validating
experimentally the theoretical results presented in the present
article. Such experimental validation will require in particular
to be able to perform measurements in the time basis, which
constitutes a challenge in terms of the required time resolu-
tion.

Considering the orders of magnitude discussed in Sec. II D,
the time resolution would need to be of a few tens of pi-
coseconds to perform a single-qubit gate in the time basis.
Such resolution cannot be directly achieved using stan-
dard avalanche single-photon detectors, but time-resolved
detection at the picosecond timescale is possible using su-
perconducting nanowires [27], or by resorting to nonlinear
effects [28]. On the other hand, parallel synthesis of single-
qubit gates with time encoding would be limited by such time
resolution. For instance, considering a time resolution of 1
ps, which is the state of the art for the jitter of the detec-
tors, the parallelization is be limited to about 10 qubits (out
of 64).

Another challenge will consist in designing experimental
platforms operating over a large number of modes. We as-
sumed a number of modes M = 128 in the article, consistent
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with what is achievable with existing technology, and notably
with pulse shaper frequency resolution. Leveraging the pos-
sibility to integrate electro-optic phase modulators and pulse
shapers onto photonic chips [29–32], we can moreover expect
to see a sharp increase in the number of addressable modes
M in the future, thereby boosting the information processing
capabilities of such a platform.

Performing quantum tomography typically requires the
ability to perform arbitrary single-qubit transformation fol-
lowed by a measurement, and to parallelize such operation
over a large number of qubits. The [PEP] and [EPE] combi-
nations considered in this article hence appear as an appealing
experimental platform for quantum tomography over qubits,
and could be extended to qudits, with potential applications
to the characterization of optical sources [33] or optical de-
vices [34]. This platform can more generally be used to
perform a high-dimensional Fourier transform [35,36], which
constitutes a central element in boson sampling or quantum
metrology experiments. As seen in Sec. IV B, the [PEP] con-
figuration used with time-encoded qubits indeed behaves as
a linear interferometer that could, for instance, be used for
quantum state engineering [37], but also for optical inter-
ferometry with quantum-enhanced precision [38]. Our work
highlights the relevance of considering time encoding to oper-
ate a quantum frequency processor composed of electro-optic
modulators and pulse shapers. We have indeed shown that
time-bin encoding enables the manipulation of a large number
of qubits with high fidelity and high success probability and
in general better performance than the frequency encoded
versions. This work hence further positions the quantum fre-
quency processor, which can readily leverage off-the-shelf
devices at low loss telecom wavelength, as a promising con-
tender for multimode quantum information processing.
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APPENDIX A: GENERALIZED EXPRESSIONS FOR
COMPONENT ACTION IN THE TIME BASIS

Consider the action of a single PS in the time basis. For
this, recall that in the spectral mode basis, the PS matrix has a
representation of the form

P̃ =

⎡
⎢⎢⎣

1 0 . . . 0
0 eiϕ1 . . . 0
...

...
. . .

...

0 0 . . . eiϕM−1

⎤
⎥⎥⎦, (A1)

where ϕ1, . . . , ϕM−1 denote the real phases applied to the
frequency modes. The equivalent expression in the time basis
is

P̃= FPF † = 1

M

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
1 ξ ξ 2 . . . ξ (M−1)

1 ξ 2 ξ 4 . . . ξ 2(M−1)

...
...

...
. . .

...

1 ξ (M−1) ξ 2(M−1) . . . ξ (M−1)2

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

1 0 0 . . . 0
0 eiϕ1 0 . . . 0
0 0 eiϕ2 . . . 0
...

...
...

. . .
...

0 0 0 . . . eiϕM−1

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
1 ξ−1 ξ−2 . . . ξ−(M−1)

1 ξ−2 ξ−4 . . . ξ−2(M−1)

...
...

...
. . .

...

1 ξ−(M−1) ξ−2(M−1) . . . ξ−(M−1)2

⎤
⎥⎥⎥⎥⎥⎦

= 1

M

⎡
⎢⎢⎢⎣

1 eiϕ1 eiϕ2 . . . eiϕM−1

1 ξeiϕ1 ξ 2eiϕ2 . . . ξ (M−1)eiϕM−1

...
...

...
. . .

...

1 ξ (M−1)eiϕ1 ξ 2(M−1)eiϕ2 . . . ξ (M−1)2
eiϕM−1

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
1 ξ−1 ξ−2 . . . ξ−(M−1)

1 ξ−2 ξ−4 . . . ξ−2(M−1)

...
...

...
. . .

...

1 ξ−(M−1) ξ−2(M−1) . . . ξ−(M−1)2

⎤
⎥⎥⎥⎥⎥⎦, (A2)

where ξ = ei(2π/M ). This expression can be expressed more
compactly as

∀k, k′ ∈ [0, M − 1] Pk′k = 1

M

M−1∑
j1=0

ξ (k′−k) j1 eiϕ j1 . (A3)

The matrix of the EOM is diagonal in the time basis

∀k′, k′′ ∈ [0, M − 1] Ek′′k′ = δk′′k′eiφk′ . (A4)

The generic matrix element of the component combination
[PEP] is therefore

(P̃EP̃)k′k =
∑

j

⎧⎨
⎩ 1

M

∑
j2

ξ (k′− j) j2 eiϕ j2

⎫⎬
⎭

× eiφ j

⎧⎨
⎩ 1

M

∑
j1

ξ ( j−k) j1 eiϕ j1

⎫⎬
⎭

= 1

M2

∑
j

eiφ j

⎡
⎣∑

j2

ξ (k′− j) j2 eiϕ j2

⎤
⎦

×
⎡
⎣∑

j1

ξ ( j−k) j1 eiϕ j1

⎤
⎦

= 1

M2

∑
j, j1, j2

ei(φ j+ϕ j1 +ϕ j2 + 2π
M [( j−k) j1+(k′− j) j2]. (A5)
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The corresponding expression for the [EPE] configuration
is

(EP̃E )k′k =
{∑

k′′
δk′′′k′′eiψk′′

}⎧⎨
⎩ 1

M

∑
j

ω(k′′−k′ ) jeiφ j

⎫⎬
⎭

×
{∑

k

δk′keiψk

}

= 1

M

∑
j

eiψk′′ ei 2π
M (k′′−k′ ) jeiφ j eiψk

= ei(φk+φk′ )

M

∑
j

ei 2π
M (k′−k) jeiϕ j . (A6)

APPENDIX B: PARAMETERS OF THE PS AS A
TWO-SCATTERING DEVICE IN THE TIME BASIS

We start with no assumption on the “distance” m between
the two vectors of the qubit subspace

∀k ∈ [0, M − m − 1] ÛPS|tk〉 = α|tk〉 + β|tk+m〉, (B1)

where 0 < m � M/2 and (α, β ) ∈ C2, |α|2 + |β|2 = 1.
The coupling constants between time modes can be derived

from the Fourier transform of the pulse shaper action in the
frequency domain

∀(k, k′) ∈ {[0, M − 1]}2,

Pk′,k = 〈tk′ |ÛPS|tk〉 = 1

M

∑
j

exp

(
i
2π

M
(k′ − k) j + iϕ j

)
,

(B2)

where ϕ j is the phase applied by the PS to the frequency mode
|ω j〉 that we want to determine for j ∈ [0, M − 1].

Using Eq. (B1) to compute Pk′,k ,

1

M

M−1∑
j=0

eiϕ j = α

1

M

M−1∑
j=0

ei2π
m j
M eiϕ j = β (B3)

∀(p, q) �= (k, k), (k + m, k),
1

M

M−1∑
j=0

ei2π
(p−q) j

M eiϕ j = 0.

Let eiϕ j = Ajα + Bjβ . Equation (B3) becomes

M−1∑
j=0

Ajα = Mα

M−1∑
j=0

ei2π
m j
M B jβ = Mβ. (B4)

These equations can be satisfied by choosing Aj = 1 and Bj =
e−i2π

m j
M , which finally gives

∀ j ∈ [0, M − 1], eiϕ j = α + βe−i2π
m j
M . (B5)

Then the unitarity of the PS matrix enforces the following
relation:

∀ j ∈ [0, M − 1], |α|2 + |β|2 + 2�e{αβ∗e−i2π
m j
M } = 1.

(B6)

The case j = 0 imposes αβ∗ to be purely imaginary. There-
fore, we can set α = |α|eiγ and β = ±i|β|eiγ , which yields a
new unitarity condition

∀ j ∈ [0, M − 1], �m{e−i2π
m j
M
} = 0, (B7)

which sets m = M/2.
It is therefore possible to choose settings of the PS so that

it scatters the energy of mode |tk〉 only into the two modes |tk〉
and |tk+M/2〉. In the frequency basis

∀ j ∈ [0, M − 1], ÛPS|ω j〉 = [
α + βe−iπ j

]|ω j〉. (B8)

Finally, we obtain

∀k ∈ [0, M/2], ÛPS|tk〉 = α|tk〉 + β|tk+M/2〉
∀k ∈ [M/2, M − 1], ÛPS|tk〉 = β|tk〉 + α|tk−M/2〉. (B9)

Subsequently, the PS matrix takes the following form in the
time basis:

P̃S = eiγ

( |α|I ±i|β|I
±i|β|I |α|I

)
, (B10)

where I is the identity matrix of dimension M/2.
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