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Device-independent quantum key distribution (DIQKD) reduces the vulnerability to side-channel attacks of
standard quantum key distribution protocols by removing the need for characterized quantum devices. The higher
security guarantees come, however, at the price of a challenging implementation. Here, we tackle the question
of the conception of an experiment for implementing DIQKD with photonic devices. We introduce a technique
combining reinforcement learning, an optimization algorithm, and a custom efficient simulation of quantum
optics experiments to automate the design of photonic setups maximizing a given function of the measurement
statistics. Applying the algorithm to DIQKD, we get unexpected experimental configurations leading to high
key rates and to a high resistance to loss and noise. These configurations might be helpful to facilitate a first
implementation of DIQKD with photonic devices and for future developments targeting improved performances.
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I. INTRODUCTION

In quantum key distribution (QKD) [1,2], two separated
parties connected by a public quantum channel, Alice and
Bob, aim at expanding a string of random bits, i.e., a key.
The secrecy and correctness of this key generally rely on
the assumptions that (i) the devices used to generate the key
behave according to quantum theory, (ii) the parties’ locations
are isolated to prevent unwanted information leakage, (iii)
Alice and Bob get access to random numbers, (iv) they can
process classical information on trusted computers, and (v)
their quantum devices are trusted and perfectly calibrated to
carry out precisely the state and measurements foreseen by
the protocol [3-6].

When these assumptions are not met due to imperfections
or simplifications in the QKD implementation, hacking be-
comes possible and compromises the security of the key [7].
In order to reduce the vulnerability to these attacks, new
QKD protocols relying on fewer assumptions are desirable.
In device-independent QKD (DIQKD) especially, assumption
(v) is removed. The state structure produced by the source,
the underlying Hilbert space dimension, and the operators
describing the measurement apparatus are unknown and their
choice is even given to the eavesdropper, Eve.

The higher security level of DIQKD comes at the price
of a challenging implementation. DIQKD is entanglement
based [2]; i.e., the key is distilled from the results of measure-
ments on entangled states. It requires high-quality entangled
states where the quality is quantified by means of a nonlocal
game. A high winning probability of the Bell-Clauser-Horne-
Shimony-Holt (CHSH) game [8], for example, ensures that
Alice and Bob’s state is closed to a two-qubit maximally
entangled state [9], and that their measurement outcomes are
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unpredictable to Eve [10]. Many entangled pairs are also
required because the postprocessing steps needed to distill an
actual key from the measurement outcomes are bit consuming.

Significant progress on the preparation of high-quality en-
tanglement using single trapped ions was recently reported
experimentally [11], and culminated with the first distribution
of a device-independent key [12] (see also Ref. [13] for recent
results aiming to extend DIQKD over hundreds of meters
with single atoms). A next step aims at implementing DIQKD
with a purely photonic platform, which is plausibly closer to
what is expected for a commercial device. On the positive
side, the Bell-CHSH game has already been properly im-
plemented using a photon pair source producing polarization
entanglement and photon counting techniques for polarization
measurements [14—18]. The reported winning probabilities
are, however, very close to what can be obtained with clas-
sical strategies and are thus not sufficient to realize DIQKD.
The main issue of these demonstrations is the photon states
which are different from ideal two-qubit states [19]. Another
problem is loss—a fraction of photons are lost on the way
from the source to the detectors [20]. While the most advanced
realization of DIQKD with photonic devices uses polarization
entanglement and measurements [21], a natural question is
how to combine currently available photonic resources to
facilitate the realization of DIQKD in this setting.

By combining Gaussian and non-Gaussian operations, re-
searchers have imagined optical circuits that are capable of
winning Bell games with a probability higher than classical
strategies [22-24]. Since the number of possible arrangements
of optical elements grows exponentially with the number
of operations considered, all possible combinations of these
operations have likely not been considered, and simple con-
figurations might have been missed. Recent developments on
integrated circuits also invite us to explore complex solu-
tions with large numbers of modes and operations [25,26].
Furthermore, substantial theoretical efforts are devoted to the
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development of security proofs using the distribution of mea-
surement results directly instead of the winning probability
of a Bell game obtained from this distribution [27-33]. The
need to find optical circuits facilitating the implementation
of DIQKD, the possibility of implementing complex optical
circuits, and the search for an optical setup producing exactly
a given probability distribution of results push us to provide
automated solutions to design optical experiments.

Machine learning [34-37] is becoming more and more
useful in automation of problem solving in quantum physics
research [38—43]. Inspired by Ref. [44], we introduce a tech-
nique combining reinforcement learning [45], an optimization
algorithm [46], and a custom efficient simulation of quantum
optics experiments to design photonic setups maximizing a
given function of the measurement statistics. Applying the
algorithm to DIQKD, it discovered new, unexpected experi-
mental configurations leading to high key rates in both ideal
and lossy cases. The relative simplicity of one of these settings
together with its resistance to detector inefficiencies and noise,
or the high key rate of a more advanced setting, could be
helpful for a first implementation of DIQKD and for future
developments.

II. DIQKD PROTOCOL

The protocol is divided in rounds. Each round starts with
the creation of entangled systems, half sent to Alice, the
other half to Bob, and finishes with randomly chosen mea-
surements. Alice can choose one out of two measurement
settings labeled A, with x € {0, 1} and Bob has the choice be-
tween three measurement settings called 1§y withy € {0, 1, 2}.
For each measurement input, one out of two possible out-
comes is obtained that we label A, for Alice and B, for Bob,
with {A,, B,} € {0, 1}. The settings x,y € {0, 1} are used in
a CHSH game in which a round is won if the outcomes of
Alice and Bob are the same for the pair of settings {Ao, Bo},
{Ao, B,}, and {A,, By} and different when the settings choice
is {A}, B,}. The winning probability  of the CHSH game is
given by (4 4 §)/8 where the CHSH score S is defined as

S = (AoBy) + (AoB1) + (A1Bo) — (A1By), (D

with (A,B,) = p(A, = By|A, B)) — p(A; # By|A,, B). The
setting B, is ideally chosen to produce outcomes correlated
with the results of Ag.

After many rounds, Alice (Bob) forms a raw key A (B)
from the results of her (his) measurements. Bob then uses
error correction to reconstruct a copy of Alice’s string and
estimate the Bell value S. A randomness extractor is finally
applied to obtain the final secret key. In the asymptotic limit
of a large number of rounds, the key generation rate when
optimal one-way error correction and privacy amplification is
used is bounded by [47] r = H(A|E) — H(A|B), with H the
von Neumann entropy. The first term, which quantifies Eve’s
uncertainty about the reference key A, can be lower bounded
by a function of the CHSH score [48]. When the protocol
further includes a step where artificial noise is added to the
measurement outcomes, Alice is instructed to generate a new
raw key A’ by flipping each of the bits of her initial raw key
A independently with probability p before the postprocessing
steps. Eve’s uncertainty can increase depending on the value

of p. In this case, the key rate is given by [49]
r<1—1,5) —HA'B), 2)

with
I,(S) = h(—l + \/(52/2)—2_1)

_h(1+J1—p(1—p)<8—52>)

2

h being the binary entropy.

III. PHOTONIC CIRCUITS

A. Photonic circuits under consideration

We consider an experiment involving n bosonic modes
initially in the vacuum state. Their state is then manipulated by
applying single-mode and two-mode operations on any mode
or pair of modes in any order. n — m of these modes are mea-
sured with non-photon-number-resolving detectors. The state
preparation is finalized if the desired combination of measure-
ment outcomes (click or no click) is obtained on the measured
modes. The remaining m modes are split between Alice and
Bob, to which they apply a sequence of operations chosen
from the same set to define the measurement settings. All the
modes are finally detected by means of non-photon-number-
resolving detectors, yielding one of the 2™ possible results. In
the examples below, we explore circuits up to {m, n} = {2, 4}
to keep a reasonable implementation complexity.

The set of possible operations we consider is a fair rep-
resentation of operations that are routinely used in quantum
optics experiments. It includes single-mode squeezers, phase
shifters and displacements for the single-mode operations,
two-mode squeezers, and beam splitters for the two-mode op-
erations. The use of a photon detector is motivated by the need
for non-Gaussian operations to obtain statistics that cannot be
reproduced by locally causal models and hence for producing
a key device independently.

B. Reference photonic circuit

The most commonly used optical setup for realizing Bell
tests [14-18,21] uses a combination of two-mode squeez-
ing operations on the vacuum for producing polarization-
entangled photon pairs and standard polarization measure-
ments (see Fig. 1). By optimizing the squeezing parameters,
the setting choice, and the amount of noise in the noisy prepro-
cessing and by binning the measurement results appropriately,
Eq. (2) yields a key rate of ~0.2522 in the ideal case, i.e.,
without noise and loss [49]. When considering detectors with
nonunit efficiencies, the key rate decreases as shown in Fig. 3
(see blue dashed line). The critical detection efficiency, that
is, the minimum detection efficiency needed to generate a
positive key rate, is 82.6% [49]. This serves as a reference
to benchmark the performance of alternative circuits enabling
DIQKD.

C. Simulating quantum-optical circuits

To quantify the performance of a set of photonic circuits,
we need to efficiently compute their measurement statistics.
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FIG. 1. Most commonly used photonic experiment for realiz-
ing Bell tests which can naturally be envisioned for implementing
DIQKD. Alice and Bob receive each two modes, one from each of
two two-mode squeezers (TMS rectangle) operating on the vacuum.
The settings choice A, (1§).) is obtained by choosing the relative phase
¢, (¢,) of the two modes and the transmission of the beam splitter
(square) combining them. The measurements are finalized by placing
two non-photon-resolving detectors (grey half circle) at the output of
the beam splitters. The outcomes A, and B, are obtained by binning
the click and no-click events produced by the photon detectors.

This is achieved here by describing states using first and
second moments of quadrature operators. Formally, if a;, a:
are the bosonic operators for the mode i = {1, ... , n}, the cor-

respondlng d1mens1on1ess quadrature operators are given by

=4 +a’ and p; = i%-% '_ L with [£;, p;] = 5. We collect these
2n operators in a Vector = (%1, p1, - - fcn, Pn) and label
the ith component of this vector qi- The displacement vector
jt and the covariance matrix X associated to a given state
have elements given by u; = (g;) and X;; = %(q,-qj +q,qi) —
mipj.p and ¥ give a faithful representation of any n-mode
Gaussian states in terms of 2n”> 4 3n real parameters (see
Refs. [50-52] and Appendix A). As long as Gaussian opera-
tions only are applied on the initial vacuum, the state remains
Gaussian and can be represented efficiently by the displace-
ment vector and the covariance matrix.

The only exception that we consider to produce non-
Gaussianity is the photon detection. Interestingly, as we show
in Appendix A, if one starts with an n-mode Gaussian state
and measures one mode with a single photon detector, the
state of the remaining n — 1 modes is Gaussian when it is
conditioned on a no-click event or a difference between two
Gaussian states when the conditioning is on a click. Hence,
the conditional state of the n — 1 modes can be fully described
by at most two pairs of displacement vectors and covariance
matrices. For each additional heralding operation, the number
of parameters required to describe the state has to be doubled.
Nevertheless, if the number of modes used for heralding re-
mains low, we obtain a memory-efficient exact representation
of the state associated to a given circuit. This is precisely our
regime of interest, since we want a reasonable heralding rate
to end up with feasible proposals.

IV. AUTOMATED DESIGN OF QUANTUM
OPTICS EXPERIMENTS

The automated design of quantum optics experiments
is based on reinforcement learning—a machine learning
paradigm in which an agent is interacting with an environment
and learns a task by trial and error. The agent is a routine
which specifies the order with which operations are placed on
the different modes. The environment efficiently models the

series of operations proposed by the agent in order to deduce
the measurement statistics and set the parameters of chosen
operations to optimize the key rate. The maximal key rate
computed by the environment is fed back to the agent as a
reward.

The task of the agent is to invent photonic circuits suitable
for DIQKD. It learns to do so by repeatedly interacting with
a virtual optical circuit inside an episode until a stop con-
dition is met. Specifically, at the beginning of each episode
e, the agent perceives a state s;(e) which is a representation
of the (empty) optical circuit at the first step k = 1. After
a deliberation phase, the agent places one or several optical
elements corresponding to an action a;(e) on the bosonic
modes. This produces a new circuit which is analyzed by the
environment. The agent then receives back the new state of the
circuit s, (e) together with the associated reward r,(e) which
can be adapted depending on the property of circuits that is
desired. An interaction step starts again and the end of the
episode is reached when a given circuit depth is achieved. The
agent learns from past experiences {s;(k), r;(k)} by updating
the policy behind the deliberation process.

The task of the environment is to simulate the optical
circuits proposed by the agent and optimize its parameters
in order to compute the reward associated to the circuit. To
simulate the circuit, we developed a package, QuantumOp-
ticalCircuits.jl [53], written in JULIA [54], using the efficient
state representation described in the previous section. To find
the parameters of circuits leading to the highest key rates
according to the bound given in Eq. (2), we used the Nelder-
Mead algorithm, a suitable algorithm for the optimization of
multidimensional nonlinear objective functions which does
not require an analytical or numerical gradient to be supplied
[46]. The optimization is performed in the ideal case, i.e., with
unit detector efficiency. To get access to the critical detection
efficiency, the optimal parameters are computed by first con-
sidering detectors with unit efficiencies. The efficiency is then
decreased and a new parameter optimization is performed,
starting from the ones resulting in the best key rate at the pre-
vious step. The process starts again with a smaller detection
efficiency until the key rate drops below a certain threshold.

A. Choice of the policy

Transition in the environment, i.e., the change in state and
reward from an action, is the result of a heuristic numerical
optimization. In such a case, it is natural to use model-free
reinforcement learning, learning purely from trial and error,
not trying to construct a model of that transition [45]. Fur-
thermore, infinitely many states can be observed and learning
which action performs best for each state is computationally
impossible. Instead, we use a policy gradients method, which
aims at learning directly a stochastic policy mapping states
to actions [55]. Finally, the sampling cost, i.e., the cost to
simulate an episode, is high from the numerical optimization.
In this scope, we used the proximal policy optimization (PPO)
algorithm [56], a model-free policy gradient algorithm known
to be sample efficient compared to similar reinforcement
learning algorithms, e.g., trust region policy optimization
(TRPO) [57]. The details of this algorithm are available in
Appendix B.
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FIG. 2. Photonic setups resulting from an automated search
when (a) the highest key rate is favored in the absence of imperfec-
tion and (b) the highest tolerance to detector inefficiency is favored.
In setup (a), the state preparation uses three two-mode squeezed
(TMS) states operating on the pair of modes {1, 2}, {2, 3}, and {1, 3},
respectively, followed by a single mode squeezers (S) on mode 2.
Alice and Bob receive the state of modes 1,2 conditioned on a click at
the photon detector on mode 3. For each of his measurement settings
y = {0, 1, 2}, Bob performs a displacement operation in the p direc-
tion (D?). In the case y = 1, a single-mode squeezer is applied before
the displacement operation. On Alice’s side, the first measurement
setting is a phase shifter (@) followed by a displacement operation
along x (D*). For the second setting, a single-mode squeezer replaces
the phase shifter. In setup (b), the preparation step is made with a sin-
gle two-mode squeezer (TMS) operating in vacuum. Alice’s settings
are set by either a displacement for A or a single-mode squeezer
followed by a displacement for A;. Bob’s settings correspond to
displacement operations with different amplitudes for each input.

7

0
1

TMS

B. Results

In the first step, we define a reward which favors a high
key rate in the absence of loss and noise. The setup found by
the agent after a few training steps is depicted in Fig. 2(a). It
involves three modes, one mode serving as a heralding after
a series of two-mode and single-mode squeezed operations.
This setup yields a key rate of ~0.914, much higher than
the reference circuit (key rate of ~0.252). The resistance to
loss of this unexpected setup is characterized by optimizing
the key rate as a function of the detection efficiency 1 (the
detectors of Alice and Bob and the one used for the heralding
are assumed to have the same efficiency). From the result
given in Fig. 3 (orange dashed line), we see that the setup of
Fig. 2(a) provides a higher key rate than the reference circuit
for n 2 87.5%.

In the second step, we adapt the reward to favor loss-
tolerant circuits. Concretely, we look for circuits with a
minimum detection efficiency for achieving a key rate of at
least 107, The most interesting setup was found for n = 2
and uses a single two-mode squeezed operation on the vac-
uum for state preparation [see Fig. 2(b)]. As shown in Fig. 3
(green solid line), the circuit leads to a key rate of ~10~% for
n = 82.45%, while the same rate is obtained for the reference

/ — — - Polarization
1077 I I S Hig‘h key rate
l — Robust
e - : '
0.85 0.9 0.95 1.0
Efficiency

FIG. 3. Key rate as a function of the detector efficiency. The blue
dashed line is associated with the reference circuit shown in Fig. 1.
The orange dotted line corresponds to the circuit found when high
key rates are favored for unit efficiency detections [Fig. 2(a)]. The
green solid line is associated to the circuit found when favoring the
resistance to nonunit detection efficiency [Fig. 2(b)].

circuit for n = 83.25%. Moreover, depending on the detection
efficiency, the key rate can be up to two orders of magnitude
larger. Finally, when including dark counts with a probability
of 1073, a key rate of 10™* is obtained with the reference
circuit for n ~ 91.1% while the proposed circuit takes n ~
86.1%. Note that the parameters of circuits presented in Fig. 2
are given in Appendix C.

V. CONCLUSION

We presented an algorithm combining an efficient mod-
eling of Gaussian and heralded processes, an optimization
and reinforcement learning to automate the search of optical
circuits producing desired statistics. We showed its usefulness
in DIQKD, for both mid- and long-term goals aiming respec-
tively to facilitate a first photonic realization and to deliver
high key rates. We do expect the proposed algorithm to remain
useful in case new protocols and security proofs are proposed
as the formula of the key rate that was used to guide the agent
can be updated to include future developments.
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TABLE I. Single-mode Gaussian operations. When the operation acts on the ith mode, the nonzero components of d and the nontrivial
block of the matrix M appear at positions 2i — 1 and 2i. For the displacement we also consider the particular cases denoted D* for Im{a’} = 0

and D? for Re{a} = 0.

Operation U d M Parameters
Displacement (D) el —aa (...,0,Rea, Ima, 0, ...)T 1,, aeC
Phase shifter (®) e i0aj 0 ( Cz Z") R P 0 eR
—Sp )
- Lt —zal?) = C, —S,co —S,s0 )
Single-mode squeezer (S) e 0 ( S, C, +S.c & 1y, z=re’ e C

APPENDIX A: MODELING PHOTONIC CIRCUITS

In this Appendix we present a concise and self-contained
derivation of how we model the photonic circuits discussed in
the main text with a low number of parameters. We start by
giving a short summary containing all the formulas required
to use this representation. The derivations are presented after-
wards.

1. Summary

Consider n bosonic modes and the associated quadra-
ture operators X; = % and p; = 10’% that we collected in
a vector q = (X1, P1, .-+ X, Pn) = (q1, G2+ - - - Q2n—1, G2n)-
Any Gaussian n-mode state p can be faithfully represented by
the first two moments (p, ¥) of the quadrature operators on
the state w; = (g;) = trp g; and Xj; = Hqiq; + q;q:) — ;.
Here pu is the displacement (column) vector (2n real param-
eters) and ¥ = X7 is the covariance matrix (2n* + n real
parameters). In particular, for the vacuum state one finds

1
vacuum state |0)(0|®" :  (u, X) = <O, 4_1]1> (A1)

A Gaussian operation T maps Gaussian states to Gaussian
states. It can be represented by means of a pair (d, M) with a
2n real column vector d and a symplectic 2n x 2n matrix M.
When acting on a state the Gaussian operation transforms the
displacement vector and the covariance matrix as

T:(n, )~ Mp+d,MIMT). (A2)

In Tables I and IT we give the representation of all single-mode
and two-mode Gaussian transformations in terms of (d, M) as
well as the corresponding unitary representation T : |) —
Uly). We use the notation cy = cos(f), sy = sin(0), C, =

cosh(r), and S, = sinh(r). Next we consider the transforma-
tions of the state resulting from measuring out the mode i with
a single photon detector of efficiency 1. Both of the states p—;
and p,; of the remaining (n — 1) modes resulting respectively
from discarding the measurement outcome (or tracing out the
mode i, p—;) and conditioning on the no-click outcome (p.;)
are Gaussian. The displacement vectors and quadrature mo-
ments of the resulting states are given in Table III. To express
the state we use the transformation TR; which simply drops
the components of a vector or rows at columns of a matrix at
positions 2i — 1, 2i,

TR;[p] = (..., m2i—2, R2itts -+ ),

Yoi22i—2 | Loi—22i41 - -- (A3)

TR;[2] = )
il2] 20i1.2i-2 | 22it12i+1

and the matrix F given by

=

[\S]

S0

F=(2 ®0 (A4)

0 4 2n—2-
N/ 2i-1,2i

The probabilities to observe the no-click (p,;) and the click
(p.;) outcomes are given by

2 (det )
Pt =570\ det(s— ' + F)

T(E—172—1(2—1+F)—] -1 )IL

1
x e 2M

and Dei = 1— Poi- (AS)

TABLE II. Two-mode Gaussian operations. When the operation acts on modes i and j the nontrivial block of the matrix M appears at

positions 2i — 1, 2i,2j — 1, and 2.

Operation U d M Parameters
Co 0 Sp 0
: 9((1Tu i—a, a+.) ] 0 Co 0 So
Beam splitter (BS) e T 0 D1y, 4 6 eR
—Sp 0 Co 0
O —Sg O Co
Cr 0 —Sng —Sr89
fajaj—zalal A 0 C, =S, 8¢ S,co i0
- idj—2d; — ol
Two-mode squeezer (TMS) e J 0 ~S.cy  —S.sp C, 0 D 1y,_4 z=re" € C
—S,-89 SrC9 0 Cr
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TABLE III. The possible states resulting from an n-mode Gaussian state p >~ (u, X) after measuring out the mode i with a single photon
detector with efficiency 7. The transformation TR; defined in Eq. (A3) simply removes the components of a vector or rows and columns of a
matrix at positions 2i — 1 and 2i. The matrix F defined in Eq. (A4) depends on the detector efficiency. The state p,; is not Gaussian but can be

decomposed as a difference of two Gaussian states [see Eq. (A6)].

Transformation Density matrix Displacement vector Covariance matrix
Tracing out the mode i (discarding the outcome) P p_; = TR;() Y., =TRi(X)
Conditioning to no-click outcome on the mode i Doi w,; =TR,[(Z'+F) 'S u] Y =TR(Z+ F)7 ']
Conditioning to click outcome on the mode i Dei X X

Importantly, the state p,; conditional on the click outcome is
non-Gaussian, but can be expressed as a difference of two
Gaussian states:

1
P=i — PoiPoi ~ : T=po:° (IL_.[, E—'i)
Poi = —FT—— =

1 — Poi Le

. A6
- 1,‘,;“_ s ("Loi’ 2:oi)} ( )

For any subsequent heralding, the number of terms in the
sum is doubled. Generally, we are thus interested in states
p =, wypr that can be represented as a quasimixture
(p =~ {wx, (g, Zx)}) of Gaussian state pg, where the weights
wy can be negative. In total such a representation requires
2"="(2m? 4 3m + 1) real parameters, where the number of
modes used for heralding n — m is kept low for the setups of
interest.

Finally, we give a compact formula that computes the mea-
surement statistics. When m modes are measured with single
photon detectors, the outcomes are labeled by a bitstring k of
length m, where each bit specifies if the detector on the mode i
clicks (k; = 1) or not (k; = 0). For a Gaussian state described
by (u, X) the probability to observe the outcome k is given by

Prob(k) = Y (—1)F*(d,) with (A7)

lESk
. 2 1€
o0=(:2)

L op(n (BT -2TET 4 097 )
Vdet(T)det(S1 + Oy)

477 m Ei 0
OE_Z—nGB(O e,-)'

i=1

s

(A8)

Here Sy is the set of all bitstrings £ of length m whose com-
ponents ¢; are fixed to 1 for all i such that k; = 0 (a set of size
2/kly, and €] = Y"1, ¢; is the Hamming weight of a bitstring.

2. Wigner representation
Let us first consider a single bosonic mode associated with
creation and annihilation operators a' and a. The Dirac delta
operator, defined as
1 . .
Sa—a)=— f d?B e P (AQ)
b4
where « and B are complex numbers, possesses various prop-
erties and in particular

T f d*as(a—a)trpdla—a)=p (A10)

for any density operator p (see Ref. [58], Sec. 4). This
suggests that §(a — «) can be used for representing density
operators with the quasiprobability distribution

Wy(a) =trpdla—a) (A11)

satisfying =277 ' < Wy(e) < 217! [58]. This
representation—the Wigner representation—can be extended
to the multimode case. Consider n bosonic modes with
the operator a;, aj' associated to the mode i = {1, n}. The
Wigner representation of an n-mode state p is defined by the
following extension of the monomode case:

Wy(e) = trp (X) 8(ai — au).

i=1

(A12)

where & = {«y, ..., a,}" € C". As before, the link between
the state p of the n modes and the Wigner function is given by

p=n" / d*a W, () (R) 8(a; — ;). (A13)

i=1

3. Wigner representation of the vacuum state

An n-mode state p is called Gaussian if its Wigner func-
tion is Gaussian, i.e., equal to probability density function
N(a; u, ) of a multivariate normal distribution [50,51]

exp[—3@—w'=""@— )

Jdet2rn ) '
(A14)

@ is the R?" vector constructed from e in the following way:

& = {Re(ar;), Im(0)), . .., Re(ay), Im(aty)}T . (A15)

Wp(e) = N(e; e, X) =

1 is the displacement (column) vector, and X is the covariance
matrix. Together they are given by 2n® + 3n real parameters
with

Hi = (gi), (Al6)

Tij = 5{aiq; + 490 — ik, (A7)

with ¢g; the ith component of the vector q=

(X1, D1y oy Xy Pn) composed of th(; dimensionless

quadrature operators X; = % and p; = 1% which satisfy
[%i, pil = 5.

A single-mode vacuum state, |0), is an example of a
Gaussian state. Its Wigner function is characterized by a
zero displacement vector u = 0, (as (0]|X|0) = (0]|p|0) = 0)

and a covariance matrix proportional to identity X = %112

(as (01£7]0) = (0]p*|0) = § and (O|{%, p}|0) = (O]} (aa’ —
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aa’)|0) = 0). Extending this to n modes, we get that the
Wigner function of the n-mode vacuum state is given by
Eq. (A14) with

p = 0, (A18)

T =115, (A19)

where the subscript specifies the size of the objects.

4. Gaussian operations

Among possible operations on bosonic systems, Gaussian
operations are those mapping Gaussian states to Gaussian
states. They are thus fully characterized by their effect on the
displacement vector and covariance matrix [51]

u—>Mp+d and T +— MIMT, (A20)

where, for an n-mode system, d € R?" and M is a symplectic
matrix, i.e., a 2n X 2n matrix satisfying

MTQM = Q  with Q:]l,,@(o 1). (A21)

-1 0
Note that a single-mode Gaussian operation characterized by
M and d acting on the mode i of an n-mode state has a
vector d = (..., 0,dyi_1,d»,0...)T with all elements that
are zero except at positions 2i — 1 and 2i, and a symplectic
matrix M = 1;_1) ® M’ @ 15(,—; with the only nontrivial
2 x 2 block M’ appearing at positions 2i — 1 and 2. Similarly
a two-mode Gaussian operation acting on modes i and j will
only have nontrivial elements appearing at positions 2i — 1,
2i,2j —1,and 2j.

Below we list the single- and two-mode Gaussian op-
erations. We first define each operation by its unitary
representation U with its action on the state given by |V)
U|¥) (the Schrodinger picture). Then we compute its action
o> U'oU on the ladder and quadrature operator (Heisen-
berg picture). Finally we obtain the representation of the

J

a + cosh(r)a — € sinh(r)a’

X > [cosh(r) — sinh(r) cos(6)]x — sinh(r)sin(0)p p +— [cosh(r) + sinh(r) cos(0)]p — sinh(r) sin(6)x.

operation in terms of the pair d and M. We only specify the
nontrivial block of M and the nonzero elements of d.

a. Phase shifter. The phase shifter (®) is a single-mode
operator given by the unitary operator Uy (0) = exp(—ifa’a).
When applied on the bosonic operators it gives

ar>e%a, d— %,

(A22)

X > cos(0)x + sin(@)p, p+> cos(@)p — sin(0)x. (A23)

We thus find that the corresponding symplectic transformation
is characterized by

sin(6)

cos(0) )’

b. Displacement. The unitary operator associated to a dis-
placement (D) with amplitude o € C is given by Up(a) =
exp(aa’ — a*a). This operation shifts the ladder and quadra-
ture operators according to

cos(0)

—sin(9) (A24)

d =0, M=<

a—~>a+a, a —d +a*, (A25)

%> % +Refa), pr> p+Imfal. (A26)

The symplectic transformation of a displacement is hence
characterized by

d= (Re{“}), M =1,. (A27)

Im{o}

We denote D* and D? the displacement operations in the
directions X and p, respectively. A displacement in X can be
seen as a displacement with « real. Similarly, a displacement
in p is a displacement with « imaginary.

c. Single-mode squeezer. The single-mode squeezing
operation (S) is given by Us(z) = exp[%(z*a2 —z(ahH?)],
where the complex parameter z can be written as z = re'.
Single-mode squeezing transforms the ladder and quadrature
operators as

Hence, single-mode squeezing can be expressed by the symplectic transformation characterized by

d=0, M =cosh(r)l,— sinh(r)(

a" + cosh(r)a’ — e sinh(r)a (A28)
(A29)

cos(6) sin(6)
sin(f) —cos(f ))' (A30)

d. Two-mode squeezer. A two-mode squeezer (TMS) acting on modes i, j is defined by the unitary Urms(2) = exp(z*a;a; —
zaja;), with z = re’”. This changes the bosonic operators as follows:

a; — cosh(r)a; — e’ sinh(r)a;, a

a;j — cosh(r)a; — e sinh(r)af,

X; = cosh(r)X; — sinh(r)[cos(0)%; + sin(0)p;],

Xj > cosh(7)X; — sinh(r)[cos(8)X; + sin(8)p;],

¥

i

a; > cosh(r)a; — e sinh(r)a;,

i

> cosh(r)a] — e~ sinh(r)a;,

(A31)

pi > cosh(r)p; + sinh(r)[cos(0)p; — sin(6);],

(A32)

pj > cosh(r)p; + sinh(r)[cos(6)p; — sin(6);].
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The corresponding symplectic transformation is given by

cosh(r) 0 —sinh(r)cos(@) —sinh(r)sin(6)
= _ 0 cosh(r) — sinh(r) sin(6) sinh(r) cos(6)
d=0, M=]_ sinh(r)cos(f) — sinh(r)sin(0) cosh(r) 0 (A33)
— sinh(r) sin(0) sinh(r) cos(0) 0 cosh(r)

e. Beam splitter. A beam splitter (BS) on modes i, j is given by the unitary Ugs(6) = exp[@(aj'aj - aiaj)], where the

transmittivity is given by cos?(6) and the reflectivity is sin’(#). This Gaussian operation maps the operators to

a; > cos(0)a; + sin(0)a;,  a] > cos(0)a; + sin()a),

aj > cos(0)a; — sin(6)a;,

X; > cos(8)%; + sin(0)%;,

Xj > cos(0)x; — sin(0)%;,

The corresponding symplectic transformation is characterized by

cos(9)
0
—sin(0)
0

d=0, M=

. . (A34)
aj — cos(0)a} — sin(0)a;,
p; > cos(0)p; + sin(0)p,
! P (A35)
pj > cos(0)p; — sin(0)p;.
0 sin(0) 0
cos(0) 0 sin(6)
0 cos(9) 0 (A36)
—sin(6) 0 cos(8)

We note that the transformations D, S, and TMS with arbitrary complex parameters o and z = re'” can be decomposed as the
same transformations with real parameters (¢ = «* and z = r) combined with two phase shifters.

5. Measuring a Gaussian state with single photon detectors

We here consider the measurement of one or several modes
in a multimode state with non-photon-number-resolving
(NPNR) detectors. The positive operator-valued measure
(POVM) associated to the “no-click” event of a NPNR de-
tection with efficiency n operating on a mode with bosonic
operators a and a' is given by R “ where R = (1 — 1) while
the “click” event is obviously related to the POVM 1 — Re'a,
Although such a measurement is not a Gaussian operation, we
show that the multimode state conditioned on the outcome of
such a measurement on one or several modes can be written as
a mixture of Gaussian states and, hence, its Wigner function
can be written as a difference between two densities of a
multivariate normal distribution.

a. Tracing out a mode. Let W, () the Wigner function of an
n-mode state p. When the mode i is traced out, the resulting
state p_; is given by

pP—i = rijp = tr,-n”/d2aW(oc) ®8(aj — Olj)

j=1

=" / d*aW (@) (trimd(a; — i) (R) 8(a; — @)
j=1
i

=" fdzaW(a) Q) sa; —ay). (A37)

j=1
J#

The second equality is obtained from the definition given in

Eq. (A12) while the third inequality uses tré(a — o) = 7 (see

Ref. [58]). This shows that when the mode i is traced out, the

Wigner function of the remaining modes is simply given by

Woi(@) = / d*a;W (), (A38)

(

that is, & is obtained from the vector a by removing the com-
ponents 2i and 2i + 1. Since the marginals of a multivariate
normal distribution are also normal, Gaussianity is preserved
by the trace; that is, p—; remains Gaussian if p is Gaussian.

Concretely, the displacement vector u—; of p—; can be
obtained by removing the components 2i and 2i 4+ 1 of the
displacement vector of p. Its covariance matrix ¥_; is ob-
tained by removing the rows and columns 2i and 2i + 1 of
the covariance matrix of p.

b. Outcome probabilities. Let us consider a NPNR detector
operating on a single mode with bosonic operators a and a'
and state p. The probability of having a “no click” is given by

Pro-click = tr o Ri'a = / dzaWp () trré(a — a)R“T“ .
Sr(@)
(A39)
As é(a—a) can be written as $(a— )=
L [d*B e ~="FD(B) [58] with D(B) the displacement
operator with amplitude 8, we have

frla) = % / d?B e*F PR D(B)

= l/dzﬁ &P B GlBP 2y R’ a =B a
g

1L f A2 B P =B P 2yp e’ Ralag—Fra
T

1 e : .
_ ﬁ/dzﬁ T ﬂelﬂ\z/ZdeV BV G BDIVE By

1 1+R

— ;/dzﬁeaﬂ*_“*ﬂe‘iﬁ‘ﬂ‘z
w(l —R)

2 (A40)

T (1+R)
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where we used a writing of D(8) as el /2g=Baphd’ in
the second equality, the cyclic property of the trace in the
third equality, and the writing of R““ in the normal order
:e®=Da'a . i the fourth equality. We deduce that the prob-
ability for having a “no click” for any monomode state p can
be computed from its Wigner function as

Proicr = / PaW, (@) fr@)

with  fr(a) = e 2P ik (A41)

(1+R)

c. Heralding on photon detections. We now consider the
case with n modes with a photon detection on mode i. The
subnormalized state resulting from a “no-click event” on
mode i is given by

Poi = triRuj.a"P
N n
= tr;R4% " / d2aW(ot)®5(aj —aj)
j=1

n

="! /d%W(a)(trinR”?”fa(a,- — ) Q) 8(a; — o))
ye
=" /dzaW(a)fR(ai)®8(aj —aj), (A42)
j=1
J#L

where fy is defined in Eq. (A40). From Eq. (A12), the corre-
sponding subnormalized Wigner function is

W.i(@) = / LW (@) fr(a), (A43)

with & the vector with (n — 1) elements constructed by drop-
ping the ith element of the vector a. Let us compute the

1 1
exp <_§(6‘ —w'=Ya—p) - 56/1?&)

(&)
=N(w, (2" +F)™")

normalization for Gaussian states. We have
exp(—;@-w's'@-p)
JdetmX)

Sr(d;),
(A44)

Wai(@) = / dd;

where we denoted &; = (ﬁzzj). From Eq. (A40), we have

@0 = g o (- KL=
Tr(& = ain P || TR

2 20—=R) _;_
= exp | — o; o
(14+R) 1+R

2 |
= exp| —za&' Fa |,
(1+R) 2
where F is a matrix composed of n — 1 blocks Fj, each block
being a 2 x 2 block, such that

(A45)

_ (0 O _4(1-R)
Fizi = <0 0)’ Fi—i = 1+—R12' (A46)
Equation (A44) can therefore be written as
W.i(a) 2 /d&
cilll) = i
(1 4+ R)/det(2m %)
_1~_ Ts—l/r _1~T~
X exp E(a ny X (@—p) Ea Fa ).
(A47)

The integral can be rewritten as an integral of a multivariate
distribution with a constant factor. To do so, we start by
expressing the term in the exponent as

la-p's'@—p +ia"Fa
=1@—w) (7" +F)@—w)

where we used the identity det(2rX ) = 1/ det(X ~'/27). Equation (A47) can now be rewritten as

Woi(&)

s - LT (T Fw (A48)
withw = (X' + F)~'X~! u. This leads to
|
1~ T -1 ~ 1 T —1 1 T —1
= exp —E(oc—w) (X7 4+ F)a—w))exp _EIL ) ;L—i—iw "+ Fw
xp(— 2" =7+ Lw? (27 + F)w) (A49)
Jdet(Z-1+ F)/2m)
o T E e T (2w / PaN@w, (57 +F)™). (AS0)

2 1
1 +R\/det(z)det(21 +F)

Note that the marginal of the multivariate normal distribution is normalized. We deduce that the properly normalized Wigner
function W,;(ar), which can be written as W,,;(et) = p;W.;(e), is given by

Wei(@) = N(o; p', X7),

(AS1)
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where the displacement vector ' is obtained by removing
the elements 2i and 2i +1 of (X7 '+ F)'S~!'u and the
covariance matrix X’ is obtained by removing the rows and
columns 2i and 2i + 1 of (¥ ~! 4+ F)~!. p.;, the probability of
a no-click outcome when applying a NPNR detector on mode
i, is given by

2 1
P15 R\/det(z)det(z—l +F)

% e_%ILT(E—]_E—l(E—l_'_F)—]Z—I)M

(AS2)

We can finally express the state p,; conditioned on a “click”
on mode i by considering its connection with the subnormal-
ized state

Poi = trip(L — R44) = p_i — poipoi = Peieis (A53)

where p,; = 1 — poi is the probability of having a click on
mode i. We deduce

Pei = P-i — PoiPoi (A54)
1 — Poi
and the Wigner function of this normalized state is given by
W—-i o) — oiWoi o W—-i o) — Woi o
Wai(@) = 2@ = PoWei(@) _ Worl@) = Wil®) - )
1 — Doi 1 — PDoi

This shows that the Wigner function of the conditional state
Pei can be written as a weighted sum of Gaussian Wigner

J

Il
A/ /N
p—
l\)—i-‘l\)
=
— — —

T(E_l

functions. Note that Gaussian operations acting on the con-
ditional state can be accounted for by first considering their
actions on individual Gaussian Wigner functions and by then
recombining the two branches according to the weighted sum
of initial Wigner functions.

d. Statistics of NPNR detections on multiple modes. We fi-
nally consider the detection of m modes with NPNR detectors
and show the way to compute the probability of outcomes.
We represent an arbitrary outcome by a vector k where the ith
component K; equals O for a no-click event and 1 for a click.
The probability of getting such an outcome is given by

E) = <® R Q) (1~ R“fa-f)>. (A56)
ilki=0 jlkj=1
According to Eq. (A39), we have
(Ex) = / daWye) Y (=D T | (fr@))
LeSy i=0
=) (=140 (AST)
lESk

where Sy, is the set containing all strings £ with n bits where the
components ¢; are fixed to 1 for all i such that k; = 0. This set
contains 2! terms with |k| = >_; ki. From the value of fz(«)
given in Eq. (A40), we have

€] _
/dzoe W () exp (——2(11+ If) Zﬂikxilz)

I 1
/ d*a W () exp (§&T0¢&)

1 o
/dZ“N(ot; p, T)e 2% 0

THET 40 E 1)/!L)

2 \exp (
= (A58)
1+R Vdet(T)det(T-1 + 0y)
where [£] = )", ¢; and O, is the block-diagonal matrix
_41-B -
= A59
@ ) 8
The last equality is obtained by noting that
@—p's'@-mp+a'og=@-w (E'+o)@-w+p ='p—w (S + 0w (A60)
forw=(Z"'4+0,)"'T " wand
/dzaN(a;w, E'+0)H=1. (A61)

The expected statistics is obtained by combining Eqs. (A57) and (A58).

APPENDIX B: AUTOMATED DESIGN IMPLEMENTATION

We here provide a description of how we automatize the
design of quantum photonics experiments for DIQKD. This

(

automatization is based on reinforcement learning, a subfield
of machine learning. Reinforcement learning (RL) algorithms
aim at finding out what action an agent should take when
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|
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Agent Every n episo/de \
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Compute A; from Critic and Trajectory
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= S — Ay 9
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% S—1 Y

from 7p(als)

action probability

FIG. 4. Reinforcement learning for automated circuit design. An action a is sent to the environment. If it verifies some constraints (avoid
redundancy, avoid beam splitter on the vacuum, etc.) it is added to the optical circuit C; otherwise C is unchanged. The circuit’s parameters
are then optimized. A resulting reward r, state s, and stop condition ¢ are passed both to the agent and to a memory or trajectory. If the stop
condition is frue the circuit is reset to empty modes and the episode ends. Otherwise, for s and the policy 7, the agent picks a new action and
sends it to the environment. Every n episode, the agent uses the trajectory to update the parameters 6 to maximize future rewards.

interacting with its environment in order to maximize the cu-
mulative reward (see Fig. 4). Here, we give a quick overview
of policy gradients and the proximal policy optimization
algorithm—the type of agent we used. Then we dive into
the details of our implementation before concluding with its
convergence.

We emphasize that our algorithm is inspired by the one
presented in Ref. [44]. There, it has shown how to auto-
mate the search of optical experiments for winning nonlocal
games using projective simulation, simulated annihilating,
and a numerical framework based on Fock representa-
tion. Our approach differs in all these aspects—we used
policy-gradient-based reinforcement learning, Nelder-Mead
optimization, and a faster and more reliable custom-made nu-
merical framework based on Gaussian representation of states
to simulate optical circuits.

1. Policy gradient overview

The behavior of an agent during its interaction with the
environment is captured by its (stochastic) policy my(als):
the probability distribution of taking action a € A when per-
ceiving a state s. Policy gradient methods are a type of RL
algorithms that aim at learning the parameters 6 of the policy
1y (als) in order to find the strategy maximizing an estimate
of the sum of total future rewards. This learning occurs by
sampling trajectories—a sequence of state s, action a, and

reward r—for a given policy, followed by an update of the
policy’s parameters that favors the trajectories with the highest
cumulative reward.

For a given reward function Jy (r, s), gradient ascent is used
to update the parameters 6 by a certain amount given by the
learning step. Note that this learning step is a hyperparameter
crucial to training stability; e.g., a too small step results in a
stagnation of the policy whereas a too large step changes may
hinders the convergence of the policy.

For a concise overview of different policy gradient meth-
ods, consult Ref. [55]. Here, we note that policy gradient
algorithms can also be used in model-free RL. Model-free
algorithms optimize the policy without any knowledge of
the internal functioning of the environment, i.e., the reward
function and the transition function (the probability to obtain
an output state given an input state and an action). This ap-
proach is very versatile and well suited for environments with
a complex transition model, e.g., if the state transition depends
on an internal complex stochastic process such as a nonlinear
optimization as in our case (see below).

2. Proximal policy optimization

For our implementation we use a model-free policy gra-
dient method known as proximal policy optimization (PPO).
This algorithm is known to be sample efficient and has seen
numerous successful applications while remaining fairly sim-
ple to implement and use.
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PPO is an on-policy algorithm; i.e., policy updates are com-
puted based on the latest policy mqq (parametrized by some
parameter value 9) and a batch of trajectories {(a;,s;, r;)}
sampled from this policy. The clipped surrogate reward func-
tion used by PPO reads [56]

JSHP =T, [min(R, (9)A, (9), clip(R;(0), 1—¢€, 1 + €)A,(8))].

(B1)
Here, R,(0) = my(a;|s;)/moa(a;ls;) is the probability ratio
between a policy 7y and the old policy o4, A; (6) is the advan-
tage function, € is a hyperparameter, and the expected value
I, is taken over the batch of trajectories. The clip function is
used to constrain the amplitude of policy changes, quantified
by R;(0), to be within the interval [1 — €, 1 + €]. Specific to
PPO, this limitation increases the robustness to suboptimal
learning step choices by preventing large policy updates. The
advantage function A, (6) quantifies how good was the choice
of the action sequence a; in reaction to the perceived states s;
when compared to a baseline. The baseline reward expected
from a state s; is estimated with the value function Vj (s ) (see
below). For each step k of a given trajectory the advantage
function thus compares the returned reward r;, plus the reward
predicted for the next state, Vy (sx+1) (resulting from the action
ay), to the predicted total baseline reward Vy(sy) for the ob-
served state s;. Formally, for a trajectory segment containing
T steps, the advantage is given by

A =6+ WA )+ + (]/)L)T7[+157_]
8k = i+ ¥ Va(sie) — Va(si),

with
(B2)

where A and y are hyperparameters that can be tuned to
discount rewards that are delayed in time from the action (see
Ref. [56] for details). In summary, the product R;(6)A;(6)
appearing in the reward function JS? is large if the choice of
the action sequence a;, is advantageous when compared to the
baseline (A; > 0) and the policy 7y is more likely to choose
these actions than g4 (R, > 1).

The value function Vy(s) estimates the predicted cumula-
tive reward obtained when following the policy my starting
from the state s. It shares the parameters 6 with the policy,
and is learned by minimizing the error term

L) = (Va(s) — V¥reety?, (B3)

where V€ ig the computed value from the trajectory batch.
Since 6 is common to both the policy and the value function,
this error term can simply be added to the reward function
given in Eq. (B1) [56].

Finally, to enhance the exploration of the search space, an
entropic penalty term H (7ry) is added to the reward function. It
favors policies that are not deterministic, but explore different
actions.

To summarize, the total PPO reward function used to opti-
mize the policy for higher cumulative reward is

Ty = J§"F + B[ —c1 Ly + c2H (p)], (B4)

where weights ¢y, ¢, are hyperparameters.

PPO implementation. We used an implementation of PPO
available in the ReinforcementLearning.jl package [59]. This
implementation uses two neural networks—an actor network
and a critic network—sharing parameters 6.

The actor network acts as the policy. It takes as an input
the state received from the environment. The output layer has
one neuron for each of the possible actions. The higher is the
value of the activation function for one of these neurons the
higher is the probability to choose the corresponding action.

The critic network acts as the value function Vj. It also
takes the observed state as the input. The output layer is
composed of a single neuron whose activation value is directly
proportional to the outcome of V.

We tested multiple hyperparameter configurations. We
settled on the choice of a single hidden layer of 256 neu-
rons for both neural networks. For the hyperparameters of
the advantage function, we set the discount factor to 0.99
and the smoothing parameter A to 0.95. We consider learn-
ing from trajectory of size T = 32. The reward function is
parametrized by a clip range of € = 0.1 and weights ¢; = 0.5
and ¢, = 1073,

3. Interaction with the environment

The PPO agent interacts with an environment that plays
the role of a virtual laboratory where the n-mode photonic
setup is implemented and the DIQKD protocol is executed.
As described in the main text, the photonic circuit can be
decomposed in two “phases”: the state preparation phase,
ending with the heralding measurements of all but the two first
modes, which is followed by the measurement phase, where
Alice and Bob can each perform local operations on their
mode before measuring it with a NPNR detector. Actions that
are taken by the agent correspond to placing optical elements
on specific locations in the circuit.

A step starts with the agent taking an action, then the
environment updates the photonic circuit, optimizes the circuit
parameters, and returns a corresponding reward, the updated
state, and a stop condition. This stop condition is a Boolean
variable that becomes true when the total number of actions
taken by the agent reaches a threshold we fixed at 15. When
the stop condition is true the circuit and the action counter are
reset. An episode is defined as the series of actions taken until
the stop condition occurs.

The optical elements we consider are displacement (D),
phase shifter (&), single-mode squeezer (S), two-mode
squeezer (TMS), and beam-splitter (BS) operations. These
are all Gaussian operations that are detailed in the previous
section. An action a is composed of an optical element and
a location on the circuit, i.e., on which mode it acts on. In
addition, we denote a(¢) the action a with its optical element
parametrized by ¢ which is either a real number, if a is a phase
shifter or a beam splitter, or a complex number otherwise.

In the state preparation phase, we allow for phase shifters
and squeezers to be applied on all of the n modes. This results
in the following set of actions:

Aprep = {9, 80, TMS), BS“} (B5)
with i, j € {1, ..., n} specifying the modes on which they act.
In the measurement phase, we consider Alice (Bob) to al-
ways perform a displacement along the x (p) direction before
the NPNR detector. In addition, Alice and Bob can perform
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actions from the sets
Apies = {Df, So, PSo, DI, S1, PS1 },
.ABOb = {Dﬁ, SO, PS(),D)IC,S],PS],Dé,Sz,Psz}. (B6)

meas

Here, the subscripts denote the choice of the measurement
setting following which the operation is performed (Alice and
Bob only receive a single mode). Combining the three sets,
we obtain the total set of all possible actions that can be taken
in our environment,

A = Aprep U AblIce y gBb (B7)

meas

4. Circuit parameter optimization

A succession of N actions ay, . .., ay from A with the cor-
responding parameter values ¢y, ..., ¢y defines a photonic
circuit

C@) ={ai(1), ..., an(dn)}, Va; € A (B8)

In order to avoid trivial actions and redundancy, we add some
constraints on such circuits. If a phase shifter or a beam
splitter is added on an empty mode, i.e., acting on the vacuum,
we can simply discard the corresponding action from C. If
two identical actions a are either consecutive or separated by
actions that commute with a, the latter occurrence of a is
discarded from C. Finally, we constrained the actions in the
measurement set Ae,s to be unique; i.e., for each a € Apeas =
ARlice |y ABob we discard any other occurrence of a in C.

The circuit Cpyy is the circuit with parameters ¢, and
noisy preprocessing probability p optimized to maximize the
key rate obtained from Eq. (2). Such an optimization can
be hard to perform since the key rate defined in Eq. (2) is
only valid for CHSH score S > 2. To help the optimization to
converge, we define the extended key rate as the continuation
of the key rate formula

F=1-1,— HA'B) (B9)
with
/ _ \/ﬁ .
- h(H‘ (|~§|/2)2 1)_h(1+ 1 P(12 p)(8 \5\2)) if |S| > 2,
=
1+ h( l+«/2W) — h(1+ v 1—p2(1—p)\5|2) otherwise

(see Fig. 5) to all possible values of the CHSH score, as plotted
in Fig. 5. Note that 7 is negative for local values of CHSH
|S| < 2. The extended key rate function is what we used to
optimize the parameters of the circuit C, i.e., to numerically
solve

¢max = argmax¢ ?(C(¢)) (BlO)

Concretely, this optimization was done using the Nelder-
Mead method [46]. For a new circuit, we use multiple random
starting parameters. However, for a circuit C’ constructed by
adding a new action to a previously optimized circuit Cy,x, we
optimize the parameters of C’ starting from (¢,,, 0). To avoid
local optima, two additional optimizations with different start-
ing points are performed, one from a random point and one
from (@, + eu, 0), where u is a uniformly distributed real
vector with value in [0,1] and ¢ is a scalar we fixed to 0.2.

In the case where n > 3 some modes are used for herald-
ing in the state preparation phase. In this case, there exist

22

S

FIG. 5. Evolution of the extended version of 1 — 1, with the
CHSH score S in the absence of noisy preprocessing (p = 0).

circuits that never produce the heralding event, e.g., when
heralding on an empty (vacuum) mode. Similarly, some circuit
parameter values also render heralding impossible. In both of
these cases, we fix the key rate to a dummy value of —1.
This allows the minimization to run over the entire space
of parameters and avoids the implementation of complicated
parameter constraints.

We tested our circuit optimization strategy on the reference
photonic implementation of DIQKD shown in Fig. 1. We
were able to recover similar key rates as the ones derived
analytically in Ref. [49]. In particular, we found the same
efficiency threshold for key rate higher than 10~°. Below this
order of magnitude, the optimization becomes too unstable
and the numerical quantum optics simulation starts to induce
non-negligible error due to matrix inverse operations.

5. Reward function

For a given circuit C, the environment computes a reward
evaluating the performance of the circuit for a fixed task. We
investigated two tasks for (i) finding circuits maximizing the
key rate in the absence of loss, and (ii) finding a loss-tolerant
circuit, i.e., maximizing loss while maintaining a key rate
greater that 1074,

In the first case, a naive approach would be to use the
extended key rate 7 in Eq. (B9) as the reward:

r = F(Crax)- B11)

To help the PPO algorithm to converge, we reshape this re-
ward using a secondary reward based on the CHSH value S
attained by Cpax,

r= [F(Cmax) + £ S(Crmax)1], (B12)

1+¢
where we fixed the weight ¢ = 1072,

In the second case, the reward is the minimum efficiency so
that the circuit can output a key rate greater than the threshold
set to 10~*. Denote C" the circuit with NPNR detectors of ef-
ficiency n. To evaluate this reward, we start by optimizing the
circuit C" in the perfect case, i.e., with efficiency n = 1. We
then lower 7 by a step s depending on the order of magnitude
of the key rate 7#(Cpax ) following

s = max (2 x 1080 Cm)=1L 10=3), (B13)
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FIG. 6. Evolution of the reward r and loss Jy with learning steps, in the case of PPO aiming to design quantum-optical circuits maximizing
the key rate in a lossless scenario. The grey curves represent the raw data obtained during learning. The red curves are the smoothed evolution

obtained using Eq. (B19) on the raw data and with weight @ = 0.9.

For the newly obtained efficiency, we optimize the circuit
again, starting from the optimal parameters found at the pre-
vious step. Eventually, n is too small and the optimal key
rate found by the optimization does not exceed the threshold.
We label nmin the smallest efficiency before this happens. The
reward is then given by

(B14)

Note that in both tasks, the PPO algorithm learns from the
total reward gathered per episode. The reward attributed at
step i is thus defined as

7 = Nmin-

ri—rioy ifri—ri; >0
(B15)

0 otherwise,

so that only the highest reward obtained during an episode
matters.

6. The state perceived by the agent

For each circuit C, the state s returned by the environment
to the PPO algorithm is taken from its optimized version Cp,x
at the measurement phase, just before the NPNR detectors.

For each setting pair {x, y} we extract the quantum state,
i.e., the covariance matrix X and the displacement vector p
for each Gaussian state composing the conditional state as in
Eq. (A55). Note that, thanks to symmetries of the Hermitian
nature of the covariance matrix on m modes, a single covari-
ance matrix is parametrized by (2m? + m) real parameters.
Denote ¥ the vector containing these real parameters. For a
Gaussian state, all parameters are contained in the vector

)

Trivially, a heralded state represented as a quasimixture of
2" Gaussian states with weight w; can be represented by

(B16)

the vector
wi
w; bl
D1 3]
p= = B17)

Won—m Won—m

Pon Sonm

Won-m

Labeling p,, the vector containing the information of the
quantum state for the setting choice x, y, the state returned
by the environment is the vector

(B18)

12

7. PPO convergence

To grasp the convergence of our algorithm, we investigated
the evolution of different factors with learning steps. The
reward function, also called loss, used to optimize the policy,
Eq. (B4), should converge to zero, i.e., showing a convergence
of the learning algorithm and a successful descent of the
gradient of this function. When the policy converges to a
more optimal one, the reward received from the environment
should, on average, increase with learning steps.

The evolution of these quantities is depicted in Fig. 6. As
an example, we choose a scenario where the PPO is aiming
for quantum-optical circuits maximizing key rates in a loss-
less scenario. In this case, the reward is simply the key rate
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TABLE IV. Key rate and optical device parameters for the circuit depicted in Fig. 2(a). for different loss values n considered to be the
same for all NPNR photon detectors. Parameters are for (a) state generation parameters and (b) measurement settings. Single- and two-mode
squeezers have two parameters r, & which are given in separate columns with names containing r and 6 as a superscript. p denotes the noisy
preprocessing probability.

()
n Key rate TMS], T™SY, TMS?, TMSS, TMS, TMSY, SMS} SMS§

0.0  9.1372x107" 4.9723x1072 1.5727 1.8764x107>  9.8943x10~"  1.8567x1073 25610  —5.1173x1072  1.1440x1072
0.01  7.6769x10~! 53058x102 1.5728 3.7045x107*  9.4867x10~"  3.6731x10~* 25192 —52103x1072  4.6623x1073
0.02  6.5271x10~" 5.8176x1072 1.5701 3.9093x107*  9.7914x107! 3.8866x10~* 25493  —5.2998x1072 —3.0361x10~*
0.03  5.5266x107! 6.3723x1072 1.5689 4.2081x10~* 1.0056 4.1874x10~* 25762 —5.3323x107% —7.4331x1073
0.04 4.6313x107" 7.0504x1072 1.5731 3.9112x107*  9.8700x10~"  3.8951x10~* 25583  —5.4637x1072 7.3763x1073
0.05 3.8185x107! 7.7611x1072 1.5706 4.2287x10~* 1.0027 4.2152x10~* 25735  —5.3403x1072 —3.8425x10~*
0.06 3.0744x107! 8.5503x1072 1.5709 4.4170x10~* 1.0528 4.4066x 10~ 26236  —5.1200x1072  7.4612x10~*
0.07  2.3905x107! 9.4187x1072 1.5710 5.3904x10~* 1.0958 5.3820x10~* 26667 —4.7661x1072  1.7861x107*
0.08 1.7625x107! 1.0426x10~! 1.5708 7.9601x10~* 1.1090 7.9513x10~* 26798  —4.3630x1072 —2.3382x10~*

0.09  1.1926x107" 1.1654x107! 1.5709 5.8393x107* 1.1251 5.8299x10~* 26960  —4.0096x1072  2.9306x10~*
0.1  6.9422x1072 1.3162x10~" 1.5708 6.2310x107* 1.1442 6.2116x10~* 27150 —3.6519x1072 —1.9758x10~*
0.102 6.0558x1072 1.3495x10! 1.5708 5.2328x107* 1.1048 5.2148x107* 26756  —3.5594x102 1.1047x10~*
0.104 5.2132x1072 1.3832x10~! 1.5708 5.3724x10~* 1.1237 5.3521x10~* 26946  —3.4552x1072 —1.5648x10~*
0.106 4.4179x1072 1.4174x10~" 1.5708 5.5538x10~* 1.1332 5.5312x107* 27040  —3.3381x1072  1.1994x107°
0.108 3.6734x1072 1.4516x10~! 1.5710 4.8560x10~* 1.1484 4.8350x10~* 27193 —3.2064x10"2  3.9609x10~*
0.11  2.9836x1072 1.4859x10~! 1.5708 2.9157x107* 1.1589 2.9024x107* 27298  —3.0676x107% 1.1961x1073
0.112 2.3521x1072 1.5205x 107" 1.5709 3.5600%10~* 1.1596 3.5436x10~* 27305  —2.8905x1072  2.2124x1073
0.114 1.7832x1072 1.5542x10! 1.5708 5.4197x107* 1.1669 5.3943x107* 27378  —2.7330x1072 —7.1217x10~*
0.116 1.2817x1072 1.5881x10~! 1.5708 2.6547x107* 1.1815 2.6423%x107* 277522 —2.5443x1072 —4.7823%x107*
0.118 8.5244x1073 1.6211x10~" 1.5708 2.7929%10~* 1.1937 2.7800x10~* 27645  —2.3568x1072 —7.5283%x107*
0.12  5.0165x1073 1.6536x107! 1.5710 2.9523x107* 1.2059 2.9391x107* 27768  —2.1515x10"2  6.6004x10~*
0.121 3.5785x107> 1.6694x10~! 1.5709 3.0890x10~* 1.2246 3.0756x107* 27954  —2.0588x1072 —8.9291x10~*
0.122  2.3646x1073 1.6856x 10~ 1.5711 3.2344x107* 1.2425 3.2206x10~* 28133  —1.9541x1072  2.6670x1073
0.123 1.3864x1073 1.7007x10~! 1.5711 3.3647x107* 1.2583 3.3506x 1074 28293  —1.8604x10"2 2.1192x1073
0.124 6.5655x107* 1.7161x10~! 1.5710 3.5080x10~* 1.2693 3.4937x107* 2.8401  —1.7989x1072 7.9132x1073
0.125 1.8979x10~* 1.7308x10~" 1.5711 3.6626x10~* 1.2815 3.6475%x107* 2.8523  —1.7036x1072  1.4553x1072
0.126 2.8585x107% 1.7437x10~! 1.5708 1.0760x 10~ 1.2278 1.0716x107* 27979  —1.5724x107%2  7.6604x1072
0.1261 2.4878x1077 1.7426x10~" 1.5731 1.0177x107* 1.2164 1.0133x107* 27870  —1.7422x1072  1.0454x107!
(b)

n Key rate Ap: PS Ap: D Aq: SMS A;:D By:D B,: SMS B:D B,:D )4
0.0  9.1372x107"  1.5707x1073 2.2232x107" —1.9493x10~" —6.3047x10~" —1.6790x 10" 2.7628x10~! 6.8478x10~" 2.2199x10""  1.0000x10~°

0.01  7.6769x107"  2.3369x107* 2.3975x10™" —1.9173x10™" —6.2839x 10" —1.6243x107! 2.8520x10~" 7.0228x10~" 2.4115x10~" —9.2873x10~'0
0.02  6.5271x107" —8.0489x10~* 2.6220x10~" —1.8428x10~" —6.2299x 107" —1.5334x107" 2.9663x10~" 7.2669x10~" 2.6435x10~"  2.3234x10~°
0.03  5.5266x107" —2.3541x107* 2.8403x107! —1.7780x10~" —6.1976x10~" —1.4537x10"" 3.0614x10~" 7.4890x10~' 2.8736x10"'  1.1074x107®
0.04 4.6313x107"  8.9333x107* 3.0692x10™" —1.7054x10~" —6.1750x 10" —1.3720x107" 3.1607x10~" 7.7165x10~"  3.1127x10""  2.0419x10~7
0.05 3.8185x10~" 5.4205x107° 3.3159x107! —1.6266x10~" —6.1522x10~" —1.2794x10~" 3.2359x10~! 7.9474x10~' 3.3707x10~! —6.0571x10~°
0.06 3.0744x107"  6.9204x107 3.5722x107! —1.5410x10~" —6.1378x10~" —1.1854x107" 3.2982x10~! 8.1813x10~" 3.6390x10~!  5.8982x107°
0.07  2.3905x107"  1.2173x107* 3.8416x10™" —1.4479x10~" —6.1308x 10" —1.0865x107" 3.3433x107" 8.4167x10~" 3.9229x10~" —3.2192x10~*
0.08 1.7625x10~" —3.4803x107° 4.1305x 107! —1.3407x10~! —6.1313x10~" —9.7854x 1072 3.3794x10~! 8.6579x10~! 4.2301x10~! —1.3200x1073
0.09 1.1926x10~"  3.9122x107° 4.4497x107! —1.2094x10~" —6.1373x10~" —8.5505%x 1072 3.4164x10"" 8.9149x10~" 4.5766x10"! —4.8523x1073
0.1  6.9422x1072  1.9935x1075 4.8152x 107" —1.0426x 10" —6.1445x107" —7.0290x 1072 3.4499x10~" 9.1957x10~" 4.9826x10~!  1.6936x1072
0.102 6.0558x1072 —9.6271x107® 4.8940x 107! —1.0046x10~" —6.1457x10~" —6.6840x1072 3.4542x 107! 9.2542x10~' 5.0711x10"!  2.1503x1072
0.104 5.2132x1072  5.2224x107° 4.9736x107! —9.6748x1072 —6.1486x10~" —6.3434x1072 3.4573x10~" 9.3125x10~" 5.1609x10~!  2.7155x1072
0.106 4.4179%1072 —2.6837x107° 5.0539x107! —9.2925x10"2 —6.1519x10~" —5.9919% 1072 3.4585x10~! 9.3706x10~" 5.2517x10"!  3.4114x1072
0.108 3.6734x1072  1.1644x107* 5.1341x107! —8.9279x1072 —6.1573x10™" —5.6551x1072 3.4572x 107! 9.4272x107" 5.3429x10"!  4.2646x1072
0.11  2.9836x1072  1.0767x107* 5.2146x107! —8.5561x1072 —6.1627x10~" —5.3036x 1072 3.4558x 10~ 9.4834x10~" 5.4341x10""  5.3124x1072
0.112 2.3521x1072 —1.9377x107 5.2963x10™" —8.1750x 1072 —6.1683x 107" —4.9322x1072 3.4498x10~" 9.5394x 10" 5.5270x10""  6.6013x1072
0.114 1.7832x1072  5.9934x1075 5.3735x10~" —7.8393x 1072 —6.1787x 10! —4.6363x1072 3.4448x10~" 9.5919x 10! 5.6155x10~!  8.1947x 1072
0.116 1.2817x1072 —3.7851x107° 5.4524x 107! —7.4857x1072 —6.1881x10~" —4.3045x1072 3.4364x 10" 9.6446x10~! 5.7058x10~"  1.0191x10"!
0.118 8.5244x1073  8.7705x107° 5.5282x 107" —7.1775x 1072 —6.2006x 10~" —4.0042x1072 3.4271x107" 9.6938x10~" 5.7929x10~"  1.2741x10~"
0.12  5.0165x1073  1.0671x107* 5.6027x107! —6.8865x1072 —6.2153x 107" —3.7223x1072 3.4148x10"! 9.7409x107! 5.8794x10~!  1.6088x107!
0.121 3.5785x1073  1.0696x10™* 5.6387x10™" —6.7483x102 —6.2235x 10! —3.5895x1072 3.4098x10~" 9.7640x10~! 5.9204x10"!  1.8198x10"!
0.122 2.3646x1073  5.6720x1075 5.6751x107" —6.6126x1072 —6.2326x 10" —3.4557x1072 3.4023x107" 9.7863x10~" 5.9631x10~"  2.0721x10~"
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TABLE IV. (Continued.)

n Key rate Ao: PS Aog: D

Ap: SMS A;:D

By:D B;: SMS B:D B,:D P

0.123  1.3864x1073
0.124  6.5655x107*

2.7193x107* 5.7096x 107" —6.4867x1072 —6.2408x 107" —3.3274x1072 3.3967x10~" 9.8075x10~" 6.0029x10" 2.3804x 10"
9.9099x 1075 5.7424x107" —6.3973x1072 —6.2521x107" —3.2334x1072 3.3942x107" 9.8289x10~" 6.0407x10~" 2.7753x10"!

0.125 1.8979x107* —1.9151x10™* 5.7762x 107! —6.3854x1072 —6.2669x 107" —3.1611x1072 3.3897x10~" 9.8491x10~! 6.0821x10~" 3.3330x 107!
0.126  2.8585x107® —7.7997x10™* 5.8036x10™' —6.2803x1072 —6.2774x107" —3.0501x 1072 3.3751x10~" 9.8633x10~! 6.1170x10~! 4.4008x 107!

0.1261 2.4878x1077

4.8657x107* 5.7970x 107! —6.2676x1072 —6.2699x10~" —2.9760x1072 3.3945x10~! 9.8663x10~! 6.1103x10~" 4.7140x 10!

obtained for perfect detector efficiency. Furthermore, since the
policy is stochastic, in order to get more relevant statistics, we
trained the PPO on ten environments simultaneously. That is,
a single agent interacts with ten optical setups in parallel. The
reward in Fig. 6 is the cumulative reward received from these
environments. Because of the stochastic nature of the learning
process, it is relevant to study a smoothed evolution of the
reward and loss with learning steps. We choose to define the
smoothed evolution s of a quantity x at step  as

x(0) ifr =0

st — Dw+x(t)(1 —w)  otherwise, 519

s(x,t) = {

for some weight w € [0, 1].

In Fig. 6, we see three phases occurring during the policy
optimization. First is an exploration phase, where the policy is
close to random and where the rewards obtained are relatively
low. The loss is contained in a [0,100] interval. Then, a drastic
increase in the reward occurs. This is first triggered by a
high loss of around 250. Finally, both the reward and the loss
plateau, with loss getting close to zero and the average reward
over the ten environments oscillating around 0.84. This can
be interpreted as a convergence of the policy (low loss) in a
relevant region (high reward). Note that the spikes in the loss
evolution are due to gradient descent on batches—some batch
of data will randomly contain episodes with better rewards
than others.

TABLE V. Key rate and optical device parameters for the circuit depicted in Fig. 2(b) for different loss values 7 considered to be the same
for all NPNR photon detectors.

n Key rate TMS" T™S’ Ap: D* Ay: SMS A:D* By: D? By:D? By: D? p

0.0 4.6009x107" 7.4170x107" 1.5708 2.3779x1072 —3.1225x107" —7.9996x10™" 2.9255x10™' —3.8842x10™" —2.0662x1072  3.6645x 107"
0.01 3.9246x107" 7.2670x107" 1.5708 3.3502x1072 —3.1168x107" —7.9141x107" 2.8421x10~" —3.9874x10"! —-2.9351x1072  2.1021x107°
0.02 3.3557x107" 7.1115x107" 1.5708 3.4711x1072 —3.1335x107" —7.9398x10~" 2.8304x107" —4.0083x10~! —2.9978x1072 1.6367x10~*

0.03 2.8411x107" 6.9311x107" 1.5708 3.4806x1072 —3.1546x107! —7.9759x10! 2.8216x107! —4.0152x107! —2.9529x10~2 —5.8623x10~*
0.04 2.3708x107" 6.7195x107" 1.5708 3.4325x1072 —3.1768x10~! —8.0118x10~" 2.8088x10~! —4.0115x10"" —2.8496x1072 1.4921x1073
0.05 1.9419x 107! 6.4693x107! 1.5708 3.3433x1072 —3.2005x107" —8.0434x107" 2.7863x10™" —3.9975x107" —2.6997x1072 —3.1229x1073

0.06  1.5546x107! 6.1770x10~! 1.5708 3.2269x1072 —3.2236x10~' —8.0644x10™' 2.7495x10~' —3.9727x10~' —2.5186x10"2  5.7512x1073
0.07  1.2103x107" 5.8384x10" 1.5708 3.0851x1072 —3.2452x10~" —8.0720x10™" 2.6936x10~" —3.9328x10~" —2.3043x10"2  9.6353x1073
0.08  9.1120x107% 5.4533x10~" 1.5708 2.9309x1072 —3.2626x10~" —8.0579x10~" 2.6113x10~" —3.8767x10~" —2.0729x1072  1.5054x 102
0.09  6.5879x1072 5.0244x10~" 1.5708 2.7573x1072 —3.2714x10~" —8.0176x107! 2.4984x10~" —3.7990x10"! —1.8174x10"2  2.2277x1072
0.1 4.5338x1072 4.5579x107" 1.5708 2.5684x1072 —3.2674x10™" —7.9437x10™" 2.3491x10~" —3.6944x10~" —1.5525x10"2  3.1541x1072
0.11  2.9350x1072 4.0610x10~" 1.5708 2.3559x1072 —3.2433x10~" —7.8290x10~" 2.1601x10~" —3.5568x10~" —1.2804x1072  4.3136x1072
0.12  1.7566x1072 3.5416x10~" 1.5709 2.1184x1072 —3.1912x10~" —7.6619x107! 1.9295x10~" —3.3789x107! —1.0095x10"2  5.7584x1072
0.13  9.4578x1073 3.0070x10~" 1.5707 1.8415x1072 —3.1026x10~" —7.4333x107! 1.6590x10~" —3.1523x10"! —7.4617x1073  7.5736x1072
0.14  4.3676x107% 2.4609x10~" 1.5708 1.5200x1072 —2.9614x10~" —7.1216x10~" 1.3524x10~" —2.8647x10~" —5.0579x10~>  9.9171x 102
0.15  1.5731x1073 1.9043x10~" 1.5707 1.1507x1072 —2.7524x10~" —6.7037x10"" 1.0180x10~" —2.4964x10"" —2.9720x10~3  1.3115x107!
0.16  3.4921x10™* 1.3291x10~" 1.5708 7.2657x1073 —2.4498x10~" —6.1388x10"! 6.6762x10~2 —2.0079x10"" —1.3032x10~>  1.8008x 10!
0.161 2.8648x10™* 1.2691x10~" 1.5708 6.8140x107> —2.4118x10~" —6.0683x10~" 6.3112x1072 —1.9485x10~" —1.1657x10~>  1.8631x10~"
0.162  2.3197x107* 1.2105x10~" 1.5704 6.3903x1073 —2.3769x10~" —6.0040x10"" 5.9713x1072 —1.8875x10"" —1.0167x107>  1.9330x10~!
0.163  1.8506x10™* 1.1517x10~" 1.5707 5.9594x1073 —2.3351x10~" —5.9303x107! 5.6217x1072 —1.8270x10"" —9.0929x10~*  2.0090x10~!
0.164 1.4511x10™* 1.0904x10~! 1.5707 5.5199x1073 —2.2939x10~! —5.8546x10~! 5.2683x1072 —1.7614x10"" —8.1228x10~*  2.0850x10~!
0.165 1.1153x107* 1.0276x10~" 1.5711 5.0270x1073 —2.2507x10~" —5.7759x10"" 4.9036x10~2 —1.6903x10"" —6.9031x10~*  2.1761x10~!
0.166 8.3706x107> 9.6287x1072 1.5707 4.5631x1073 —2.2056x10~" —5.6962x107! 4.5414x1072 —1.6135x10"! —5.9316x10~*  2.2587x10"!
0.167  6.1064x107> 9.0015x1072 1.5710 4.1256x107> —2.1595x10~" —5.6068x10~" 4.1838x1072 —1.5403x10~" —5.0248x10~*  2.3633x10~!
0.168  4.3020x1075 8.3875x1072 1.5708 3.7193x1073 —2.1110x10~" —5.5223x10" 3.8439x1072 —1.4620x10~" —4.4855x10~*  2.4747x10~!
0.169 2.9019x107> 7.6837x1072 1.5708 3.1944x1073 —2.0594x10~" —5.4199x10~! 3.4600x10~2 —1.3722x10"" —3.3272x10~*  2.5950x 10!
0.17  1.8507x107> 7.0047x1072 1.5699 2.8113x107> —1.9983x10~" —53160x10~" 3.0950x1072 —1.2808x10~" —3.0096x10~*  2.7186x10~"
0.171  1.0952x1075 6.2750x1072 1.5715 2.3506x1073 —1.9393x10~" —5.2119x10~" 2.7193x1072 —1.1761x10~" —1.6298x10~*  2.8703x10~!
0.172  5.8329x107° 5.5781x1072 1.5715 1.8728x107° —1.8825x10~" —5.1090x10"" 2.3722x1072 —1.0697x10"" —1.2892x10~*  3.0609x 10"
0.173  2.6476x107° 4.7932x1072 1.5706 1.5120x1073 —1.7837x10~! —4.9469%x10~! 1.9849x1072 —9.5389x102 —9.7213x10~>  3.2488x10~!
0.174  9.1917x1077 3.8504x1072 1.5711 1.0041x1073 —1.7120x10~" —4.8087x10~" 1.5460x1072 —7.9199x10"2 —6.4233x10~>  3.5135x10~!
0.175  1.6981x1077 3.2052x1072 1.5722 8.0323x10™* —1.7038x10~" —4.7369x10~! 1.2678x1072 —6.6971x10"2  1.1025x10~>  3.9505x 10!
0.1756 1.0871x10~% 3.1382x1072 1.5694 6.6202x10~* —1.6206x10~" —4.5882x10~! 1.2088x1072 —6.8129%x102 —1.9528x10~*  4.3388x 10!
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APPENDIX C: RESULTS

We here present the results of our automated approach
of photonic-based DIQKD experimental design. Quantum-
optical circuits maximizing our designed rewards are pre-
sented, as well as their corresponding parameters for different
values of efficiency.

1. Discovered quantum-optical experiments for DIQKD

When using the reward given in Eq. (B12) to maximize the
key rate in a noiseless scenario, the PPO algorithm converges
to the circuit depicted in Fig. 2(a). Parameters optimizing the

key rate for different efficiencies are given in Table I'V. Similar
circuits with extra gates that can freely be discarded (e.g.,
a phase shifter on the third mode just before the heralding
operation) were also found by the agent. The occurrence of
these similar circuits is simply explained by the reward not
punishing for greater circuit depths. Furthermore, adding a
“noncontributing” gate can nevertheless increase the reward
due to a better parameter optimization.

In the case of the reward given in Eq. (B14) targeting cir-
cuits with a high loss tolerance, the PPO algorithm settles on
the circuit drawn in Fig. 2(b). Table V lists the best parameter
choices for different values of efficiency.
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