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Neutral-atom entanglement using adiabatic Rydberg dressing
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We revisit the implementation of a two-qubit entangling gate, the Mølmer-Sørensen gate, using the adiabatic
Rydberg dressing paradigm for neutral atoms as studied in [A. Mitra et al., Phys. Rev. A 101, 030301(R) (2020)].
We study the implementation of rapid adiabatic passage using a two-photon transition, which does not require
the use of an ultraviolet laser, and can be implemented using only amplitude modulation of one field with all
laser frequencies fixed. We find that entangling gate fidelities, comparable to the one-photon excitation, are
achievable with the two-photon excitation. Moreover, we address how the adiabatic dressing protocol can be
used to implement entangling gates outside the regime of a perfect Rydberg blockade. We show that, by using
adiabatic dressing, we can achieve scaling of the gate fidelity set by the fundamental limits to entanglement
generated by the Rydberg interactions while simultaneously retaining a limited population in the doubly excited
Rydberg state. This allows for fast high-fidelity gates for atoms separated beyond the blockade radius.
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I. INTRODUCTION

Optically trapped arrays of neutral atoms with tunable
electric dipole-dipole interactions (EDDI) are a promising
platform for scalable quantum computation [1–13], quan-
tum simulations [14–26], and quantum metrology [27–29].
A variety of protocols have been studied to create entan-
glement between atomic qubits using the strong EDDI of
Rydberg atoms [5,30–37], and have been demonstrated in
alkali atoms including cesium and rubidium [2,5,10,11,16,38–
43] and in alkaline earth atoms including strontium and ytter-
bium [29,44,45]. Given rapid advances in the field, we seek
to revisit some practical considerations and fundamental lim-
its for qubit entanglement that are achievable with adiabatic
Rydberg dressing of ground state atoms.

In particular, we consider the use of adiabatic Rydberg
dressing [29,32,37,43,46], a powerful tool for robustly cre-
ating entanglement in atomic-clock qubits. In this approach,
the Rydberg character is adiabatically admixed into one of
the clock states through a chirp of the laser frequency and/or
intensity ramp [29,37,43]. The resulting light shift of the
dressed state is then mediated by the Rydberg EDDI, leading
to entanglement [29,37,43]. This tool was implemented to
create Bell states of clock qubits in the microwave [47] and
optical regimes [29] and for studies of many-body physics
[14,15,17]. Schemes for implementing two-qubit entangling
quantum logic gates based on adiabatic Rydberg dressing
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were studied theoretically [32,34,36,37] and recently demon-
strated [29,43].

Adiabatic Rydberg dressing is most naturally implemented
using a one-photon transition between a clock state and a
high-lying Rydberg state [14,15,17,32,37,47]. Such an ap-
proach requires a high-power ultraviolet laser, which is
technically challenging and can lead to adverse effects, such
as photoelectric charging of dielectrics and spurious electric
fields. Adiabatic Rydberg dressing would be more simply
be achieved through a standard two-photon transition that is
typically used for Rydberg excitation, but this may lead to
other challenges due to additional decoherence and spurious
light shifts from off-resonant excitation to the intermediate
state [48,49]. We revisit this problem here and show that
a two-photon excitation is well matched to adiabatic Ryd-
berg dressing, with additional light shifts facilitating adiabatic
passages by modulating only one laser amplitude. With the
current state of the art, decoherence will not greatly reduce
gate fidelity. Moreover, dominant inhomogeneities can be re-
moved in this protocol through spin echoes, as studied in
Ref. [37] implemented in Refs. [29,43].

Beyond the practical consideration of two-photon excita-
tion for adiabatic Rydberg dressing, we revisit the limits of
gate fidelity from a finite Rydberg-state lifetime and finite
interaction energy between Rydberg states that can be gener-
ated using adiabatic Rydberg dressing of ground-state atoms.
While the basic entangling interaction is due to the interac-
tions between Rydberg states with strength |V |, in protocols
that employ the Rydberg blockade, the speed of the gate is
limited by the effective Rabi frequency of the coupling laser
�eff , as in the seminal work of the authors of Ref. [30].
Rydberg dressing under a strong blockade, where the
admixture of the doubly excited Rydberg states is small and
often negligible requires h̄�eff � |V |. As such, one cannot
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achieve the fundamental scaling in the gate error rate set by
the ratio 2π h̄�/|V | for a characteristic decoherence rate �

[4]. Adiabatic Rydberg dressing has generally also operated
in the strong blockade regime [29,32,37,43,50], but this is
not essential to the protocol. In principle, adiabatic admix-
tures that include doubly excited Rydberg levels will strongly
increase the entangling energy or may be used to maintain
atoms separated beyond the blockade radius where they can be
more easily individually addressed, yet still achieve fast gates.
Rydberg-mediated entanglement beyond the strong block-
ade regime was demonstrated using finely tuned two-atom
Rabi oscillations [42]. In addition, some quantum simula-
tion schemes implementing interacting spin models did not
assume strong blockade in a multiatom array, allowing the im-
plementation of elaborate interaction graphs between atoms in
one-dimensional [16,20,21] and two-dimensional geometries
[10–12,22,23,49].

We show here that, by going beyond the perfect blockade
regime, one can use adiabatic Rydberg dressing to reach the
fundamental scaling of entangling gate fidelity [51]. Such an
approach may become more feasible, e.g., by using bound
states of doubly excited Rydberg macrodimers [52] that have
been well resolved [52,53] and can be employed for such
coherent control of entanglement [53]. In addition, we find
that one can implement entangling gates in the weak blockade
regime using an adiabatic Rydberg dressing scheme that re-
quires only a limited population in the doubly excited Rydberg
state, similar to that found inf Ref. [42] and unlike some other
protocols for entangling gates [3–5,40]. Thus, protocols that
extend beyond the perfect blockade regime may enable even
more powerful schemes for neutral atom quantum information
processing.

The remainder of this article is organized as follows. In
Sec. II we discuss the implementation of two-photon adiabatic
Rydberg dressing passages for creating high-fidelity entan-
gling gates. We show that fidelities F > 0.99 are possible
with state-of-the-art experiments. In Sec. III we study the scal-
ing of the Rydberg-dressing entangling energy in the regimes
of strong and weak blockades and show that we can reach the
fundamental scaling as predicted in Ref. [51] when we allow
a small admixture of doubly excited Rydberg states during
adiabatic Rydberg dressing. In Sec. IV we conclude and give
an outlook toward future applications.

II. ENTANGLING GATES WITH ADIABATIC DRESSING

We study the implementation of two-qubit gates with
qubits encoded in clock states, e.g., |0〉 ≡ |(ns), 2S1/2,

F, m = 0〉, |1〉 ≡ |(ns), 2S1/2, F ′, m = 0〉 for alkali atoms and
|0〉 ≡ |(ns)2, 1S0〉, |1〉 ≡ |(nsnp), 3P0〉 for alkaline earth-like
atoms. Entanglement is generated by the adiabatic dressing
of the |1〉-state through a one- or two-photon transition to an
excited Rydberg state |r〉 with high principle quantum number
nr . For a one-photon ultraviolet transition, |r〉 ≡ |(nr p), 2PJ〉
for alkalis and |r〉 ≡ |(nsnrs), 3S1〉 for alkaline earths. In
the two-photon case, |r〉 ≡ |(nrs), 2S1/2〉 for alkalis and
|r〉 ≡ |(nsnr p), 3PJ〉 for alkaline earths, with an intermedi-
ate auxiliary state |a〉 ≡ |(na p), 2PJ〉 or |a〉 ≡ |(nsnas), 3S1〉,
respectively. The generation of entanglement is fundamentally
limited by decoherence due to the lifetime of |r〉 and |a〉,

which depend on the choice of principal quantum numbers
nr and na. The schematics for one- and two-photon coupling
are shown in Figs. 1(a) and 1(b), respectively.

We consider two atoms symmetrically coupled by uniform
laser fields. As only the |1〉 state is coupled to |r〉 (in a one- or
two-photon transition), the Hamiltonian takes the form

Ĥ = Ĥ1 ⊗ |0〉〈0| + |0〉〈0| ⊗ Ĥ1 + Ĥ1,1, (1)

where Ĥ1 is the Hamiltonian for one atom in |1〉 coupled to
|r〉 and Ĥ1,1 is the two-atom coupling, including the Rydberg-
mediated EDDI. We define the Rabi frequencies �αβ and
detunings �αβ for each of the corresponding |α〉 ↔ |β〉 tran-
sitions as shown in Figs. 1(a) and 1(b). For a two-photon
excitation, we consider the regime �1a � |�1a| so that the
intermediate state can be adiabatically eliminated. In that case,
we have the universal single-atom Hamiltonian

Ĥ1 = −h̄�eff |r〉〈r| + h̄�eff

2
(|r〉〈1| + |1〉〈r|). (2)

For the one-photon ultraviolet excitation, �eff = �1r , �eff =
�1r. In the two-photon case �eff = (�1a�ar )/(2�1a) and
�eff = �1a + �ar + (δ1 + δr ), where δ1 = (�2

1a)/(4�1a) and
δr = −(�2

ar )/(4�ar ) are the light shifts of levels |1〉 and |r〉,
respectively, due to their coupling to |a〉. Finally, the entan-
gling two-atom Hamiltonian is

Ĥ1,1 = |1〉〈1| ⊗ Ĥ1 + Ĥ1 ⊗ |1〉〈1| + V |r, r〉〈r, r|
= −h̄�eff (|b〉〈b| + |d〉〈d|)

+ (V − 2h̄�eff )|r, r〉〈r, r|

+ h̄

2

√
2�eff (|b〉〈1, 1| + |r, r〉〈b| + +H.c.), (3)

where V is the atom-atom potential energy arising from
the EDDI when both atoms are in |r〉 and |b〉 ≡ (|1, r〉 +
|r, 1〉)/

√
2, |d〉 ≡ (|1, r〉 − |r, 1〉)/

√
2 are the bright and dark

states, respectively, for symmetric coupling [32,37,54]. When
|V | � h̄�eff , h̄|�eff |, excitation to the doubly excited Ryd-
berg state is strongly blockaded. In that case we can reduce
this Hamiltonian to a two-atom, two-level system

Ĥ1,1 ≈ −h̄�eff |b〉〈b| + h̄

2

√
2�eff (|b〉〈1, 1| + |1, 1〉〈b|). (4)

The effect of the blockade is seen explicitly in the driving of
|1, 1〉 to the entangled bright state |b〉.

The eigenstates of the Hamiltonian in Eq. (1) are the
dressed states. In particular, we denote the dressed clock states
(computational basis states) {|0, 0〉, |0, 1̃〉, |1̃, 0〉, |1̃, 1〉}. The
eigenvalues E0,1̃ = E1̃,0 and E1̃,1 contain contributions from

light shifts, E (1)
LS with one atom or E (2)

LS with two atoms coupled
to the Rydberg state. The entangling energy, denoted by h̄κ ,
is the energy difference between the interacting and noninter-
acting atoms

κ = 1

h̄

(
E (2)

LS − 2E (1)
LS

)
≈ �eff

2
± 1

2

(√
2�2

eff + �2
eff − 2

√
�2

eff + �2
eff

)
, (5)
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FIG. 1. Two-atom energy levels for implementing adiabatic Rydberg dressing. (a) One-photon |1〉 ↔ |r〉 transition, with Rabi frequency
�1r and Rydberg decay rate �r . (b) Two-photon |1〉 ↔ |a〉 ↔ |r〉 transition with Rabi frequencies �1a and �ar , respectively, intermediate state
decay rate �a and Rydberg decay rate �r . (c) Effective three-level system in regime of adiabatically eliminating the intermediate state |a〉,
with effective Rabi frequency �eff and effective detuning �eff due to the difference of light shifts experienced by |a〉 and |r〉 and effective
decay rate γr from |r〉 and γ1 from |1〉. (d) Energy levels and lights shifts in one-atom dressing, where each atom is dressed independently. (e)
Energy levels and lights shifts in two-atom dressing, where both atoms are dressed together in the presence of interaction energy V . (f) Energy
shifts of atomic states as a function of detuning, in the strong blockade (h̄�1r � |V |, h̄|�1r | � |V |) case, which play a role in the adiabatic
passage between ground-like states and Rydberg-like states. The shaded region shows the entangling energy [5], which is used to accumulate
the entangling phase.

where the approximation in the second line holds only in
the limit of a perfect blockade, with entangling Hamiltonian
Eq. (4) and ± refers to the two branches of the dressed states
in Fig. 1.

An entangling gate is achieved through the dynami-
cal phase accumulated from the entangling energy ϕ2 =∫

κ (t ′)dt ′ [29,32,37,43,47,55]. As discussed in Ref. [37],
we consider generating a two-qubit entangling gate using a
spin-echo sequence, as shown in Fig. 2 and demonstrated in
Refs. [29,43]. The echo sequence consists of a π/2 pulse
about the x axis, followed by an adiabatic ramp accumulating

(a)

(b)

FIG. 2. Adiabatic passages interleaved in a spin-echo sequence.
(a) Pulse and ramp sequence. (b) Equivalent circuit diagram. When
ϕ2 = π/2 the result is the MSyy gate [Eq. (7)].

nonlocal phase ϕ2 = ∫
κ (t ′)dt ′, an echo a π pulse about the

x axis, followed by another adiabatic ramp accumulating non-
local phase ϕ2 = ∫

κ (t ′)dt ′, and a final π/2 pulse about the
x axis, as shown in Fig. 2(a). An equivalent circuit diagram
with the shorthand

√
X representing a π/2 pulse about the x

axis, X representing a π pulse about the x axis and Ûκ (ϕ1, ϕ2)
representing the unitary

Ûκ (ϕ1, ϕ2) = exp

[
−iϕ2

(
σ̂z

2
⊗ σ̂z

2

)]

× exp

[
−iϕ1

(
1 ⊗ σ̂z

2
+ σ̂z

2
⊗ 1

)]
, (6)

implemented during each adiabatic ramp, is shown in
Fig. 2(b). Importantly, the spin-echo removes all phases ϕ1

arising for single-atom light shifts, including the dominant
errors arising from atom thermal motion and the resulting
inhomogeneities [29,37,43]. Designing the adiabatic ramps
such that ϕ2 = π/2 in each ramp, the resulting unitary trans-
formation is a Mølmer-Sørensen YY gate (MSyy),

ÛMSyy = exp
(

− iπ

4
σ̂y ⊗ σ̂y

)
, (7)
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which is a perfect entangler for the qubits, that is, a gate
that can output maximally entangled states from input product
states [37,56,57]. This robust protocol extends to two-photon
excitation. Off-resonant coupling to the intermediate state
leads to additional light shifts and potential noise due to in-
tensity fluctuations. The spin echo removes this noise in its
contribution to the single-atom light shift. There will still be
some residual error that remains and cannot be canceled in the
spin echo, but this is minimal and in practice can be reduce
with further robust control techniques.

The fundamental source of decoherence is due to the de-
cay of the Rydberg state at rate �r and the intermediate
state at rate �a. To good approximation, the decays will
lead to leakage outside the qubit subspace. In that case we
can treat decoherence simply through a non-trace-preserving
Schrödinger evolution with a non-Hermitian Hamiltonian
Ĥeff = Ĥ − ih̄

2

∑
μ L̂†

μL̂μ, where {L̂μ} are the Lindblad jump
operators. In the one-photon excitation,

∑
μ L̂†

μL̂μ = �r |r〉〈r|

for each atom. In the two-photon excitation∑
μ

L̂†
μL̂μ = γ1|1〉〈1| + γr |r〉〈r| + γ1r (|r〉〈1| + |1〉〈r|), (8)

for each atom. Here levels |1〉 and |r〉 and their coherences
decay due to off-resonant photon scattering with rates

γ1 = �2
1a

4�2
1a

�a, γr = �2
ar

4�2
ar

�a + �r, γ1r = �ra�1a

4�2
1a

�a.

(9)

High-fidelity gates for two-photon excitation require suffi-
ciently long lifetimes of level |a〉.

As studied in Ref. [37], the highest fidelity gates are
achieved for strong dressing, with the exciting laser close
to Rydberg resonance, and a large admixture of |b〉 in the
dressed state |1̃, 1〉. For a one-photon transition, we consider
an adiabatic sweep involving a Gaussian laser intensity sweep
and the linear detuning sweep, according to

|�1r (t )| =

⎧⎪⎨
⎪⎩

�max + �max−�min
t2−t1

× (t − t1), t1 � t < t2,
�min, t2 � t � t3,
�min + �min−�max

t4−t3
× (t − t3), t3 < t � t4,

�1r (t ) =

⎧⎪⎨
⎪⎩

�min + (�max − �min) exp
(− (t−t1 )2

2t2
w

)
, t1 � t < t2,

�max, t2 � t � t3,
�min + (�max − �min) exp

(− (t−t3 )2

2t2
w

)
, t3 < t � t4.

(10)

The resulting MS gate was demonstrated in Refs. [29,43].
For the two-photon case, the effect of the light shift arising

from the intermediate detuning affords additional possibilities
for coherent control. We consider the case of exact two-photon
resonance in the absence of the light shift and a fixed Rabi
frequency �ar and detuning �ar on the |a〉 ↔ |r〉 transition.
Adiabatic dressing is achieved solely through a Gaussian ramp
of the intensity of the laser driving the |1〉 ↔ |a〉 according to
the Rabi frequency

�1a =
⎧⎨
⎩

�max
1a , − |tstop| � t � |tstop|,

�max
1a exp

(− (t−|tstop| )2

2t2
w

)
, otherwise.

(11)

One can modulate |tstop|, the time after which the Rabi fre-
quency remains constant, and tw the width of the Gaussian
pulse, to obtain the desired gate of interest. Figure 3 shows
an example of ramps for the two-photon adiabatic passage as
well as the population as a function of time during the pulse
sequence.

As discussed above, to implement the Mølmer-Sørensen
gate we consider two adiabatic ramps intertwined by the spin
echo sequence as shown in Fig. 2, similar to that in Ref. [37].
The adiabatic ramps are obtained by numerically maximizing
the fidelity defined using the Hilbert-Schmidt overlap

F[{cr}] = 1
16

∣∣tr(Û †
MSyy

Û ({cr})
)∣∣2

, (12)

with respect to ramp parameters {cr} for both one photon
and two photon cases; here Û ({cr}) is the unitary map imple-

mented using the spin-echo sequence in Fig. 2. Replacing Ĥ
with Ĥeff gives an estimate of the fidelity including effects of
finite lifetimes of the intermediate state |a〉 and the Rydberg
state |r〉.

The short lifetime of the intermediate state |a〉 poses a
challenge for implementing adiabatic passage using a two-
photon schemes. We explore the dependence of the achievable
Mølmer-Sørensen gate fidelity on the intermediate state life-
time and the Rabi frequency in Fig. 4. We fix the Rydberg
state decay rate �r , vary the maximum Rabi frequency �max

1a
and the intermediate state decay rate �a, and then optimize
over the intermediate state detuning �1a = −�ar to maximize
the fidelity. As in the other two-photon approaches, the choice
of an intermediate state with a larger lifetime gives a higher
fidelity as this is the fundamental source of error in the model.
Moreover, as expected, a larger power gives higher fidelity,
but in the perfect blockade regime this is constrained by
h̄�eff � |V |. With reasonable experimental parameters, one
can achieve fidelity larger than 0.99 as seen in Fig. 4.

A key metric quantifying the temporal duration of the
adiabatic Rydberg dressing passages is the time-integrated
Rydberg population, summed over both atoms tr [3,4]. In
order for the loss of fidelity due to Rydberg state decay to be
small, we require tr � τr where τr = 1/�r is the Rydberg-
state lifetime [37]. For one-photon adiabatic passages, we
found tr ≈ 0.89 × 2π/�max

eff , while for the two-photon pas-
sage, we find tr ≈ 0.95 × 2π/�max

eff , with initial state |1, 1〉.
Initial states |0, 1〉 and |1, 0〉 lead to smaller time-integrated
Rydberg population and initial |0, 0〉 does not lead to any
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(a)

(d)

(b)

(c)

(e) (f)

FIG. 3. Adiabatic passages to implement Ûκ (ϕ1, ϕ2) with ϕ2 = π/2 [Eq. (6), Fig. 2] in the strong blockade regime (h̄�eff = 0.1|V |).
(a) One-photon adiabatic passage Gaussian sweep of Rabi frequency and linear sweep of detuning as in Refs. [37,43]. (b) One-atom populations
during a one-photon adiabatic passage. (c) Two-atom population during a one-photon adiabatic passage. (d) Two-photon adiabatic passage
using a Gaussian sweep of Rabi frequency �1a, with all other parameters fixed, which leads to an effective sweep of the two-photon Rabi
frequency �eff and two-photon detuning �eff as shown in (e). (f) Two-atom populations during a two-photon adiabatic passage. Bottom
axes show time measured in units of 2π/�max, top axes show time measured in units of |V |t/(2π h̄). In the strong blockade, as expected,
|V |t/h̄ � �maxt

Rydberg population [37]. In both one- and two-photon cases,
since we are considering the strong blockade regime, the
adiabatic passages tr is significantly larger than 2π h̄/|V |, the
timescale set by the interaction energy V . Nevertheless, using
finely tuned parameters, adiabatic Rydberg dressing passages
can be used to implement high-fidelity entangling gates.

III. DRESSING BEYOND THE PERFECT
BLOCKADE REGIME

In the previous section, we studied entangling gates in the
case of a perfect Rydberg blockade, but this is not intrinsic to
the adiabatic dressing protocol. Relaxing this assumption and
studying protocols in the weak blockade regime is important
to address the fundamental limits of Rydberg-atom quantum
information processing, potentially improving the fidelity of
our gates, and allow us to operate in new regimes. We note
that, in practice, quantum fluctuations in the atoms’ motional
states always affects the fidelity of the implemented gate. The
way in which this uncertainty causes gate infidelity depends
on the particular protocol. If atoms are released from a trap
and are in free fall during the gate (as is commonly the case),
the uncertainty in momentum can lead to Doppler shifts and
the uncertainty in position can lead to fluctuations in the

atom-atom coupling strength. In principle, atoms can be
cooled very close to the motional ground state of a sufficiently
deep trap (a nearly pure state) and for some atomic species
and specially chosen transitions the gate can be done with the
trap on. If the motional state of the atom is not entangled with
the internal state, there will be no error arising for the position
and momentum uncertainty. Loss of gate fidelity due to atomic
motion, arising from uncertainties in position and momentum
of the atoms were considered in Refs. [32,37,54].

In addition to the limitations due to uncertainties in
atomic motional states, no matter how cool the atoms
are or how well we can remove these effects by spe-
cial protocols, implementation of an entangling gate using
Rydberg-meditated interactions is fundamentally limited by
two energy timescales: the Rydberg-state lifetime τr and the
magnitude of the interatomic interaction energy |V | [3,4].
Wesenberg et al. showed that the minimum time that the
atoms need to spend in a Rydberg state to achieve a maxi-
mally entangling gate scales as tr ∼ h̄/|V | [51]. The standard
protocols which employ a strong Rydberg blockade [5,30]
cannot achieve this bound because the speed of the gates is
set by �eff , and since they require h̄�eff � |V |, we cannot
make use of the full scale of the interaction energy [3]. Jo
et al. implemented Rydberg-mediated entanglement outside
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FIG. 4. Dependence of the fidelity of the Mølmer-Sørensen gate on the intermediate state decay rate �a and the Rabi frequency �1a, both
measured in units of the Rydberg state decay rate �r . Similar to other two-photon approaches the choice of intermediate state with smaller
decay rate gives a better fidelity. Moreover, as expected, a larger power gives better fidelity. However, this gives us the constraint that we need
a larger |V | and thus poses some additional challenges. With a reasonable experimental parameters one could achieve an infidelity less than
10−2. The data are obtained by fixing the ratios �a/�r and �max

1a /(2π�r ) and optimizing over the choice of the detuning from the intermediate
state �1a = −�ar . (a) Contour plot of the logarithm of infidelity, log10(1 − F ) across different values of �a/�r and �max

1a /(2π�r ). (b) Fidelity,
F as a function of the ratio �a/�r , for �1r = 1.4�max

1a and �max
1a /(2π�r ) = 104.

the strong blockade regime using finely tuned two-atom Rabi
oscillations [42].

The minimum timescale for tr can be understood in a
simple protocol using the limiting case of a very large
Rabi frequency h̄�max

eff /|V | → ∞. An entangling gate can be
achieved using a collective π pulse from |1〉 to |r〉 on both
atoms, followed by an interaction for a time |V |tr/h̄ = π and
a π pulse from |r〉 to |1〉. In the limit of infinitesimally short
π pulses, the time spent in Rydberg states, or time-integrated
Rydberg population, is π h̄/|V |. All of the time spent in the
Rydberg states is in the doubly excited Rydberg state |r, r〉.

While this simple protocol helps us understand the
timescales, it is generally not practical for implementation.
For small interatomic separations, the two-atom spectrum
becomes a complex tangle of “Rydberg spaghetti” [47,50].
To achieve the fastest gates in this strongly interacting case,
it is thus useful to avoid double Rydberg population which
can lead to unexpected inelastic processes. In addition, the
complex potential landscape at such small interatomic sepa-
rations can lead to high sensitivity to atomic motion. In this
section we show that using adiabatic Rydberg dressing, we
can get close to the minimum timescale tr , while working in
the weak blockade regime, h̄�max

eff � |V |, without significant
double Rydberg population. Moreover, for large interatomic
separations, protocols requiring a strong blockade would lead
to exceedingly slow gates. The adiabatic dressing protocol
considered here can achieve reasonably fast gates with high
fidelity, even for atoms separated beyond blockade radius.

To understand the different regimes of operation, we es-
timate how the interatomic interaction energy V limits the
entangling energy h̄κ in the strong blockade and weak block-
ade regimes. For simplicity, we consider the case in which
the atoms see the same Rabi frequency, given in Eq. (3). It

is useful to consider a pseudospin with |↑z〉 ≡ |r〉 and |↓z〉 ≡
|1〉. Note that this is different from the dressed pseudospin
considered in Refs. [29,37,43], where the pseudospin levels
corresponded to the dressed ground states. In this pseudospin
picture, the two-atom Hamiltonian can be written as a sum of
two terms

Ĥint = V |r, r〉〈r, r| ≡ V

2

(
Ŝ2

z + Ŝz
)
,

Ĥdrive ≡ −h̄�eff 1 − h̄�eff Ŝz + h̄�eff Ŝx

≡ −h̄�eff 1 + h̄
√

�2
eff + �2

eff Ŝθ , (13)

where Ŝμ is the μ component of collective angular momen-
tum operator Sμ = 1 ⊗ σ̂μ/2 + σ̂μ/2 ⊗ 1, Ŝθ = cos θ Ŝz +
sin θ Ŝx with tan θ = �eff/(−�eff ). The collective sym-
metric spin-1 eigenstates of Sz are the triplet of the
pseudospins |S = 1, Mz = −1〉 = |1, 1〉, |S = 1, Mz = 0〉 =
(|1, r〉 + |r, 1〉)/

√
2 = |b〉, |S = 1, Mz = +1〉 = |r, r〉. The

eigenvalues and eigenvectors of the driving Hamiltonian and

TABLE I. Eigenvalues and eigenvectors of the atom-light Hamil-
tonian Ĥdrive. Here |↑θ 〉 ≡ cos(θ/2)|↑z〉 + sin(θ/2)|↓z〉, |↓θ 〉 ≡
cos(θ/2)|↓z〉 − sin(θ/2)|↑z〉, and tan θ = �eff/(−�eff ). The first
two rows represent the upper and lower branches of the single-atom
dressed states.

Energy eigenvalue Eigenvectors

−h̄�eff + h̄
√

�2
eff + �2

eff |↑θ 〉 ⊗ |↑θ 〉
−h̄�eff − h̄

√
�2

eff + �2
eff |↓θ 〉 ⊗ |↓θ 〉

−h̄�eff (|↑θ 〉 ⊗ |↓θ 〉 + |↓θ 〉 ⊗ |↑θ 〉)/
√

2
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TABLE II. Eigenvalues and eigenvectors of the atom-atom in-
teraction Hamiltonian Ĥint in the symmetric subspace, spanned by
|1, 1〉, |b〉, |r, r〉.

Energy eigenvalue Eigenvectors

V |r, r〉
0 |b〉, |1, 1〉

the interaction Hamiltonian are in Tables I and II, respec-
tively.

First, we consider the well-known strong blockade regime
with |V | � h̄�eff , where the interaction term is the domi-
nant Hamiltonian and the driving term is the perturbation.
The zeroth-order eigenvectors are the states |S = 1, Mz〉. The
leading-order correction is calculated using degenerate per-
turbation theory in the zero eigenvalue subspace spanned by
|S = 1, Mz = −1〉 ≡ |1, 1〉 and |S = 1, Mz = 0〉 ≡ |b〉. The
eigenvalues and corresponding of eigenvectors of Ŝθ in the
zero-eigenvalues subspace of Ĥint are in Table III. Using
PS,Mz to denote the projector on the subspace of S, Mz,(

PS=1,Mz=−1 + PS=1,Mz=0
)
Ŝθ ,

(
PS=1,Mz=−1 + PS=1,Mz=0

)
= − cos(θ )|S = 1, Mz = −1〉〈S = 1, Mz = −1|

+ sin(θ )√
2

(|S = 1, Mz = −1〉〈S = 1, Mz = 0|)

+ sin(θ )√
2

(|S = 1, Mz = 0〉〈S = 1, Mz = −1|). (14)

The perturbative corrections to energy eigenvalues are the
two-atom light shift experienced by the atoms together in the
presence of V . The leading correction to the energy of the log-
ical state |1, 1〉 ≡ |S = 1, Mz = −1〉 in perturbation theory, is
the two-atom light shift under perfect blockade

E (2)
LS = − h̄�eff

2
± h̄

2

√
2�2

eff + �2
eff . (15)

Subtracting out the energy shifts in eigenstates of each atom
to obtain the entangling energy κ using Eq. (5),

lim
h̄�eff /|V |→0

κ

= −�eff

2
± 1

2

(√
�2

eff + 2�2
eff − 2

√
�2

eff + �2
eff

)
. (16)

Note that, here by design, h̄|κ| � |V | since we assumed
h̄�eff � |V |. The maximum useful κ scales with the Rabi
frequency �eff . Under a perfect Rydberg blockade regime

TABLE III. Eigenvalues and eigenvectors of Ŝθ in the zero-
eigenvalue subspace of Ĥint . Here, tan � = √

2�eff/(−�eff ). The
upper and lower rows represent the upper and lower branches of the
two-atom dressed states in the perfect blockade regime, shown in
Fig. 1.

Energy eigenvalue Eigenvectors

− 1
2 cos θ + 1

2

√
cos2 θ + 2 sin2 θ cos �

2 |b〉 + sin �

2 |1, 1〉
− 1

2 cos θ − 1
2

√
cos2 θ + 2 sin2 θ cos �

2 |1, 1〉 − sin �

2 |b〉

FIG. 5. Entangling energy in units of the interaction energy as
a function of the ground to Rydberg Rabi frequency in units of
the interaction energy for different detunings. For small detunings,
in the strong blockade regime h̄�eff � |V |, the entangling energy
scales linearly the Rabi frequency. and in the weak blockade regime
h̄�eff � |V |, the entangling energy is independent of the Rabi fre-
quency and scales linearly with the interaction energy. For large
detunings, the entangling energy is negligible.

|V | � h̄�eff , the state |r, r〉 is not populated. Thus, there is
an adiabatic passage from the |1, 1〉 to |b〉 and back as shown
in Fig. 1(f).

Next, we consider the weak blockade regime where
|V | � h̄�eff . In this case, the laser-driving term is the
dominant Hamiltonian and the interaction term is a per-
turbation. The eigenstates of the driving Hamiltonian are
the one-atom dressed states, which are rotated spin-
triplet states |S = 1, Mθ 〉 given in Table I. The en-
ergy eigenvalues are the one-atom light shift. The en-
tangling energy h̄κ can be estimated as the correction
to the dressed ground state |1̃, 1〉 ≡ |S = 1, Mθ = −1〉 ≡
(cos θ

2 |1〉 + sin θ
2 |r〉)⊗2. The unperturbed energies of the

dominant Hamiltonian include the single-atom light shifts.
Therefore, the leading-order correction to the noninteracting
energy is the asymptotic value of h̄κ ,

lim
|V |/h̄�eff →0

h̄κ =
(

1 ± cos θ

2

)2

V, (17)

where ± refers to the relative sign of the initial detuning and
the detuning at peak dressing during an adiabatic passage and
the corresponding (unnormalized) dressed state, in leading-
order perturbation theory, is

|1̃, 1〉 ≡
(

cos
θ

2
|1〉 + sin

θ

2
|r〉

)⊗2

± cos2

(
θ

2

)
V

2h̄
√

�2
eff + �2

eff

|r, r〉, (18)

now including the doubly excited Rydberg state.
We calculate the entangling energy h̄κ numerically be-

yond the perfect blockade regime for different detunings as
shown in Fig. 5. We focus on entangling protocols that limit
the population in the doubly excited Rydberg state |r, r〉 to
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 6. Dressed state energies and populations in the basis {|1, 1〉, |b〉, |r, r〉} as a function of �eff/�eff in different blockade regimes. (a),
(b) Strong blockade. (c), (d) Intermediate blockade. (e), (f) Weak blockade. (a), (c), and (e) energy eigenvalues V , while (b), (d), and (f) show
populations of dressed states, when the initial detuning �eff < 0.

avoid potentially deleterious decay and inelastic processes. To
ensure this, we consider adiabatic ramps that are far from
the antiblockade condition V = 2h̄�eff . In practice, this is
done in the weak blockade case with a detuning at peak
dressing (minimum |�eff |) satisfying h̄|�eff | � |V |. As pre-
dicted from perturbation theory, we see that entangling
energy scales with the Rabi frequency in the strong blockade
regime and reaches V/4 at resonance in the weak blockade
regime.

Theoretically, all of the interaction energy V is available
as the Rydberg dressing entangling energy h̄κ . However, this
occurs when θ ∈ {0, π} or |�eff |/�eff → ∞ when the dressed
state is simply the bare atomic state |r, r〉. As we saw in
Ref. [37], an adiabatic passage that starts far from ground-
Rydberg resonance, goes close to resonance, and returns to
far off-resonance is most effective at limiting double Rydberg
excitation. In this weak blockade case the adiabatic passage
stays far from the antiblockade condition, leading to a dressed
state |1̃, 1〉 that is primarily an admixture of |1, 1〉 and the
bright state |b〉, with a small |r, r〉 component.

In Fig. 6 we consider examples of strong (V � h̄�eff ),
intermediate (V ∼ h̄�eff ), and weak (V � h̄�eff ), showing
the dressing energies and the populations of bare states
|1, 1〉, |b〉, |r, r〉 in the dressed state |1̃, 1〉. Given the energy
gaps, we see that the adiabatic dressing protocol allows for
a gate as fast as a timescale of ∼2π h̄/|V |, and importantly,
by sweeping the detuning close to resonance, while avoiding

the antiblockade condition, there is negligible excitation of the
doubly excited Rydberg state |r, r〉. For example, we study
|V | = 0.1h̄�eff for both the one- and two-photon excitation;
the ramps are shown in Fig. 7 using the same parametriza-
tion used for the strong blockade case, Eqs. (10) and (11).
Despite the weak blockade, we see that the population ac-
cumulated in the state |r, r〉 is bounded, which overcomes
one of the significant hurdles in going beyond perfect
blockade.

Let us return to the question of the maximum possible
achievable entangling gate fidelity, assuming loss of fidelity
due to uncertainties in atomic motion is negligible. When
considering adiabatic Rydberg dressing, the entanglement is
generated in the form of the dynamical phases from the en-
tangling energy

∫
dt ′κ (t ′) [32,37]. Fundamentally, the time

spent in the Rydberg state is bounded by an energyscale
proportional to the entangling energy h̄κ . Using adiabatic
Rydberg dressing in the strong-blockade regime leads to tr
that scales inversely with the Rabi frequency as κ ∼ �max, and
therefore, is far from the minimum, tr ∼ 2π/�max � π h̄/|V |.
In Fig. 8, we plot the time-integrated Rydberg population as a
function of the ratio of Rabi frequency to the interatomic Ry-
dberg interaction energy h̄�max

eff /|V | for both the one-photon
case using Eq. (10) and the two-photon ramps as given in
Eq. (11). The analysis indicates that the time-integrated popu-
lation required to create the perfect entangler, while avoiding
the antiblockade condition, decreases as we increase the Rabi
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(a)

(d)

(b)

(c)

(e)

(f)

FIG. 7. Adiabatic passages to implement Ûκ (ϕ1, ϕ2) with ϕ2 = π/2 [Eq. (6), Fig. 2] in the weak blockade regime (h̄�eff = 0.1|V |). (a) One-
photon adiabatic passage Gaussian sweep of Rabi frequency and linear sweep of detuning as in Refs. [37,43]. (b) One-atom populations during
a one-photon adiabatic passage. (c) Two-atom populations during a one-photon adiabatic passage. (d) Two-photon adiabatic passage using a
Gaussian sweep of Rabi frequency �1a, with all other parameters fixed, which leads to an effective sweep of the two-photon Rabi frequency
�eff and two-photon detuning �eff as shown in (e). (f) Two-atom populations during a two-photon adiabatic passage. Bottom axes show time
measured in units of 2π/�max, top axes show time measured in units of V t/(2π h̄). In the weak blockade, as expected, V t/h̄ � �maxt .

frequency h̄�max, compared to the interaction energy |V | and
it eventually saturates to slightly above 4π h̄/|V |.

0 2 4 6 8 10
h̄Ωmax

eff /|V |

100

101

102

| V
|t r

/ (
4π

h̄
)

1-photon

2-photon

FIG. 8. Time-integrated Rydberg population tr as a function of
Rydberg interaction V for the one- and two-photon ramps. In both
cases, the integrated Rydberg population becomes lower and lower
as we increase h̄�eff/|V | for the two-photon adiabatic passage as in
Eq. (11) and one-photon adiabatic passage as in Eq. (10).

This result is consistent with the bound found in Ref. [51].
Since the value of h̄|κ| reaches |V |/4 near resonance in the
weak blockade regime [Eq. (17)], the theoretically achiev-
able maximum fidelity, while the limiting double Rydberg
excitation is

F < 1 − 4π h̄

|V |τr
, (19)

where τr is the Rydberg-state lifetime. For contemporary ex-
periments, with |V |/(2π h̄) = 40 MHz and τr = 150 μs, the
theoretical minimum infidelity is about 10−3. With cryo-
genically enhanced Rydberg lifetimes, around τr = 1ms and
stronger interactions, |V |/(2π h̄) = 1 GHz, the theoretical
minimum infidelity would be 10−5. In practice, achieving this
would require working in the weak blockade regime, with
large laser power such that h̄�eff � |V |.

The ability to design gates with adiabatic dressing beyond
the perfect blockade regime also loosens other constraints
and potential sources of error. Maintaining atoms beyond
the blockade radius reduces the requirement for transporting
atoms, which leads to motional heating. Our results show that,
even for moderate EDDI, with |V |/(2π h̄) of a few MHz, one
can achieve fast gates with gates times of the order of a few
μs. Moreover, at moderate separations, the shifted doubly
excited states are well resolved and well defined, reducing
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spurious resonances. A potential downside to the operation in
this regime is the sensitivity of the entangling energy-to-atom
separation and also the resulting forces on the atoms. We
address this in the Appendix.

IV. CONCLUSION

In this article, we explored some practical considerations
and fundamental limits of the adiabatic Rydberg dressing pro-
tocol for two-qubit quantum logic gates, where entanglement
is generated by the modification of the ground-state light shift
introduced by the interaction energy between Rydberg atoms.
We studied adiabatic Rydberg dressing via a two-photon
ground-to-Rydberg transition and found adiabatic ramps that
can be used to achieve high-fidelity entangling gates by mod-
ulating only one laser amplitude as a function of time, with
all laser frequencies fixed, allowing an easier experimental
implementation and alleviating the need for a high-power
ultraviolet laser (Sec. II). A major bottleneck for adiabatic
Rydberg dressing-based entangling gates in the case of a two-
photon ground-to-Rydberg transition is the intermediate-state
lifetime. We found that, with current state of the art with
Rydberg lifetimes ∼100μs and ground-to-Rydberg Rabi fre-
quencies ∼4MHz, gates with fidelity 0.99 are achievable in a
regime that adiabatically eliminates the intermediate state, but
still maintains reasonable two-photon Rabi frequencies. This
protocol is applicable for both alkali and alkaline-earth-like
atoms.

We also studied the fundamental limits of implementing an
entangling gate using adiabatic Rydberg dressing of ground
states, set by the finite Rydberg lifetime and the entangling
energy obtained in the dressed states (Sec. III). We showed
that, in the well-known strong blockade regime, the entangling
energyscale is limited by the ground-Rydberg Rabi frequency,
that is, laser power, and in the weak blockade regime, the
entangling energy is limited by the interaction energy be-
tween the atoms. Moreover, we showed proof-of-principle
feasibility of rapid adiabatic passages without significant
double-Rydberg population in strong, intermediate, and weak
blockade regimes, thereby loosening the requirements of
atoms being within a blockade radius for implementing en-
tangling gates in a few μs. A more precise model of the
entangling energy using atomic species and Rydberg-state
specific treatment, for example, as in Ref. [49], can be used
to design adiabatic passages for specific experiments.

In conclusion, adiabatic Rydberg dressing is a promising
approach to implementing two-qubit entangling gates for neu-
tral atoms. It can be implemented in several atomic species
with one- or two-photon ground-to-Rydberg transitions and
can be designed beyond the strong blockade regime to yield
fast, high-fidelity gates.
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APPENDIX: QUANTIFYING FORCE ON ATOMS

Outside the strong blockade regime, it is important to
consider the interatomic forces that could potentially effect
the motional state of the atoms. Two atoms directly excited
into the Rydberg state will experience a large van der Waals
force from the EDDI. However, in adiabatic dressing a force
will arise from the spatial gradient of the light shift, i.e., the
“soft core” adiabatic potential force arising from the |r, r〉
component in the dressed state |1̃, 1〉.

Consider, thus, the adiabatic interatomic potential expe-
rienced by atoms in instantaneous internal “adiabatic state”
|ψ (R)〉. We treat here the center-of-mass motion of the atoms
classically, in which the interatomic force is given according
to

Vad = 〈ψ (R)|H (R)|ψ (R)〉 ⇒ F = −∇Vad, (A1)

where |ψ (R)〉 = c11(R)|1, 1〉 + cb(R)|b〉 + crr |r, r〉. The co-
efficients depend on the interatomic distance R. If the state is
an eigenstate of H , for example, the adiabatic potential of the
dressed ground state |1̃, 1〉 is

Vad(1̃, 1) = E (1̃, 1) = h̄κ (R) + 2E (1)
LS + 2E1, (A2)

which gives a force

F(1̃, 1) = −h̄∇κ (R), (A3)

as the one-atom light shift E (1)
LS and bare energy E1 are inde-

pendent of R.
When the interatomic distance is well within the blockade

radius, where we have a perfect blockade, κ is independent of
R. This leads to a “soft-core” potential which was observed

FIG. 9. Interatomic potential energy and forces between atoms in
the dressed state |1̃, 1〉. (a) Entangling energy κ in units of the Rabi
frequency �eff as a function of interatomic distance R, in units of the
blockade radius Rblock. (b) Gradient of the entangling energy along
the interatomic direction ∂Rκ in units of the ratio �eff/Rblock.
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experimentally in Refs. [14,15,43,47]. This can also be an-
alyzed on the basis of bare atomic orbitals. For simplicity,
consider the case of zero detuning, the adiabatic potential
between dressed ground states is

Vad(1̃, 1) =
√

2�eff{Re[c11(R)c∗
b (R)]

+ Re[c11(R)c∗
rr (R)]} + |crr |2V (R). (A4)

Note the force is not simply |crr |2∇V (R); the interference
terms in the adiabatic potential reduces the otherwise large
force.

For simplicity and generality, we calculate κ as a function
of distance using a van der Waals potential V = C6|R|−6 and
the interatomic force as a function of distance in Fig. 9. As

is standard, we define the blockade radius where the energy
of Rabi frequency of the Rydberg excitation is equal to V ,
h̄�eff = C6R−6

block. At short interatomic distances the adiabatic
potential has a soft-core form and is the entangling energy
h̄κ , up to additive constants, as observed experimentally in
Refs. [14,15,43,47]. At large distances, the interatomic poten-
tial asymptotes to a quarter of the vans der Waals potential,
C6|R|−6/4 for van der Waals interactions. The transition oc-
curs roughly between |R|/Rblock ≈ 1/2 and |R|/Rblock ≈ 2,
where the potential energy has a nonzero gradient, giving rise
to a nontrivial interatomic force (Fig. 9). From these results,
we see that the operation of an adiabatic dressing gate outside
the perfect blockade regime will lead to bounded perturbing
forces on the atoms.
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